Effect of gamma rays absorbed doses and heat treatment on the optical absorption spectra of silver ion-exchanged silicate glass
Khaled Farah, Faouzi Hosni, Arbi Mejri, Bruno Boizot, Ben Hafedh, Ahmed Hichem Hamzaoui

To cite this version:

HAL Id: cea-01120984
https://hal-cea.archives-ouvertes.fr/cea-01120984
Submitted on 27 Feb 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Samples of a commercial silicate glass have been subjected to ion exchange at 320 °C in a molten mixture of AgNO₃ and NaNO₃ with molar ratio of 1:99 and 5:95 for 60 min. The ion exchange process was followed by gamma irradiation in the dose range of 1–250 kGy and heating at the temperature of 550 °C for different time periods ranging from 10 to 582 min. The spectral absorption in UV–Vis range of the Ag–Na ion exchanged glass was measured and used to determine the states of silver prevailing in the glass during the ion exchange, the gamma irradiation and the heat treatment. The gamma irradiation induced holes and electrons in the glass structure leading to the creation of a brown colour, and silver ions trapped electrons to form silver atoms. We observed the first stage of aggregation after irradiation, as well as after heating. The silver atoms diffused and then aggregated to form nanoclusters after heating at 550 °C. A characteristic band at about 430 nm was induced. The surface Plasmon absorption of silver nanoclusters in the glass indicated that the nanoclusters radius grew between 0.9 and 1.43 nm with increasing of annealing time from 10 to 242 min and then saturated. We also found that the size of aggregates depends on the value of gamma radiation absorbed dose. Contrary to what was expected, we found that 20 kGy is the optimal absorbed dose corresponding to the larger size of the aggregates which decreases for absorbed doses above 20 kGy.

© 2014 Elsevier B.V. All rights reserved.
observed that gamma irradiation followed by the heat treatment of an ion exchanged silicate glass can effectively promote silver migration and aggregation of metallic nanocluster. The effect of absorbed dose variation on the size of the aggregates has also investigated. In our knowledge, this effect had not been reported in previous work.

2. Experimental

2.1. Glass composition

The glass samples were obtained from the same glass sheets purchased from the local market and were cut into pieces of $11 \times 30 \times 1.5 \text{ mm}^3$ dimensions for optical measurements. The chemical composition of the glass samples were determined by the Prompt Gamma Activation Analysis technique [14] in the Budapest Neutron centre (constituents in wt%: 68.52 SiO$_2$, 13.77 Na$_2$O, 8.19 CaO, 4.34 MgO, 1.003 Al$_2$O$_3$, 0.588 K$_2$O, 0.105 Fe$_2$O$_3$ and about 3.5% of other components).

2.2. Procedure of ion exchange

Glass samples were dipped in a molten salt bath formed by a mixture of AgNO$_3$ and NaNO$_3$ with molar ratio of 1:99, 5:90 and 10:90 for 60 min in crucible of Al$_2$O$_3$. The ion exchange has been carried out at a temperature of 320°C for 1 h. During this step, the silver ions of the salt bath diffuse inside the glass matrix. The ion exchange samples are cleaned with distilled water and acetone to remove any silver nitrate adhering to their surface.

2.3. Gamma irradiation and heat treatment

Glass samples were irradiated at the Tunisian pilot plant 60Co gamma irradiation facility [15] at a dose rate of 8.5 kGy/h and at room temperature with doses varying from 1 to 250 kGy.

Thermal annealing was performed in electrical furnace in air at the temperature of 550°C for different time periods ranging from 10 to 582 min.

2.4. Optical absorption spectra

Optical absorption spectra of the glass samples were measured in the range of 300–700 nm with a Shimadzu UV–VIS spectrophotometer (model PharmaSpec UV-1700). The measurements were carried out against a glass sample subjected neither to ion exchange nor to gamma irradiation.

3. Results and discussion

3.1. Effect of ion-exchange

Glass samples were subjected to ion exchange procedure, with molar ratio of 5:95, at a temperature of 320°C for 1 h. After ion exchange, the absorption spectrum showed significant difference from that before the ion exchange. As illustrated in Fig. 1, the spectrum is characterized by a sharp asymmetrical absorption band located at 305 nm. The asymmetric shape of this band may be due to the fact that the maximum measured does not match the maximum of the band but only to the loss of sensitivity of the spectrophotometer below 300 nm.

When samples of silicate glass are immersed in molten silver nitrate, sodium ions diffuse from the glass surfaces to the molten salt, and silver ions diffuse from the molten salt to the glass surfaces where they replace sodium ions. The exchanged glass is colourless or very faint yellow state. Accordingly, changes in the spectrum of glass after ion exchange could be ascribed to modification of the composition of the glass surface by replacement of sodium ions by silver according to the reaction:

$$\equiv \text{Si}–\text{O–Na}^+ + \text{Ag}^+ \text{NO}_3^- \rightarrow \equiv \text{Si}–\text{O–Ag}^+ + \text{Na}^+ \text{NO}_3^-$$

3.2. Effect of gamma irradiation

Silver exchanged as well as non-exchanged silicate glass samples were gamma-irradiated to 250 kGy. Optical absorption spectra were measured several days after irradiation are shown Fig. 2.
optical absorption spectrum of the non-exchanged sample (b) display overlapping three characteristic bands with maxima at about 312, 400 and 610 nm respectively. Its spectrum was fitted by Gaussian curves whose parameters are given in Table 1. According to what reported by many authors [18,19] the absorption bands at around 400 and at 610 nm have been attributed to "non-bridging oxygen hole centres" (NBOHCs: \(\text{Si}-\text{O}^\cdot\text{Si}\)), where the trapped hole correlated to the absorption at 400 nm denoted as HC\(_1\) is a hole trapped in the 2p orbital of one and HC\(_2\) is a hole trapped on two or three non-bridging oxygen bonded to the same silicon and correlating absorption band around 610 nm. The absorption band at about 312 nm have been attributed to trapped electrons (TE: \(\text{Si}^\cdot\)) [20].

An additional absorption band was developed as a result of silver-exchange at about 354 nm. This band has been evidenced by comparing the optical absorption spectrum of the non-exchanged glass to that of gamma-irradiated silver-exchanged glass (subtraction spectrum (c)). The characteristics of the subtracted spectrum were determined by Lorentzian adjustment (Table 2). This band was attributed by many authors [10,21] to neutral silver atoms Ag\(^0\). The observation of neutral silver means that a fraction of the photoelectron population has reduced silver ions directly by reactions:

\[
\text{Glass} + h^+ + e^- \rightarrow \text{Ag}^0 \quad (2)
\]

\[
\text{Ag}^+ + e^- \rightarrow \text{Ag}^0 \quad (3)
\]

where \(h^+\) a hole is centre and \(e^-\) is an electron.

As shown in Fig. 3, irradiation of the silver exchanged sample at 1 kGy led to the significant decrease of the intensity of the Ag\(^+\) band at 305 nm and the appearance of the new band at 354 nm assigned to Ag\(^0\).

3.3. Effect of gamma irradiation and heat treatment

The only effect of \(\gamma\) irradiation at 250 kGy and annealing at 550 °C for 60 min or their combined effects on glass samples exchanged at 1% AgNO\(_3\) were shown in Fig. 4. A new absorption band appears around 430 nm in the spectra of the exchanged samples (b and c). According to several authors [6,8], this absorption peak corresponds to the Surface-Plasmon Resonance (SPR) of the silver aggregates in glass. The formation of these aggregates is due to diffusion and agglomeration of neutral silver atoms in the glass matrix during gamma irradiation and/or heat treatment according to the reaction:

\[
n\text{Ag}^0 \rightarrow \text{Ag}_n \quad (4)
\]

For spherical aggregates, the average aggregate radius \(R\) of is calculated from the FWHM, \(\Delta \lambda\) of the optical absorption peak using the formula:

\[
R = \frac{V_f \lambda_m^2}{2 \pi \Delta \lambda} \quad (5)
\]

where \(V_f\) is the Fermi velocity of the electron in the bulk metal (silver = 1.39 × 10\(^8\) cm/s), \(\Delta \lambda\) is the full width at half maximum of the absorption band (FWHM) and \(\lambda_m\) is the characteristic wavelength at which SPR occurs.

We clearly observe that the spectrum (c) has a FWHM much narrower than that of the spectrum (b), the maximum absorbance is increased by a factor of 2 and the peak position is blueshifted from 430 to 421 nm (Table 3). It is also seen in Table 3 that

Table 1
Gaussian fitting parameters of the optical spectrum (Fig. 2(b)) from non exchanged silicate glass after gamma irradiation at 250 kGy.

<table>
<thead>
<tr>
<th>Peak position (nm)</th>
<th>FWHM(^a) (nm)</th>
<th>Area under the band</th>
<th>Max. absorbance (a.u.)</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>312</td>
<td>31.13</td>
<td>11.2</td>
<td>0.287</td>
<td>TE</td>
</tr>
<tr>
<td>400</td>
<td>190.7</td>
<td>88.4</td>
<td>0.37</td>
<td>HC(_1)</td>
</tr>
<tr>
<td>610</td>
<td>155</td>
<td>24.2</td>
<td>0.125</td>
<td>HC(_2)</td>
</tr>
</tbody>
</table>

\(^a\) FWHM is the full width at half maximum.

Table 2
Lorentzian fitting parameters of subtracted spectrum (Fig. 2(c)).

<table>
<thead>
<tr>
<th>Peak position (nm)</th>
<th>FWHM (nm)</th>
<th>Area of the band</th>
<th>Max. absorbance (a.u.)</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>315</td>
<td>19.4</td>
<td>9.4</td>
<td>0.31</td>
<td>Ag(_1)</td>
</tr>
<tr>
<td>354</td>
<td>144.3</td>
<td>37.4</td>
<td>0.165</td>
<td>Ag(^0)</td>
</tr>
</tbody>
</table>

Fig. 3. Absorption spectra of ion-exchanged silicate glass (10% AgNO\(_3\)) and then irradiated at 1 kGy.

Fig. 4. Absorption spectra of ion-exchanged silicate glass, under the following conditions: (a) irradiated with \(\gamma\) rays at 250 kGy; (b) annealed at 550 °C for 60 min; and (c) irradiated at 250 kGy and annealed at 550 °C for 60 min.
ions introduced are converted to silver atoms [8]. The improved formation process of silver nanoparticles by gamma rays is explained by the fact that the diffusion of silver in the glass increases by several orders of magnitude when the sample is irradiated by gamma rays before undergoing heat treatment. The gamma irradiation with 250 kGy of ion-exchange silicate glass was followed by annealing at the temperature of 550 °C for different time periods ranging from 10 to 582 min (Fig. 5). The intensity (or area under the band), shape and peak position of the absorption band at about 440 nm were found to be significantly by the increase of the annealing time.

The characteristics of this band as a function of increasing annealing time, obtained by Lorentzian fitting, are shown in Table 4. The area under the peak increases with increasing annealing time and its peak position is blueshifted from 440 to 418 nm. At the same time the band becomes more sharp, the full width at half maximum (FWHM) decrease from 161 to 88 nm. Since this band has been associated with the formation of silver aggregates, it is expected that changes in the shape and size of these aggregates induced by increasing of annealing time would affect the position, intensity or area under the band and FWHM of the induced absorption band. With increasing of annealing time, the number of neutral silver atoms increased leading to the increase in the number and dimensions of the aggregates. In Fig. 6 the proportionality between aggregates radius and area under the band is shown. This result is in good agreement with data published by Doremus [6]. Indeed, the total amount of silver constituting the aggregates was described by Doremus to be proportional to the area under the band. The proportionality between the reciprocal of the absorption band width and the radius of silver aggregates was also evidenced by Doremus, as long as the size distribution of the aggregates is narrow. Accordingly, Doremus attribute this absorption band to very small, spherical silver aggregates. If the aggregates were not spherical, the absorption peak position would be at longer wavelengths and would gradually shift to shorter wavelengths as the aggregates become more spherical with increasing time of annealing.

The dependence of the FWHM and the peak position of the absorption band on the size and the shape (eccentricity of the ellipsoid) of aggregate were also studied by Mennig and Berg [22]. They found that the FWHM is heavily dependent on the aggregate size but nearly independent of the (shape and the peak positions are significantly dependent on aggregate shape but nearly independent of the size).

The aggregates radius is plotted as a function of annealing time in Fig. 7. We observe that the aggregates radius grew between 0.9 and 1.43 nm with increasing of annealing time from 10 to 242 min and then saturated. Kowal et al. [8] suggest that the saturation of the absorption band for long annealing times may be due to the fact that all silver ions embedded in the samples have yet been reduced.

On the other hand, the precipitation of silver decreases the energy system, and therefore the silver atoms tend to precipitate to form aggregates [23]. The aggregation is accelerated at elevated temperature (550 °C) and continued growth by increasing of the annealed time up to critical size.

TEM images (Transmission Electron Microscopy) performed by Zhang et al. [11] on a silicate glass ion-exchanged to 2% AgNO₃ and annealed, show that the distances between neighboring aggregates remains high. Accordingly, once the precipitation completed,
3.4. Effect of absorbed doses

In order to investigate the effect of absorbed dose variation on the characteristics of the absorption band attributed to the SPR, glasses samples exchanged at 1% AgNO₃ were irradiated in the dose range of 1–100 kGy. The samples were then annealed at 550 °C for 60 min. The results are shown in (Fig. 8). It shows that, for a dose of 1 kGy, the absorption spectrum appears to be due to the superposition of two absorption bands around 350 and 450 nm. However, when the dose exceeds 1 kGy, the band at 350 nm disappears and that at 450 nm has good resolution. The characteristics of this band as a function of increasing dose, obtained by Lorentzian fitting, are shown in Table 5.

For doses below 20 kGy, we observed a shift of the absorption peak to shorter wavelengths (from about 448 to 425 nm), a significant increase in its area under the absorption band (or intensity) and a reduction in its FWHM (from about 172 to 103 nm). It is also noted that these changes can be related to the increase in aggregate size as it has been shown previously. As well, no significant variation in the peak position was recorded for doses above 5 kGy, indicating that increasing absorbed doses above this limit has no effect on the shape of the aggregates. As mentioned previously [6,22], the peak position depends largely on the aggregate shape, while the FWHM depends mainly on the aggregate size. Therefore, perfectly spherical aggregates could be synthesized by irradiation at this dose level.

In other hand, based on spectroscopic calculations and data and electron microscopic studies, many authors [6,16,22] confirm that silver aggregates formed in glass treated by irradiation and/or heat treatment, which develop only a single absorption band, are spherical and very small size.

Moreover, it is noteworthy that for doses above 20 kGy, an important reduction in the area under the absorption band and an aggregate of larger size cannot grow by intergranular diffusion process. These images show also that the aggregates have a spherical shape.

Table 5

<table>
<thead>
<tr>
<th>Dose (kGy)</th>
<th>Peak position (nm)</th>
<th>FWHM (nm)</th>
<th>Rᵢ (nm)</th>
<th>Area under band (a.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>448.03</td>
<td>171.86</td>
<td>0.86</td>
<td>101.50</td>
</tr>
<tr>
<td>5</td>
<td>425.5</td>
<td>122.64</td>
<td>1.09</td>
<td>205.93</td>
</tr>
<tr>
<td>10</td>
<td>427</td>
<td>121.46</td>
<td>1.11</td>
<td>319.38</td>
</tr>
<tr>
<td>20</td>
<td>425</td>
<td>118.54</td>
<td>1.14</td>
<td>401.41</td>
</tr>
<tr>
<td>40</td>
<td>426.5</td>
<td>118.54</td>
<td>1.14</td>
<td>368.49</td>
</tr>
<tr>
<td>60</td>
<td>428</td>
<td>132.22</td>
<td>1.03</td>
<td>347.67</td>
</tr>
<tr>
<td>100</td>
<td>422.5</td>
<td>155.40</td>
<td>0.85</td>
<td>146.95</td>
</tr>
</tbody>
</table>

a The average aggregates radius Rᵢ.
an increase in its FWHM, from about 103 to 155 nm, were observed. These observations can be explained by the partial neutralization of silver by γ radiation in a first step \((D < 20 \text{ kGy})\). The increasing of the absorbed dose resulted in the observation of the first stage of silver aggregation, after irradiation and before the heat treatment, in silver ion exchanged silicate glass by converting \(\text{Ag}^{+\text{I}}\) ions into \(\text{Ag}^{+\text{II}}\) by the reaction:

\[
\text{Ag}^{+\text{I}} + \text{Ag}^{+ \text{II}} \rightarrow \text{Ag}_{2}^{+ \text{II}}
\]

The decrease in the area under the absorption band (or intensity) and the increase of its FWHM from 20 to 100 kGy can be explained by the decrease of \(\text{Ag}^{+\text{I}}\) concentration.

Because for doses \(D > 20 \text{ kGy}\), neutral silver atoms \(\text{Ag}^{0}\) formed by reduction of \(\text{Ag}^{+\text{I}}\) (reaction 2), convert to \(\text{Ag}^{+\text{II}}\) ions (reaction 6). It seems that for doses below 20 kGy the concentration of \(\text{Ag}^{0}\) is not sufficient to activate the conversion reaction 6.

Evidence for \(\text{Ag}_{2}^{+\text{II}}\) ions was found in optical absorption spectra of gamma-irradiated silver ion-exchanged silicate glass samples between 1 and 250 kGy, as shown in Fig. 9, in which the absorption peak is red shifted from 305 nm (the characteristic wavelength of \(\text{Ag}^{+\text{I}}\)) to 312 nm for absorbed doses above 1 kGy. We ascribed this 312 nm peak to \(\text{Ag}_{2}^{+\text{II}}\); its position is identical to that found for \(\text{Ag}^{+\text{II}}\) in radiolyzed aqueous solutions containing \(\text{Ag}^{+\text{I}}\) [21]. This peak was also identified by De Lamaëstre [9] at the same wavelength in a silicate glass doped with silver at a concentration of 118 ppm, irradiated to 21 kGy and annealed at 150 °C for 30 min.

4. Conclusion

In this work, we reported a study on the formation of nanoparticles in silicate glass using combined techniques. Silver-doped glass was obtained by \(\text{Ag}^{+\text{II}}-\text{Na}^{+\text{II}}\) ion-exchange process. Glass samples were then subjected to gamma rays and/or to thermal annealing in air.

Silver nanoparticles have been characterized using UV–Visible absorption spectroscopy. The gamma irradiation induced hole centres and electrons in the glass matrix leading to creation of brown colour, and silver ions trapped electrons to form silver atoms. The silver atoms diffused and then aggregate to form nanoparticles after annealing at 550 °C for different time periods ranging from 10 to 582 min. A characteristic band at 430 nm was induced. The nanoparticles grew between 0.9 and 1.43 nm with increasing of annealing time between 10 and 242 min and then saturated.

The formation process of silver nanoparticles is improved if the samples were irradiated before undergoing thermal annealing because gamma irradiation increases the diffusivity of silver in the glass by several orders of magnitude.

References