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Abstract

This is a short overview of the ”topological recursion”, a relation appearing in the

asymptotic expansion of many integrable systems and in enumerative problems. We

recall how computing large size asymptotics in random matrices, has allowed to

discover some fascinating and ubiquitous geometric invariants. Specializations of this

method recover many classical invariants, like Gromov–Witten invariants, or knot

polynomials (Jones, HOMFLY,...). In this short review, we give some examples, give

definitions, and review some properties and applications of the formalism.

1 Introduction

The ”topological recursion” is a recursive definition (axiomatic definition in [1, 65]),

which associates a double family (indexed by two non–negative integers g and n) of

differential forms ωg,n, to a ”spectral curve” S (a plane analytical curve with some

additional structure, see definition below).

The ωg,n(S)’s are called the ”invariants” of the spectral curve S.

Topological Recursion : spectral curve S −→ Invariants ωg,n(S)

The initial terms ω0,1 and ω0,2 are some canonical 1-form and 2-form on the spectral

curve S, the other ωg,n’s are then defined by a universal recursion on (2g + n − 2).

ωg,n(S) is a symmetric n−form on Sn, and the n = 0 invariant, customarily denoted

Fg(S) = ωg,0(S), is a number Fg(S) ∈ C (or in fact an element of the field over which

S is defined).
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Those invariants have fascinating mathematical properties, they are ”symplectic

invariants” (invariants under some symplectic transformations of the spectral curve),

they are almost modular forms (under the modular Sp2g(Z) group when the spectral

curve has genus g), they satisfy Hirota-like equations, they satisfy some form-cycle

duality deformation relations (generalization of Seiberg-Witten relations), they are

stable under many singular limits, and enjoy many other fascinating properties...

Moreover, specializations of those invariants recover many known invariants, includ-

ing volumes of moduli spaces, Hurwitz numbers, intersection numbers, Gromov-Witten

invariants, numbers of maps (Tutte’s enumeration of maps), or asymptotics of random

matrices expectation values. And since very recently, it is conjectured that they also

include knot polynomials (Jones, HOMFLY, super polynomials...), which provides an

extension of the volume conjecture.

The purpose of this short article is only a small glimpse of the fast evolving math-

ematics of those invariants.

We shall present here a few examples, then mention how these invariants were first

discovered in random matrix theory, and then observed or conjectured in many other

areas of maths and physics.

2 Examples of topological recursions

In this section, we jsut show some examples where a ”topological recursion” structure

was known.

The purpose of the present section is to give some examples, coming from apparently

unrelated geometric problems, and which show a similar recursive structure. We shall

thus remain very introductory, and don’t give precise definitions (these can be found

in the literature).

Since the full general definition of the ”topological recursion and symplectic invari-

ants” requires a substantial Riemannian geometry background, not needed in those

introductory examples, we postpone the precise definition of the topological recursion

to section 4, and we first focus on examples.

2.1 Mirzakhani’s recursion for hyperbolic volumes

See short definition in fig.1.

Let g, n be non–negative integers such that 2g − 2 + n > 0 (i.e. (g, n) =

(0, 0), (0, 1), (0, 2), (1, 0) are excluded). Let Vg,n(L1, . . . , Ln) be the hyperbolic volume

(called ”Weil-Petersson volume” [2] ,see fig 1) of the moduli-space Mg,n of genus g bor-
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The Weil-Petersson metrics and Fenchel-Nielsen coordinates on Mg,n are obtained as
follows: let 2g−2+n > 0, and let Σ ∈ Mg,n. The Poincaré metrics on Σ is the unique
metrics of constant negative curvature −1, such that the boundaries of Σ are geodesics.
Then, we may cut Σ into 2g−2+n pairs of pants, all of whose boundaries are geodesics.
This cutting is not unique. Vice versa, a connected gluing of 2g−2+n hyperbolic pairs
of pants along their geodesic boundaries, gives a unique Riemann surface in Mg,n.
Boundaries of pairs of pants can be glued together provided that the glued geodesics
have the same lengths, and they can be rotated by some angle. The 3g − 3 + n lengths
of the glued boundaries and the 3g− 3 +n gluing angles, are called the Fenchel Nielsen
coordinates. They are local coordinates on Mg,n. They are not defined globally because
of non-unicity of the cutting. However, the form w =

∏

i dℓi ∧ dθi, called the Weil-
Petersson form, is globally defined. The Weil–Petersson volume is Vg,n(L1, . . . , Ln) =
∫

Mg,n(L1,...,Ln)
w where one integrates on the submanifold Mg,n(L1, . . . , Ln) ⊂ Mg,n of

Riemann surfaces with fixed boundary lengths L1, . . . , Ln.

Figure 1: Weil-Petersson volumes in a nut shell
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dered Riemann surfaces with n geodesic boundaries of respective lengths L1, . . . , Ln

Vg,n(L1, . . . , Ln) =

∫

Mg,n , ℓ(∂i)=Li

w , where w = Weil − Petersson form,

and let its Laplace transform:

Wg,n(z1, . . . , zn) =

∫ ∞

0

. . .

∫ ∞

0

Vg,n(L1, . . . , Ln)
n∏

i=1

e −ziLi LidLi

Those hyperbolic volumes, are not easy to compute with hyperbolic geometry. Only

the first of them (smallest values of g and n) had been computed directly by hyperbolic

geometry, for example:

V0,3(L1, L2, L3) = 1 , W0,3(z1, z2, z3) =
1

z21 z
2
2 z

2
3

V1,1(L) =
1

48
(L2 + 4π2) , W1,1(z) =

1

8z4
+

π2

12 z2

It turns out (this is not obvious from the definition) that these volumes are even

polynomials of the Li’s, or equivalently, the Wg,n’s are even polynomials of the 1/zi’s.

In 2004, M. Mirzakhani discovered a beautiful recursion relation [2], which computes

all volumes Vg,n for all g and n, by recursion on 2g+n. We shall not write Mirzakhani’s

relation among the Vg,n’s, but we shall consider here its Laplace transformed version:

Theorem 2.1 (Topological recursion for Weil-Petersson volumes)

Mirzakhani’s recursion [2], Laplace transformed[9]

For any (g, n) such that 2g − 2 + n > 0, one has:

Wg,n(z1,
J

︷ ︸︸ ︷
z2, . . . , zn) = Res

z→0

1

(z21 − z2)

π

sin (2πz)

[

Wg−1,n+1(z,−z, J)

+
′∑

I⊎I′=J ;h+h′=g
Wh,1+#I(z, I)Wh′,1+#I′(−z, I ′)

]

dz

(2.1)

where
∑′ means that we exclude from the sum the two cases (I = J, h = g) and

(I ′ = J, h′ = g), and we have denoted:

W0,2(z1, z2) =
1

(z1 − z2)2
. (2.2)

This theorem [79, 78, 77, 9] is very efficient at actually computing the volumes. It

is a recursion on the Euler–characteristics χ = 2 − 2g − n, at each step, the absolute
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value of the Euler characteristics in the Left Hand Side, is one more than the total

Euler characteristics of every Right Hand Side terms:

|2−2(g−1)−(n+1)| = |2−2h−(1+m)+2−2(g−h)−(1+n−1−m)| = |2−2g−n|−1.

This explains the name ”topological recursion”.

Let us illustrate the theorem for the case (g, n) = (1, 1). For (g, n) = (1, 1) it says

that:

W1,1(z1) = Res
z→0

1

(z21 − z2)

π

sin (2πz)
W0,2(z,−z) dz

Then let us compute the residue:

W1,1(z1) = Res
z→0

1

(z21 − z2)

π

sin (2πz)
W0,2(z,−z) dz

= Res
z→0

1

z21 (1 − z2

z21
)

π

2π z(1 − 4π2 z2

6
+O(z4))

1

4 z2
dz

=
1

8 z21
Res
z→0

dz

z3
(1 − z2

z21
+O(z4))−1 (1 − 4π2 z2

6
+O(z4))−1

=
1

8 z21
Res
z→0

dz

z3
(1 +

z2

z21
+

4π2 z2

6
+O(z4))

=
1

8 z21

(
1

z21
+

4π2

6

)

(2.3)

which coincides with the result previously known from hyperbolic geometry.

This theorem is an illustration of a universal and far more general recursive struc-

ture, called the ”topological recursion”, as we shall see below.

2.2 Hurwitz numbers

See short definition in fig 2.

Let Hg,n(µ) be the simple Hurwitz number of genus g with ramification profile µ. In

other words, let Hg,n(µ) be the number of connected ramified coverings of the Riemann

sphere, of genus g and with only one multiply ramified point whose ramification profile

is a partition µ = (µ1 ≥ µ2 ≥ · · · ≥ µn) of length n (we denote n = ℓ(µ) the length

of µ, and |µ| =
∑

i µi its weight), and all other ramification points are simple ( and

Riemann Hurwitz formula says that there are b = 2g − 2 + n+ |µ| simple ramification

points).

In other words, Hg,n(µ) is the number of ways to glue |µ| sheets (|µ| copies of the

Riemann sphere), along cuts open between ramification points, forming a connected

surface of genus g. Topologically, a ramified covering is the data of the deck trans-

formations (a permutation of sheets) at each branchpoints, requiring that one of the
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A ramified covering (Σ, π) of the Riemann sphere CP 1, is the data of a Riemann
surface Σ, and an analytical map π : Σ → CP 1 of some degree d. For all generic points
x ∈ CP 1, the preimage π−1(x) ∈ Σ consists of d points #π−1(x) = d. Branchpoints
are the points x ∈ CP 1 such that #π−1(x) < d. Ramification points are the preimages
of branchpoints.
Ramification points are the points near which the map π : Σ → CP 1 is analytical but
not locally invertible. A ramification point a is said of degree r = deg(a), if locally near
a, the map π behaves like (in any choice of local coordinate)

π : p 7→ π(a) + ca(p− a)r +O((p− a)r+1) , ca 6= 0

Let x be a branchpoint, and {a1, . . . , al} = π−1(x) be its preimages on Σ, and let
ri = deg ai be its degrees. We assume that we have ordered the points ai’s such that
r1 ≥ r2 ≥ · · · ≥ rl. Then (r1, . . . , rl) is called the ramification profile of x.
A regular branchpoint x is of degree 2, and such that #π−1(x) = d− 1, its ramification

profile is (2,

d−2
︷ ︸︸ ︷

1, . . . , 1).
The Simple Hurwitz numbers Hg(µ) count the number of (equivalence homotopy classes)
ramified coverings (Σ, π) such that Σ is a connected surface of genus g, and π has only
one non–regular branchpoint, whose profile is given by the partition µ = (µ1, . . . , µl).
The Hurwitz formula implies that such a covering must have b = 2g − 2 +

∑

i(µi + 1))
regular branchpoints.

Figure 2: Hurwitz numbers in a nutshell.
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permutations belongs to the conjugacy class given by µ and all other permutations be

transpositions (simple branchpoints), and the product of all of them has to be identity

(condition for the gluing to make a smooth surface).

For example when ℓ(µ) = 1 and genus g = 0, one has that H0,1(µ1) is the number of

ways of gluing µ1 sheets together, at one fully ramified point (partition µ = (µ1)), and

at µ1 − 1 simple ramification points, which make a surface of genus 0, i.e. planar, i.e.

without loops. Such a ramified covering is thus the data of µ1 sheets (represented by µ1

points) linked by µ1−1 ramification points (represented by µ1−1 edges), connected and

without loops. Therefore this is the same thing as counting the number of covering

trees which can be drawn on the complete graph with µ1 points. This is given by

Cayley’s [3] formula:

H0,1(µ1) = ± det
µ1−1










1 − µ1 1 1 . . . 1
1 1 − µ1 1 . . . 1

1
. . . . . . . . . 1

1 1 1 − µ1 1
1 . . . 1 1 1 − µ1










= µµ1−2
1 (2.4)

With genus 0 and partitions of length 2, one finds (though not easily [4, 6]):

H0,2(µ1, µ2) = (µ1 + µ2 − 1)!
µµ1+1
1 µµ2+1

2

µ1!µ2!
. (2.5)

Out of Hurwitz numbers, we define the generating functions, which are some kinds

of discrete Laplace transforms of the Hg,n’s:

Wg,n(x1, . . . , xn) =
∑

µ, ℓ(µ)=n

Hg,n(µ)

(2g − 2 + n+ |µ|)!
∑

σ∈Sn

n∏

i=1

e µixσ(i) . (2.6)

For example:

W0,1(x) =
∞∑

k=1

kk−2

(k − 1)!
e kx = L( e x) (2.7)

where L is the Lambert function, i.e. solution of e x = L e −L. Similarly

W0,2(x1, x2) =
∞∑

k,k′=1

kk+1 k′k
′+1

(k + k′) k! k′!
e kx1 e k

′x2

=
L( e x1)

1 − L( e x1)

L( e x2)

1 − L( e x2)

1

(L( e x1) − L( e x2))2
− e x1 e x2

( e x1 − e x2)2
.(2.8)

One finds that it is easier to make a change of variable and work with zi = L( e xi)

rather than xi, and thus define the following differential forms:

ωg,n(z1, . . . , zn) =

(

Wg,n(x1, . . . , xn) + δg,0 δn,2
e x1 e x2

( e x1 − e x2)2

)

dx1 . . . dxn. (2.9)
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For example:

ω0,1(z) = (1 − z) dz , ω0,2(z1, z2) =
dz1 dz2

(z1 − z2)2
. (2.10)

Goulden, Jackson, Vainshtein [4] derived a recursion formula (called ”cut and join

equation”) satisfied by those Hurwitz numbers, and after Laplace transform [5], one

finds (not so easily) the topological recursion formula, which was first conjectured by

physicists Bouchard and Mariño [6]:

Theorem 2.2 (Topological recursion for Hurwitz numbers) = Bouchard-

Mariño conjecture (first proof in [5]).

The forms ωg,n’s satisfy the following recursion:

ωg,n(z1, z2, . . . , zn) = Res
z→1

K(z1, z)
[

ωg−1,n+1(z, s(z), z2, . . . , zn)

+
′∑

I⊎I′={z2,...,zn};h+h′=g
ωh,1+#I(z, I)ωh′,1+#I′(s(z), I ′)

]

(2.11)

where
∑′ means that we exclude from the sum the two cases (I = {z2, . . . , zn}, h = g)

and (I = ∅, h = 0), and where the recursion kernel K is:

K(z1, z) =
dz1
2

1
z1−z −

1
z1−s(z)

(z − s(z))

z

(1 − z) dz
(2.12)

and where the map s : z 7→ s(z) defined in a vicinity of z = 1, is the involution such

that s 6= Id and solution of

s(z) e −s(z) = z e −z , s(1) = 1. (2.13)

Locally near z = 1, its Taylor series expansion starts with:

s(z) = 1 − (z − 1) +
2

3
(z − 1)2 − 4

9
(z − 1)3 +

44

135
(z − 1)4 − 104

405
(z − 1)5 + . . . (2.14)

This recursion is very efficient at computing, for instance it easily gives:

ω0,3(z1, z2, z3) =
dz1 dz2 dz3

(1 − z1)2 (1 − z2)2 (1 − z3)2
(2.15)

ω1,1(z) =
1

24

(
1 + 2z

(1 − z)4
− 1

(1 − z)2

)

dz (2.16)

Again, this theorem is an illustration of the universal ”topological recursion”,

as we shall see below.
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2.3 Counting maps

We give another example of a topological recursion in combinatorics.

Counting maps (discrete surfaces), has been a fascinating question since the works

of Tutte [7, 8] in the 60’s, when he was able to give explicit formulae for counting

planar triangulations or planar quadrangulations.

We shall refer the reader to the literature on maps, or see fig.3.

Definition 2.1 We define the following generating series for counting maps:

Wg,n(x1, . . . , xn; t3, t4, . . . ; t) ∈ Q[1/xi, tj][[t]] (2.17)

(i.e. formal series of t, whose coefficients are polynomials over Q of

1/x1, 1/x2, . . . , 1/xn, t3, t4, . . . ), by:

Wg,n =
t

x1
δg,0δn,1 +

∑

v≥1

tv
∑

m∈Mg,n(v)

1

#Aut(m)

∏

j≥3 t
nj(m)
j

∏n
i=1 x

1+li(m)
i

(2.18)

where Mg,n(v) is the (finite) set of maps of genus g with n labeled marked faces and

v vertices. If m ∈ Mg,n(v), li(m) is the size of the ith marked face, and nj(m) is the

number of unmarked j−gons of m, and #Aut(m) is the Automorphism group of the

map m (it is always 1 if n ≥ 1 i.e. if the map is rooted).

Very often we shall omit to write the dependance in t and the tj’s and keep only

the xi’s dependence, because the recursion equations will act on those variables only,

and thus write as a shorter notation:

Wg,n(x1, . . . , xn)
notation≡ Wg,n(x1, . . . , xn; t3, t4, . . . ; t). (2.19)

Tutte in the 60’s found a recursion formula [7, 8] for counting maps, by recursively

removing the marked edge of the 1st face. In fact Tutte worked only in M0,1(v), i.e.

planar maps with one marked edge (rooted planar maps), but his recursion equation

straightforwardly extends to arbitrary genus and arbitrary number of marked faces.

Therefore Tutte computed W0,1.

For example, for quadrangulations (i.e. set t3 = t5 = t6 = · · · = 0 and only t4 6= 0),

he found:

W0,1(x) =
1

2

(

x− t4x
3 + t4(x

2 + 2γ2 − 1

t4
)
√

x2 − 4γ2
)

, γ2 =
1

6t4

(
1 −

√
1 − 12tt4

)
.

(2.20)
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A map of genus g is a cellular connected graph G embedded on a connected orientable
surface Σ of genus g (cellular means that Σ\G is a disjoint union of topological discs),
and modulo all reparametrizations. The connected components of Σ \G are called the
faces, they are bordered by edges and vertices of the graph. We say that the size of
a face, is the number of edges bordering it. We shall assume that some faces can be
marked faces, and some are unmarked. We shall always require that unmarked faces
have size ≥ 3, and that marked faces have a marked edge on their boundary (a root).
Let Mg,n(v) be the set of maps of genus g, with v vertices, and n marked faces, and
an arbitrary number of unmarked faces (we recall that all unmarked faces have a size
≥ 3).
The set Mg,n(v) is a finite set (easy to prove by writing the Euler characteristics).
Here is the example of the first few M0,1(v) for v = 1, 2, 3 (the marked face is the
exterior face of the planar graph)

=

M
1

(0)

(1)

M
1

(0)

(2)

M
1

(0)

(3)

=

=

Figure 3: Maps in a nutshell.
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This is equivalent to say that the number of rooted planar quadrangulations with n

unmarked faces and one marked face of size 2l is:

3n
(2l)!

l! (l − 1)!

(2n+ l − 1)!

(l + n+ 1)!n!
. (2.21)

In particular if the marked face has size 4 (i.e. l = 2), we recover the famous Tutte’s

formula [8] for the number of planar rooted quadrangulations with m = n + 1 faces

(including the marked one):

# genus 0 , m faces : 2 . 3m
(2m)!

(m+ 2)!m!
. (2.22)

The function W0,1(x) looks better if written parametrically:
{
x = α + γ(z + 1/z)
W0,1 =

∑

k≥1 vkz
−k = y(z)

(2.23)

where the parameters {α, γ, v1, v2, v3, . . .} are a reparametrization of the weights

{t3, t4, . . . , tk . . .} assigned to triangles, quadrangles, . . . , k-gons, . . . . More explic-

itly, the vk’s are functions of α and γ and the tk’s by writing
∑

k

vk(z
k + z−k) = x−

∑

k≥2

tk+1x
k , x = α + γ(z + 1/z), (2.24)

and α and γ are determined by v0 = 0 and v1 = t/γ.

For example for quadrangulations (i.e. set t3 = t5 = t6 = · · · = 0 and only t4 6= 0),

only v1, v3, γ are non–vanishing, and have to satisfy:

v1(z + z−1) + v3(z
3 + z−3) = γ(z + z−1) − t4γ

3(z + z−1)3

i.e.

v1 = γ − 3t4γ
3 , v3 = −t4γ3,

and the equation v1 = t/γ determines γ:

t

γ
= γ − 3t4γ

3 ⇒ γ2 =
1

6t4

(
1 −

√
1 − 12tt4

)

We indeed recover Tutte’s result (2.20), written in variable z (related to x by x =

γ(z + 1/z))

W0,1(x) = y(z) =
v1
z

+
v3
z3

=
t

γz
− 3t4γ

3

z3
. (2.25)

With this reparametrization in terms of z, we rewrite the generating functions of

maps Wg,n(x1, . . . , xn), in terms of the variables zi, and as differential forms:

ωg,n(z1, . . . , zn) = Wg,n(x1, . . . , xn) dx1 . . . dxn + δg,0δn,2
dx1 dx2

(x1 − x2)2
, xi = x(zi).

(2.26)

Then, as first found in [10, 13] Tutte’s recursion implies that generating functions of

maps satisfy a topological recursion:

11



Theorem 2.3 (Topological recursion for numbers of maps)

ωg,n(z1, z2, . . . , zn) = Res
z→±1

K(z1, z)
[

ωg−1,n+1(z, 1/z, z2, . . . , zn)

+
′∑

I⊎I′={z2,...,zn};h+h′=g
ωh,1+#I(z, I)ωh′,1+#I′(1/z, I

′)
]

(2.27)

where
∑′ means that we exclude from the sum the two cases (I = {z2, . . . , zn}, h = g)

and I = (∅, h = 0), and where the recursion kernel K is:

K(z1, z) =
dz1
2γ

1
z1−z −

1
z1−1/z

(y(z) − y(1/z))

1

(1 − z−2) dz
(2.28)

This recursion is very efficient at computing, for instance it easily gives:

ω0,3(z1, z2, z3) =
−1

2γy′(1)

1

(z1 − 1)2
1

(z2 − 1)2
1

(z3 − 1)2

+
1

2γy′(−1)

1

(z1 + 1)2
1

(z2 + 1)2
1

(z3 + 1)2
. (2.29)

For quadrangulations that gives

ω0,3(z1, z2, z3) =
1

4t− 2γ2

(

1
∏3

i=1(zi − 1)2
− 1
∏3

i=1(zi + 1)2

)

.

For genus 1, it gives for quadrangulations

ω1,1(z) = −z t4γ
4z4 + (t− 5t4γ

4)z2 + t4γ
4

(t− 3t4γ4)2 (z2 − 1)4
(2.30)

which implies that the number of rooted quadrangulations of genus one, with n faces

(including the marked face) is:

# genus 1 , n faces :
3n

6

(
(2n)!

n!n!
− 2n

)

(2.31)

Similarly, the recursion easily gives ω2,1, but the result is too big to be written here,

we shall only give the result that the number of rooted quadrangulations of genus 2,

with n+ 2 faces (including the marked face) is:

# genus 2 , n+ 2 faces :
(12)n

2

(

14

(
n+ 5/2

n

)

− 13

(
n+ 2
n

)

−
(
n+ 3/2

n

))

(2.32)

And for genus 3, the topological recursion gives

# genus 3 , n+ 4 faces : (12)n
(

− 2450

(
n+ 5
n

)

+ 3033

(
n+ 9/2

n

)

−291

(
n+ 4
n

)

+ 292

(
n+ 7/2

n

))

(2.33)

Again, we see that the ”topological recursion” is an efficient method to effectively

compute numbers of maps of any genus.
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3 How it arose

The purpose of the present section is to recall how the topological recursion (which

is mostly a geometric notion) was initially discovered from the study of large random

matrices, and then happened to have a much broader reach in a geometric setting.

3.1 Introductory remark: Invariants in Geometry

In geometry, people are interested in finding ”invariants”, that is a collection of ”num-

bers” (often integer or rational numbers) associated to a geometrical object, for instance

to an algebraic curve. Most often, those numbers are gathered into coefficients of a

polynomial, or of a formal series, so by extension, we shall consider that invariants are

formal series, typically ∈ Q[[t]] for some set of formal parameters t = {ti}.

In enumerative geometry, people are interested in enumerating some objects within

a geometry, for instance Gromov-Witten invariants ”count the number of holomorphic

embeddings of Riemann surfaces into a geometric space (for instance a Calabi-Yau

manifold)”.

Many questions may arise:

How these invariants get deformed under deformations of the geometry ? Do they

satisfy nice differential equations (for instance ∂/∂ti) ?

What happens near singularities ?

Do we have modular properties (it is observed that many of the series appearing in

enumerative geometry are actually modular forms) ?

Can different geometries have the same invariants ? In other words can the in-

variants discriminate the geometries, for instance in knot theory, Jones polynomials or

HOMFLY polynomials were introduced in order to address that question.

And before all, how to compute those numbers in practice ? Is there a universal

method to do it ?

3.2 Random Matrices

A surprising answer came from a seemingly totally unrelated question in probabilities:

what is the large size asymptotic statistics of a random matrix ?

In random matrices, one is interested in the statistical properties of the spectrum,

especially in the large size limit. The density of eigenvalues converges (in most cases)

towards a continuous density function, often called the ”equilibrium measure”. Very

often (with reasonable choices of a random matrix probability law), the equilibrium

measure is found to have a compact support (not necessarily connected), and happens

13



to be an algebraic function. This means that there is an algebraic curve related to the

random matrix model.

For example, the equilibrium measure for eigenvalues of a Gaussian random matrix,

is the famous ”Wigner’s semi-circle”

ρ(x)dx =
1

2π

√
4 − x2 1[−2,2] dx

it is described by the algebraic curve y2 = x2− 4, where y = 2iπρ(x) is the equilibrium

density, supported on the segment [−2, 2].

Another famous example is ”Marchenko–Pastur law”, for singular values of an M×
N random Gaussian matrix with variance σ2

ρ(x)dx =
N

2πMσ2

√
M
N
σ4 − M2

N2 σ4 − (x− σ2)2

x
1[a,b] dx

(where a and b are the zeroes of the square–root term). It is also algebraic.

3.2.1 Large size expansions

Around 2004 it was observed [10, 13, 12, 57] that the knowledge of the equilibrium

measure, is sufficient to recover the asymptotic expansion of every expectation value,

and to all orders in the asymptotic expansion !

In other words, if S is the plane algebraic curve of the equilibrium measure, then

all correlation functions are obtained as universal functionals of S only.

For example, a particularly interesting quantity is the ”partition function”. Let

dµ(M) be a (family depending on N of) un–normalized measure on the set of Hermitian

matrices of size N , the partition function is defined as

Z =

∫

HN

dµ(M).

Under ”good assumptions” on the measure dµ, the partition function has a large N

asymptotic expansion of the form

lnZ ∼
∞∑

g=0

N2−2g Fg.

A main question in random matrix theory, is to compute the coefficients Fg ?

In [12, 11, 1] it was discovered that there exists a universal functional Fg : S 7→
Fg(S), such that, for many classes of random matrices:

Fg = Fg(S).

14



The functional Fg : S 7→ Fg(S) is defined only in terms of the Riemannian geometry

of the curve S, it is often called ”topological recursion”:

spectral curve

S topological recursion−→ Fg(S).

For example, F1(S) is (up to a few extra factors beyond the scope of this introductory

overview, see [1]) the log of the determinant of a canonical Laplacian on S.

It was also discovered in [10, 13, 1] that there are also universal functionals

ωg,n : S 7→ ωg,n(S) which compute the gth order in the large N expansion of the

joint probability of n−eigenvalues (more precisely the cumulants of correlations of n

resolvents)

E

(
n∏

i=1

Tr (xi −M)−1

)

cumulant

∼
N→∞

∞∑

g=0

N2−2g−n ωg,n.

Therefore, for random matrices, there exist some functionals ωg,n (and we call

Fg = ωg,0) which compute all correlation functions from the geometry of the spectral

curve alone. The functionals ωg,n are defined by a recursion on g and n (we postpone the

explicit writing of this recursion to section 4 below, because it involves some substantial

background of Riemannian geometry), or more precisely a recursion on (2g + n − 2).

This is called the topological recursion:

ωg,n = computed from ωg′,n′ with 2g′ + n′ − 2 < 2g + n− 2.

Eventually, this means that the knowledge of S (which is the large N equilibrium

density of eigenvalues) allows to recover all correlation functions of the random matrix

law, i.e. recover the random matrix probability law itself:

spectral curve

S topological recursion−→ ωg,n(S) −→
probability law

dµ(M) .

3.2.2 How to use random matrices for geometry ?

Since the functionals ωg,n which give expectation values are universal and do not require

anything but the curve S, one may try to apply these functionals ωg,n to any arbitrary

algebraic curve, independently of whether that algebraic curve S was related to a

random matrix law or not. This is the idea proposed in [1].

In some sense, the topological recursion defines a ”pseudo-random matrix

law” associated to any plane curve S.
plane curve

S topological recursion−→ ωg,n(S) −→
pseudo probability law

dµ(M) .
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Since expectation values or correlations are numbers, we get a collection of func-

tionals, which associate numbers to a curve S. As we mentioned in the introduction

subsection 3.1, this defines ”invariants of a curve”.

curve

S topological recursion−→ ωg,n(S) = invariants of S.

We thus have a definition of a family ωg,n(S) of invariants of a plane curve S.

We shall call them the ”symplectic invariants of S” or the ”TR (topological

recursion) invariants” of S.

remark: Let us emphasize some points here: not all algebraic curves can come from

probabilities of random matrices, because probabilities have some real and positivity

properties. However, since the functional relations are analytical, they also apply to

curves which don’t have any positivity properties.

For example, the function y = 1
4π

sin 2π
√
x appearing as the spectral curve for the

Weil-Petersson volumes, can never be the density of eigenvalues of a random matrix.

remark: The topological recursion, which associates ωg,n to a spectral curve S, is
defined only in terms of the Riemannian geometry on S. As we shall see, the topo-

logical recursion only uses local properties of the curve (residues), and thus it extends

analytically to curves which are not necessarily algebraic.

3.3 Link with Mirror symmetry

The topological recursion (TR) thus associates invariants to a spectral curve. And we

see that there are many examples of enumerative geometry, whose solution coincides

with the TR invariants of a spectral curve appearing naturally in the problem.

• A-model. Enumerative geometry problems are often called ”A-model”. They

deal with measuring ”volumes” of moduli spaces (possibly discrete), i.e. counting con-

figurations. These moduli spaces are often equipped with a real symplectic structure.

Moduli spaces M are often of infinite dimension, equipped with some gradings, such

that moduli spaces of given degree M(d) are finite dimensional. Thus the counting

problem involves some formal variables t = (t1, t2, t3, . . . ) in order to define formal

generating series:

W (t) =
∑

d=degrees

Volume(M(d))
∏

i

tdii

Depending on the context, those parameters ti may be called ”fugacities”, ”Kähler

parameters”, ”Boltzman weights”, ”coupling constants”, ”spectral parameters”,... The

generating series W (t) are often called ”amplitudes” or ”potential”.

One is often interested in studying how the amplitudes depend on the parameters,

thus unravelling the symplectic structure of the moduli space.
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• B-model. The equilibrium spectral curve of a pseudo-random matrix (or more

precisely its Stieljes transform), is an analytical function y = f(x), defined on a Rie-

mann surface with a complex structure. The pseudo-random matrix probability law,

an thus the spectral curve, may depend on some parameters t̂ = (t̂1, t̂2, . . . ). Deforma-

tions of the probability law, induce deformations of the spectral curve, and in particular

deformations of its complex structure.

B-model Amplitudes are the expectation values of the pseudo-random matrix, they

can be computed as a universal functional of the spectral curve, by the ”topological

recursion”:

Spectral curve S(t̂)
topological recursion−→ amplitudes Ŵ (t̂) = ωg,n(S).

One is often interested in studying how the amplitudes depend on the parameters,

thus unravelling the complex structure of the moduli space.

Mirror symmetry is the claim that an A-model is dual to a B-model and vice

versa, and there exists a ”mirror map” t 7→ t̂ such that

Ŵ (t̂) = W (t).

One of the problems of mirror symmetry, is to identify which spectral curve should be

associated to an enumerative geometry problem, i.e. find the mirror of the A-model

geometry, and the mirror map for the parameters.

Most often the spectral curve happens to be a very simple and natural geometric

object from the A-model point of view. It is typically the ”most probable shape” of the

objects counted in the A-model, in some ”large size limit”. This is the case for random

matrices, the spectral curve is the large size limit of the eigenvalue density. Another

example occurs in counting plane partitions, where the spectral curve is the shape of

the limiting plane partition (often called arctic circle). But there is unfortunately no

general recipe of how to find the spectral curve mirror of a given A-model.

Many examples have been proved, many others are conjectures. Here is a short

non–exhaustive table of examples:
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A-model B-model
moduli-space Spectral curve

Kontsevich-Witten intersection numbers y2 = x

Wg,n =
∑

d
< τd1 . . . τdn >g

∏n
i=1

(2di−1)!!

z
2di+2
i

dzi

Weil-Petersson volumes Vg,n(L1, . . . , Ln) y = sin (2π
√
x)

4π

Hurwitz numbers Hg(µ) y e−y = ex

Random Matrix: asymptotic expansion y = 2iπρeq(x)
of correlation functions
E(
∏

i Tr (xi −M)−1)

Toric Calabi-Yau Gromov-Witten invariants mirror curve H(ex, ey) = 0

Knot theory Jones polynomial A-polynomial A(ex, ey) = 0
character variety

(we detail some of those examples here below).

3.4 Some applications of symplectic invariants

By definition, when S is the large N spectral curve of a random matrix law, ωg,n(S)

computes the gth large N order of the n−point correlation function of resolvants:

E

(
n∏

i=1

Tr
dxi

xi −M

)

connected

=
∞∑

g=0

N2−2g−n ωg,n.

Is there other plane curves S for which those invariants compute something inter-

esting ?

The answer is YES: many classical geometric invariants, including Gromov-Witten

invariants, or knot polynomials, can be obtained as the invariants of a plane curve S
closely related to the geometry.

Examples:

• Let X be a local toric Calabi-Yau 3-fold [75, 74], and let Wg,n(X) be the genus g

and n boundary open Gromov–Witten invariant of X (i.e. roughly speaking, the formal

series whose coefficients count the number of holomorphic immersions of a genus g

Riemann surface with n boundaries, such that the boundaries are mapped into a given

Lagrangian submanifold [76]). It is well known that the mirror [60] of X is another

Calabi-Yau 3-fold, of the form

{(x, y, u, v) ∈ C4 | H( e x, e y) = uv}
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where H is some polynomial found from the moment map of X. This is an hyperbolic

bundle over C∗ ×C∗. The fibers are singular over the plane curve H( e x, e y) = 0. We

call that plane curve S = X̂, and we call it the mirror curve of X.

Then Mariño and co conjectured in [15, 14], and it was proved in [16, 17] that:

Theorem 3.1 (Topological recursion for toric CY 3folds) (called BKMP con-

jecture [15, 14], first proved in [16], and for CY orbifolds in [17]).

The Gromov–Witten invariants Wg,n(X) are the topological recursion invariants of

S = X̂ the mirror curve of X:

Wg,n(X) = ωg,n(X̂).

In fact, special cases of this theorem were first proved in [66, 67, 68, 69]. The idea

of the proof of [16, 17], is that the recursive structure of the topological recursion can

be encoded as graphs (see def. 4.5 below), and thus the ωg,n(X̂) can be written as sums

of weighted graphs. Those graphs, up to some combinatorial manipulations, happen

to coincide with the localization graphs of Gromov-Witten invariants [70, 71]. Thus it

is mostly a combinatorial proof.

• Another famous example (still conjectured) concerns knot polynomials.

Let K be a knot embedded in the 3-dimensional sphere S3. The character variety

of K is the locus of eigenvalues of holonomies of a flat SL(2) connection on the knot

complement S3 \ K. This character variety is algebraic and defines an algebraic curve

, called the A-polybomial of K:

A(X, Y ) = 0.

The colored-Jones polynomial JN(q), of color N , is defined as the Wilson loop [18] of

a flat SL(2) connection on S3 \ K, in the spin N − 1 representation of SL(2). The

Jones polynomial JN(q) ∈ C[q] depends on N (which labels the representation) and is

a polynomial of a variable q. Let us denote

~ = ln q , x = N ln q.

Then, it is conjectured [19, 19, 22, 21, 23] that in the limit where ~ → 0 and x = O(1),

one has the asymptotic expansion:

ln JN(q) ∼
∞∑

k=−1

~k Sk(x) , Sk(x) =
∑

2g−2+n=k

1

n!

∫ x

. . .

∫ x

ωg,n(S)

where S is the character variety of K, of equation A(ex, ey) = 0. (the more precise

statement can be found in [23]). In other words:
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Conjecture: The Jones polynomial of a knot, is a series in ~ whose

coefficients are the principal symplectic invariants of its A-polynomial.

If true (which is of course expected), this conjecture would be an extension of the

famous ”Volume conjecture” [41, 42, 43], and would imply a new understanding of

what Jones polynomials are, in particular that Jones polynomials are Tau-functions of

some integrable systems [19, 19, 22, 21, 23].

4 The definitions of topological recursion and sym-

plectic invariants

4.1 Spectral curves

The topological recursion associates invariants ωg,n to a spectral curve.

Let us give some abstract definitions of a spectral curve.

There exists many definitions of what a spectral curve is, they are more or less

equivalent, but formulated in rather different languages.

Let us adopt the following definition here, close to the one in [1]

Definition 4.1 (Spectral curve) A spectral curve S = (C, x, y, B) is:

- a Riemann surface C not necessarily compact nor connected,

- a meromorphic function x : C → C, The zeroes of dx are called the branchpoints.

We assume that there is a finite number of them on C.
- the germ of a meromorphic function at each branchpoint. We denote it collectively

y. In other words near a branchpoint a of order ra we write

y = {t̃a,k}a∈branchpoints, k∈N ⇔ y(p) ∼
p→a

∞∑

k=0

t̃a,k(x(p) − x(a))k/ra (4.1)

- a symmetric 1-1 form B on C × C, having a double pole on the diagonal and

analytical elsewhere, normalized such that, with any local parameter:

B(p, q) ∼
p→q

dz(p) ⊗ dz(q)

(z(p) − z(q))2
+ analytical at q (4.2)

again, in fact all what is needed is that B is the germ of some analytical function at

the branchpoints.

Remark 4.1 Since the topological recursion computes residues, in fact all what is needed
to run the recursion, is ”formal neighbourhoods of branchpoints”, with y and B to be germs
of analytical functions.

However, in most practical examples, the neighbourhoods of branchpoints form an actual
Riemann surface, on which y and B are globally analytical, and the geometric structure
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of that Riemann surface impacts a lot the properties enjoyed by the invariants. In other
words, the invariants are always well defined, but they enjoy more properties if in addition
the Riemann surface has structure, for instance if it is connected and/or compact, and for
instance if B is globally meromorphic.

Since all what is needed are germs of analytical functions at the branchpoints,

we may define the spectral curve from the data of its Taylor (or Laurent) expansion

coefficients, and thus propose another definition:

Definition 4.2 (Spectral curve, bis) A spectral curve S = ({t̃a,k}, {B̂a,k;b,j}) is a

collection of

• a set of ”branchpoints” a = {a1, a2, . . . , aN}.
• a family of times t̃a,k for each a ∈ a. They are related to y by

y(p)∼p→a

∑∞
k=0 t̃a,k(x(p) − x(a))k/ra.

• the times B̂a,k;b,j for each (a, b) ∈ a× a. They are related to B by

B(p, q) ∼
p→a,q→b

δa,b
◦
Ba(p, q) +

∑

k,l

B̂a,k;b,lζa(p)
k ζb(q)

l dζa(p) dζb(q) (4.3)

where ζa(p) = (x(p) − x(a))1/ra, and

◦
Ba(p, q) =

dζa(p) dζa(q)

(ζa(p) − ζa(q))2
(4.4)

We shall propose 3 equivalent definitions

4.2 Definition by recursion (B-model side)

For simplicity in this definition below, we assume all branchpoints to be simple, i.e.

ra = 2, the general case is done in [24, 25, 26]. We define σa : Ua → Ua the involution

in a small neighbourhood Ua of a, that exchanges the two sheets of x−1 that meet at

a, i.e. such that

x ◦ σa = x.

σa is called the local Galois involution of x (it permutes the roots of x(p) − x).

Definition 4.3 We define by recursion on χ = 2g+ n− 2, the following forms on Cn:

ω0,1(p) = y(p)dx(p) (4.5)

ω0,2(p, q) = B(p, q) (4.6)
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and for 2g + n− 2 ≥ 0:

ωg,n+1(p1, . . . , pn+1) =
∑

a∈branchpoints
Res
q→a

Ka(p1, q)
[

ωg−1,n+2(q, σa(q), p2, . . . , pn+1)

+
′∑

h+h′=g, I⊎I′={p2,...,pn+1}
ωh,1+#I(q, I)ωh′,1+#I′(σa(q), I

′)
]

(4.7)

with the recursion kernel Ka(p1, q) =
−1

2

∫ q

σa(q)
ω0,2(p1, .)

ω0,1(q) − ω0,1(σa(q))
(4.8)

Remark 4.2 It is not obvious from the definition, but an important property (which can be
proved by recursion, see [1]) is that ωg,n is always a symmetric n-form on Cn. The definition
gives a special role to p1, but the result of the sum of residues is in fact symmetric in all pi’s,
this can be proved by recursion [1].

Remark 4.3 When the branchpoints are not simple, if ra > 2, the general definition can
be found in [24, 25, 26]. In fact, branchpoints of higher order ra > 2 can be obtained by
taking a limit of several simple branchpoints merging smoothly. It was proved in [26] that
the limit of the definition with simple branchpoints, indeed converges to that of [24, 25, 26].
In other words, higher order branchpoints, can be recovered from simple branchpoints. This
is why, for simplicity, we shall focus on simple branchpoints here.

For specialists, higher order branchpoints correspond to not necessarily semi–simple
Frobenius manifold structures in Givental’s formalism.

Examples of applications of the definition for (g, n) = (0, 3):

ω0,3(p1, p2, p3) =
∑

a

Res
q→a

Ka(p1, q)
[

B(q, p2)B(σa(q), p2) + B(q, p1)B(σa(q), p1)
]

(4.9)

and for (g, n) = (1, 1) ω1,1(p1) =
∑

a

Res
q→a

Ka(p1, q)B(q, σa(q)). (4.10)

Definition 4.4 When n = 0 we define ωg,0 (denoted Fg ≡ ωg,0) by:

g ≥ 2 , Fg = ωg,0 =
1

2 − 2g

∑

a

Res
q→a

ωg,1(q) Φ(q) (4.11)

where dΦ = ω0,1 (Fg is independent of a choice of integration constant for Φ).

The definition of F1 and F0 is given in [1], but we shall not write it in this short

review.
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4.3 Definition as graphs

The recursive definition above can conveniently be written in a graphical way.

For example expression (4.9) or (4.10) are easily written in terms of graphs:

• associate to each B(p, q) factor, a non-oriented line from p to q,

• associate to each Ka(p, q) factor, an oriented line from p to q, whose end q has a

”color” a,

• associate to each Residue Resq→a a tri-valent planar vertex of ”color” a, with one

ingoing edge (it must be oriented) and two outgoing edges (not necessarily oriented)

the left one labeled with the point q and the right one labeled with the point σa(q).

• The value of a graph is then obtained by computing residues at the vertices of

the product of B’s and K’s of edges.

For example (4.9)

ω0,3(p1, p2, p3) =
∑

a

Res
q→a

Ka(p1, q)
[

B(q, p2)B(σa(q), p2) + B(q, p1)B(σa(q), p1)
]

is represented by:

1

x
2

0x
0

x 1

=
x

0

x
0

zK(   ,   )

x
1

2

z

z

x 1B(  ,    )z

2
xB(  ,    )z

x +
x

0

x
0

zK(   ,   )

x

z

z

xB(  ,    )z

xB(  ,    )z
x

2
2

1

and ω1,1(p1) =
∑

a

Res
q→a

Ka(p1, q)B(q, σa(q)) is represented by

z
B(  ,  )z z1x

0 =
x

0

x
0

zK(   ,   ) z

Therefore, following [1] we define the following set of graphs:

Definition 4.5 For any k ≥ 0 and g ≥ 0 such that k + 2g − 2 > 0, we define:

Let G(g)
k+1(p, p1, . . . , pk) be the set of connected trivalent graphs defined as follows:

1. there are 2g + k − 1 tri-valent vertices called vertices.

2. there is one 1-valent vertex labelled by p, called the root.

3. there are k 1-valent vertices labelled with p1, . . . , pk called the leaves.

4. There are 3g + 2k − 1 edges.
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5. Edges can be arrowed or non-arrowed. There are k + g non-arrowed edges and

2g + k − 1 arrowed edges.

6. The edge starting at p has an arrow leaving from the root p.

7. The k edges ending at the leaves p1, . . . , pk are non-arrowed.

8. The arrowed edges form a ”spanning1 planar2 binary skeleton3 tree” with root p.

The arrows are oriented from root towards leaves. In particular, this induces a

partial ordering of all vertices.

9. There are k non-arrowed edges going from a vertex to a leaf, and g non arrowed

edges joining two inner vertices. Two inner vertices can be connected by a non

arrowed edge only if one is the parent of the other along the tree.

10. If an arrowed edge and a non-arrowed inner edge come out of a vertex, then the

arrowed edge is the left child. This rule only applies when the non-arrowed edge

links this vertex to one of its descendants (not one of its parents).

Then, we define the weight of a graph as:

w(G) =
∏

v∈{vertices}
Res
qv→av

∏

e=(p,q)∈{unarrowed edges}
B(p, q)

∏

e=(p 7→q)∈{arrowed edges}
Kap(p, q)

(4.12)

where the order of taking the residues is by following the arrows from leaves to root

(deeper vertices are integrated first).

Then, the definition of ωg,n(S) is:

ωg,n(p1, . . . , pn) =
∑

G∈Gg,n(p1,...,pn)

w(G). (4.13)

Those graphs are merely a notation for the previous recursive definition they are

merely a convenient mnemotechnic rewriting.

This graphical notation is very convenient, it is a good support for intuition and is

very useful for proving some theorems.

1It goes through all vertices.
2planar tree means that the left child and right child are not equivalent. The right child is marked

by a black disk on the outgoing edge.
3a binary skeleton tree is a binary tree from which we have removed the leaves, i.e. a tree with

vertices of valence 1, 2 or 3.
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The topological recursion can be graphically illustrated as follows:

= +

4.4 A-model side definition

We propose another equivalent definition.

Let S = (C, x, y, B) a spectral curve, with branchpoints a = {a}. Near a ∈ a, we

define the local Laplace transforms

Definition 4.6 (Laplace transforms)

e −f(a,j)(u) =
u3/2 e ux(a)

2
√
π

∫

γ(a,j)

y dx e −ux (4.14)

where γ(a,j) is a ”steepest descent path”, i.e. in a neighbourhood Ua of a it is an arc

included in x−1(x(a) +R+) (if dx vanishes to order ra−1 at a (x is locally ra : 1 at a),

then there are ra − 1 such steepest descent paths, i.e. j ∈ [1, . . . , ra − 1]. For a simple

branchpoint we have ra = 2, and there is only j = 1, so we may drop the j index).

Its large u expansion doesn’t depend on the neighbourhood Ua and defines the

”times”:

f(a,j)(u) ∼
∞∑

k=0

t(a,j),k u
−k. (4.15)

Similarly we Laplace transform B:

Definition 4.7

B̂(a,j);(b,l)(u, v) =

√
uv

π

∫

γ(a,j)×γ(b,l)

(

B(z1, z2) − δa,b
◦
Ba(z1, z2)

)

e −u(x(z1)−x(a)) e −v(x(z2)−x(b))

(4.16)

where
◦
Ba(z1, z2) = dζa(z1) dζa(z2)

(ζa(z1)−ζa(z2))2 , with ζa(z) = (x(z) − x(a))1/ra.

The large u and v expansion define the ”times”

B̂(a,j);(b,l) ∼
∑

m,n

B̂(a,j),n;(b,l),mu
−n v−m. (4.17)
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We shall also define the half Laplace transform

B̌(a,j)(u, z) =

√
u√
π

∫

z′∈γ(a,j)
B(z′, z) e −u(x(z′)−x(a)) (4.18)

whose large u expansion defines a basis of meromorphic 1-forms having a pole at a:

B̌(a,j)(u, z) =
∑

k

u−k dξ(a,j),k(z) (4.19)

All this gives another definition of the notion of spectral curve:

Definition 4.8 (Spectral curve, ter) A spectral curve S =

{ {tα,k}, {B̂α,k;β,l}, {dξα,k}} is the data of all the times.

This definition encodes in a slightly different way compared to def4.1, the Taylor

expansions of all germs of analytical functions needed to run the recursion, which are

much better encoded through Laplace transforms, as remarked in [73, 72, 27, 28, 29].

We shall now use the spectral curve data to define a tautological cohomology class

in the cohomological ring of some moduli space, and thus define an A-model potential.

First, we define the moduli space. Let us first assume that all branchpoints are

simple, i.e. ra = 2 and thus the local Galois group is Z2:

Definition 4.9 (Colored moduli space (simple branchpoints)) Let

a = {a}a=branchpoints , N = #a.

We start by defining the following moduli space (not compact):

Mg,n(a) = {(Σ, p1, . . . , pn, s)} (4.20)

where Σ is a genus g nodal surface with n smooth marked points p1, . . . , pn, and s :

Σ → a be a map constant in each component of Σ.

In fact Mg,n(a) is merely a convenient notation for a union of smaller moduli

spaces:

Mg,n(a) = ∪G=dual graphs,N colored

∏

v∈vertices
M(av)

gv ,nv
(4.21)

where M(a)

g,n are N copies of Mg,n labeled by the branchpoints a. The graphs G are dual

graphs of stable nodal surfaces, of total genus g and n smooth marked points. Vertices

v of G carry a genus gv, a number of marked or nodal points nv, and a color sv ∈ a.

We must have:

∀ v, 2 − 2gv − nv < 0 , and
∑

v∈vertices of G
(2 − 2gv − nv) = 2 − 2g − n.
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In fact this definition can be extended to multiple branchpoints ra > 2, with a local

Galois group Ga (most often Zra).

Definition 4.10 (Colored moduli space (multiple branchpoints)) Let

a = {α} = {(a, j)}a=branchpoints,j∈Ga
, N = #a.

We start by defining the following moduli space (not compact):

Mg,n(a) = {(Σ, p1, . . . , pn, s)} (4.22)

where Σ is a genus g nodal surface with n smooth marked points p1, . . . , pn, and s :

Σ → a be a map constant in each component of Σ.

In fact Mg,n(a) is merely a convenient notation for a union of smaller moduli

spaces:

Mg,n(a) = ∪G=dual graphs,N colored

∏

v∈vertices
BGavM

(av)

gv ,nv
(4.23)

where M(a)

g,n are #{a} copies of Mg,n labeled by the branchpoints a, and BGa the

classifying space of the local Galois group Ga at the branchpoint a, and BGaMg,n is

defined by the Chen-Ruan cohomology of C3/Ga. The graphs G are dual graphs of nodal

surfaces, of total genus g and n smooth marked points. Vertices v of G carry a genus

gv, a number of marked or nodal points nv, and a color sv ∈ a.

Then, we define the following tautological classes in the cohomological ring of the

moduli space Mg,n(a). We do the case of simple branchpoints for simplicity:

Definition 4.11 (Tautological class of a spectral curve)

Λ(S) = e
∑

k ts∗,kκk+
1
2

∑
k,l B̂s∗,k;s∗,l

∑
δ∈∂Mg,n(a) lδ∗(τkτl) (4.24)

where

• τk = c1(T
∗
p )k = ψ(p)k is the kth power of the 1st Chern class of the cotangent

bundle at the marked or nodal point p over M(as(p))

g,n

• κk is the kth Mumford class [80], that is the pushforward π ∗ ψ(pn+1)
k+1 of the

(k + 1)th power of the 1st Chern class of the cotangent bundle at the (n+ 1)th marked

points in pn+1 ∈ Mg,n+1, under the forgetful map π : Mg,n+1 → Mg,n.

• ∂Mg,n(a) is the set of boundary divisors of Mg,n(a), or in other words it is the

set of nodal points. If δ ∈ ∂Mg,n(a), then δ is a nodal point, i.e. it is a pair of points

δ = (p, p′) with p and p′ in two components (possibly the same) of Σ, corresponding

to two vertices v, v′ (possibly the same) of the graph G. lδ ∗ (τkτl) denotes the class

ψ(p)kψ(p′)l pushed in M(σ(p))

gv ,nv
×M(σ(p′))

gv′ ,nv′
.
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Then the invariants ωg,n(S) are given by:

Theorem 4.1 (A-model Invariants) (proved in [28], see also [29]).

ωg,n(z1, . . . , zn) =

∫

Mg,n(a)

Λ(S)
n∏

i=1

B̌s(pi)(1/ψ(pi), zi)

=
∑

d1,...,dn

∫

Mg,n(a)

Λ(S)
n∏

i=1

ψ(pi)
di dξs(pi),di(zi)

(4.25)

In fact this theorem and the definition of Mg,n(a) means a sum over graphs of

products at vertices of usual intersection numbers in some M(av)

gv ,nv
’s, it is merely a

short hand notation for the following sum:

ωg,n(z1, . . . , zn) = 23g−3+n
∑

graphsG

∑

{dh}∈Z{half−edges(G)}

2−#edges(G)

#Aut(G)

∏

e=(v,v′)∈edges(G)

B̂av ,d(v,e);av′ ,d(v′,e)

n∏

i=1

dξs(pi),di(zi)

∏

v∈vertices(G)

∫

M(av)
gv,nv

e
∑

k tav,kκk
∏

h∈half−edges(G) adjacent to v

ψ(ph)
dh

(4.26)

This theorem is thus a mirror symmetry statement [60]. It was first proved in [27]

for a single branchpoint, and then in [28] for the general case, and see also [29].

Idea of the proof: Using the graphical definition def.4.5 of the ωg,n’s, by a recom-

bination of vertices with the same colors, one finds that ωg,n can be written as a sum

over graphs of a Wick theorem [30, 31, 32], where the edge weights are the B̂a,k;b,l’s,

and it remains to compute the weights of vertices.

Since vertices are independent of the B̂a,k;b,l, they can be found from the case where

all B̂a,k;b,l vanish, and when there is only one branch point. This can be achieved

by chosing the spectral curve S = (CP 1, x : z 7→ z2, y : z 7→ z, B(z, z′) = dzdz′

(z−z′)2 ),

and shows that the weights of vertices [73, 27] are the Witten Kontsevich intersection

numbers [55, 56]. Therefore, this theorem is mostly of combinatorial nature. �

Remark 4.4 In fact this theorem is very similar to Givental’s formalism [59]. The only
difference with Givental’s formalism, is that it applies to more general situations. Givental’s
formalism applies to Gromov–Witten’s theories, and thus applies only if the coefficients B̂’s
and t’s satisfy certain relationships which we don’t assume here. All this is explained in [29].

Examples of applications of theorem 4.1:
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• Weil-Petersson volumes:

Chose S = (CP 1, x : z 7→ z2, y : z 7→ 1
4π

sin (2πz), B(z, z′) = dzdz′

(z−z′)2 ). In that case,

there is only one branchpoint at z = 0. An easy computation yields B̂a,k;a,l = 0, and

the Laplace transform of ydx yields:

e −f(u) =
u3/2

2
√
π

∫ ∞

−∞

sin (2πz)

4π
2zdz e −uz2 =

1

4
e −π2/u (4.27)

and we also find

dξd(z) =
(2d+ 1)!!

2d
dz

z2d+2
(4.28)

Definition 4.11 gives

Λ(S) = e π
2κ1 ,

and the theorem 4.1 gives

ωg,n(z1, . . . , zn) = 25g−5+2n
∑

d1,...,dn

n∏

i=1

dξdi(zi)

∫

Mg,n

e π
2κ1

n∏

i=1

ψdii

= 22g−2+n
∑

d1,...,dn

n∏

i=1

(2di + 1)!! dzi

z2di+2
i

∫

Mg,n

e 2π2κ1

n∏

i=1

ψdii

(4.29)

which are indeed the Weil-Petersson volumes of moduli spaces [79, 78, 77, 9]. In other

words, this theorem gives a very easy way to rederive Mirzakhani’s recursion, by simply

computing the Laplace transform of y = sin (2π
√
x)/4π.

• Kontsevich-Witten:

Chose S = (CP 1, x : z 7→ z2, y : z 7→ z, B(z, z′) = dzdz′

(z−z′)2 ). In that case, there

is only one branchpoint at z = 0. An easy computation yields B̂a,k;a,l = 0, and the

Laplace transform of ydx yields:

e −f(u) =
u3/2

2
√
π

∫ ∞

−∞
z 2zdz e −uz2 =

1

2
(4.30)

and we also find

dξd(z) =
(2d+ 1)!!

2d
dz

z2d+2
(4.31)

Definition 4.11 gives

Λ(S) = 2κ0 = 22g−2+n.

The theorem 4.1 thus gives

ωg,n(z1, . . . , zn) = 22g−2+n
∑

d1,...,dn

n∏

i=1

(2di + 1)!! dzi

z2di+2
i

∫

Mg,n

n∏

i=1

ψdii
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(4.32)

which are the Kontsevich-Witten [55, 56] intersection numbers [73, 27, 79, 78, 77].

• ELSV formula

Chose S = (CP 1, x : z 7→ −z + ln z, y : z 7→ z, B(z, z′) = dzdz′

(z−z′)2 ). Again there is

only one branchpoint at z = 1. The Laplace transform of ydx yields:

e −f(u) =
u3/2 e −u

2
√
π

∫ −∞

0

z
(1 − z) dz

z
z−u e uz

=
i
√
π uu e −u

√
uΓ(u)

=
i√
2

e −
∑

k

B2k
2k(2k−1)

u1−2k

(4.33)

where Bk are the Bernoulli numbers. We leave the reader an exercise to compute the

B̂a,k;a,l and the dξa,k(z), and we just mention that:

ΛHodge = e
∑

k

B2k
2k(2k−1) (κ2k−1−

∑
i ψ

2k−1
i + 1

2

∑
δ

∑2k−2
l=0 (−1)l lδ∗τ2k−2−lτl) (4.34)

is the Hodge class [81, 27]. The theorem above easily gives the ELSV formula [39], but

we refer the reader to [27, 28] for a more detailed computation.

• Mariño–Vafa formula [82] for the topological vertex with framing f

Chose S = (CP 1, x : z 7→ −f ln z− ln(1− z), y : z 7→ ln z, B(z, z′) = dzdz′

(z−z′)2 ). Again

there is only one branchpoint at z = f
f+1

. The Laplace transform of ydx yields:

e −f(u) =
u1/2 ((f + 1)f+1/f f )u

2
√
π

∫ 1

0

(1 − z)u zf u
dz

z

=
u1/2 ((f + 1)f+1/f f )u

2(f + 1)
√
π

Γ(fu)Γ(u)

Γ((f + 1)u)

=
1

(f + 1)
√

2
e −

∑
k

B2k
2k(2k−1)

u1−2k (1+f1−2k+(−1−f)1−2k) (4.35)

where Bk are the Bernoulli numbers. We leave the reader an exercise to compute the

B̂a,k;a,l and the dξa,k(z), and we just mention that using (4.34), we see that the spectral

curve’s class here, is a product of 3 Hodge classes

ΛHodge(1)ΛHodge(f)ΛHodge(−1 − f) (4.36)

and the theorem above easily gives the Mariño–Vafa formula [82, 84, 83], but we refer

the reader to [27, 28] for a more detailed computation.
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5 Main properties

Let us make a brief summary of some of the properties enjoyed by those invariants.

• Symplectic invariance

F̂g = Fg − 1
2−2g

∑

α(Resα ydx)(
∫ α

o
ωg,1) is invariant under symplectomorphisms.

This means that if φ : CP 1 × CP 1 → CP 1 × CP 1 is a symplectomorphism (conserves

dx ∧ dy), then

Theorem 5.1 If S = (C, x, y, B) is such that C is a compact Riemann surface, x and y

are globally meromorphic functions on C, and B is the fundamental 2nd kind form [58]

on C ×C, normalized on a symplectic basis of cycles, then if φ is a symplectomorphism

of CP 1 × CP 1 then

F̂g(φ ∗ S) = F̂g(S). (5.1)

This theorem [1, 33, 34] is extremely powerful and useful. It allows to compare very eas-

ily some apparently unrelated enumerative problems, just by comparing their spectral

curves. For instance it allows to find dualities. A special case is φ : (x, y) 7→ (y,−x),

i.e.

F̂g(C, y,−x,B) = F̂g(C, x, y, B). (5.2)

Let us mention that the proof of that theorem is highly non–trivial, and it was

proved so far only for algebraic spectral curves (x and y meromorphic on a compact

C), but it is believed to be valid in more general cases for example when dx and dy are

meromorphic 1-forms on a compact C, see [61, 25].

• Modular invariance Let S = (C, x, y, B) a spectral curve such that C is a

compact Riemann surface of genus g, and B is the fundamental 2nd kind form on

C × C, normalized on a symplectic basis of cycles. The modular group Sp2g(Z) acts on

B. If

(
a b
c d

)

∈ Sp2g(Z), the period matrix is changed to τ 7→ (d− τb)−1 (τa− c), and

B is changed to

B(p, p′) 7→ B(p, p′) + 2πi

g
∑

i,j=1

ωi(p) (b (d− τb)−1)i,j ωj(p
′) (5.3)

where ωi are the normalized holomorphic 1-forms on C. Then

Theorem 5.2 Fg(C, x, t, B) is an almost modular form under the modular group

Sp2g(Z) acting on B.

The proof of this theorem appeared in [1] and [35], and follows easily from the graphical

decomposition of def 4.5. Indeed, B appears only in edges of the graphs, and eq.(5.3)
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amounts to cutting edges. The effect of a modular transformation thus produces dual

graphs of degenerate Riemann surfaces, with factors of b(d−τb)−1 at degeneracies, and

thus coincides with the transformations of almost modular forms.

• Deformations and Form cycle duality

The tangent space to the space of spectral curves at S = (C, x, y, B) is the space of

meromorphic forms on C. Lat us chose B to be the fundamental 2nd kind differential

on C, see [63, 62, 1]. Then B provides the kernel for a form–cycle duality pairing,

namely the meromorphic form Ω dual to a cycle Ω∗ is

Ω(p) =

∮

p′∈Ω∗

B(p, p′). (5.4)

(here we call cycle Ω∗ any linear form on the space of meromorphic forms, i.e. an

element of the dual of M1(C)).

Then we have

Theorem 5.3 Let Ω be a tangent vector to the space of spectral curves, i.e. a mero-

morphic 1-form on C, and ∂Ω be the derivative in the direction of Ω, then we have

∂Ω ωg,n =

∮

Ω∗

ωg,n+1 (5.5)

This theorem first proved in [12, 1] follows easily from the graphical decomposition

of def 4.5. Indeed, one just has to see how ∂Ω acts on the kernels K and B, i.e. on the

edges of the graphs, and it produces exactly the graphs of ωg,n+1.

Special cases of that theorem are:

∂Ω ydx = ∂Ω ω0,1 =

∮

Ω∗

ω0,2 =

∮

Ω∗

B = Ω. (5.6)

we thus recover that Ω is the derivative of ω0,1 = ydx i.e. a meromorphic 1-form on

T ∗C. Another example is

∂Ω F0 =

∮

Ω∗

ω0,1 =

∮

Ω∗

ydx (5.7)

which means that F0 is the prepotential, this relation is Seiberg-Witten’s duality. Yet

another example is

∂ΩB(p1, p2) =

∮

p3∈Ω∗

ω0,3(p1, p2, p3) =
∑

a

Res
q→a

B(q, p1)B(q, p2) Ω(q)

dx(q)dy(q)
(5.8)

which is known as the Rauch variational formula for the fundamental 2nd kind form

B. Another example is:

∂Ω F1 =

∮

Ω∗

ω1,1 (5.9)
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which means that F1 is (up to some details which we don’t enter here) the Bergman

Tau function of Kokotov–Korortkin [64].

Again, this theorem is very powerful.

• Dilaton equation

This is an equation saying that

Theorem 5.4 For any (g, n) such that 2g − 2 + n > 0 we have

∑

a

Res
q→a

ωg,n+1(p1, . . . , pn, q) Φ(q) = (2 − 2g − n)ωg,n(p1, . . . , pn) (5.10)

where Φ is such that dΦ = ydx = ω0,1.

Notice that this theorem was used to define Fg in def 4.4.

• There are many other properties.

For instance the ωg,n’s behave well under taking limits of singular spectral curves,

in some sense they commute with taking limit. See [1] for details.

They are also deeply related to integrable systems [36, 1, 65], and they have many

other beautiful properties.

6 Link to integrability, quantum curves and

Hitchin systems

It is conjectured that the invariants ωg,n provide the ”quantization” of the spectral

curve [22, 49]. What we mean by this is deeply related to the notion of integrable

systems [53, 54], and particularly Hitchin’s systems and their generalizations.

First let us make some definitions. We have seen that the tangent space to the

space of spectral curves is the space of meromorphic forms. Let Ω a section of the

meromorphic sheaf, and consider the exponential e ∂Ω of the flow ∂Ω. We shall often

denote:

S + Ω := e ∂Ω ∗ S. (6.1)

By definition, and using the form–cycle duality, we have (this is he Taylor expansion)

e ∂Ω .ωg,n(p1, . . . , pn) =
∞∑

k=0

1

k!

∮

Ω∗

. . .

∮

Ω∗

ωg,n+k(p1, . . . , pk, ., . . . , .)

Definition 6.1 We define the formal Tau function:

T~(S) = e
∑∞

g=0 ~
2g−2 Fg(S) (6.2)
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and the formal ”Baker-Akhiezer” spinor kernel

ψ(S, ~; p, q) =
e

1
~

∫ p

q
ydx

E(p, q)
e
∑

2g−2+n>0
~
2g−2+n

n!

∫ p

q
...

∫ p

q
ωg,n (6.3)

where E(p, q) is the prime form (defined by dpdq lnE(p, q) = B(p, q)). For short we

shall often write (but keeping in mind that the (g, n) = (0, 2) term needs to be regular-

ized)

ψ(S, ~; p, q) ” = ” e
∑

g,n
~
2g−2+n

n!

∫ p

q
...

∫ p

q
ωg,n (6.4)

Almost by definition, and from the form–cycle duality property, it obeys:

Theorem 6.1 (Sato’s formula) [1]

ψ(S, ~; p, q) =
T~(S + ~ωp,q)

T~(S)
(6.5)

where ω∗
p,q = [p, q], i.e. ωp,q(p

′) =
∫ p

p′′=q
B(p′, p′′), i.e. ωp,q is the 3rd kind differential

having a simple pole at p with residue +1 and a simple pole at q with residue −1.

It is conjectured (under some assumptions which we skip in this short review, see

[36]) that

Conjecture 6.1 The formal Baker-Akhiezer should be self replicating:

δpψ(S, ~; p1, p2) = −ψ(S, ~; p1, p)ψ(S, ~; p, p2) (6.6)

where the derivation operator δp is the derivative with the flow δp = dx(p) ∂Ωp
along the

meromorphic form Ωp(q) = B(p,q)
dx(p)

.

The self-replication formula is in fact equivalent to the Hirota equation for the Tau-

function. It also implies many determinantal formulae and Plücker relations, and the

existence of an isomonodromic integrable system, i.e. the existence of an operator

Lq(~, x) ∈ M(C0)[[~]] (i.e. a formal power series of ~ whose coefficients are meromor-

phic 1-forms on the base curve C0 = x(C)), such that

(dp − Lq(~, x(p))).ψ(S, ~; p, q) = 0. (6.7)

This conjecture was never proved in full generality, but has been proved case by case

for many families of spectral curves. The first example was the curve y =
√
x for which

the Baker-Akhiezer kernel is the Airy kernel, proved in [50].

More examples were proved in [49, 51, 52].
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Remark 6.1 The conjecture as stated above is incomplete. It corresponds only to the case
where the curve C has genus g = 0. The full conjecture when the genus g > 0, is stated
in [36], it requires to modify the Tau-function and the Baker-Akhiezer kernel with some
appropriate Theta–functions (first introduced in [37, 38]), but this is beyond the scope of this
short review.

The conjecture was checked for general algebraic spectral curves up to order O(~3) in
[36].

An example where this conjecture is proved in [40] concerning Hitchin’s systems:

Theorem 6.2 (Quantum curves of rank 2 Hitchin systems) Let C0 be a base

curve of genus g0 > 1, and C ⊂ T ∗C0 → C0 be an algebraic curve embedded in the

cotangent bundle over C0. Let η be the restriction of the tautological 1-form on C.
Consider the spectral curve

S = (C, x, y, B)

where x : C → C0 is the projection map to the base, ydx = η is the tautological 1-form

of the cotangent bundle restricted to C, and B is the canonical 2nd kind differential on

C (the A–cycles on which it is normalized are those which projects to the A–cycles of

C0 or to 0, see discussion in [40]).

Then the Baker-Akhiezer function

ψ(S, ~; p, q) =
e

1
~

∫ p

q
η

E(p, q)
e
∑

2g−2+n>0
~
2g−2+n

n!

∫ p

q
...

∫ p

q
ωg,n (6.8)

turned into a vector by chosing pi ∈ C the preimages of a point x ∈ C0 of the base by

the projection map

~ψ(S, ~; x, q) = (ψ(S, ~; pi(x), q))t wherex−1(x) = {p1(x), . . . , pr(x)} (6.9)

satisfies an isomonodromic ODE

(~ dx − Lq(~, x)). ~ψ(S, ~; x, q) = 0. (6.10)

where Lq is a Higgs field, whose spectral curve is C (the eigenvalues of Lq are indepen-

dent of q, only the eigenvectors depend on q).

The generalization to higher rank > 2 Hitchin systems is at the moment in progress.

7 A new application: knot theory

A surprising new application of those invariants and topological recursion to knot

theory has emerged recently. Since it attracts lots of activity, and naturally extends

the famous (and unproved) Volume conjecture, we mention it here.
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Let K be a knot embedded in the 3 dimensional sphere S3. We shall assume here

that K is a hyperbolic knot, i.e. that S3 \ K possesses a complete hyperbolic metric

(constant curvature −1, and such that the total volume is finite). Our favourite example

is the figure of eight knot:

Jones polynomial [44] is a knot invariant associated to the SL2(C) group. It is a

polynomial of a formal variable q, and depends on a representation of SL2(C). Irre-

ducible representations of SL2(C) are labeled by partitions λ = (λ1, λ2) with two rows,

and we denote N = (λ1 − 1) − (λ2 − 2). Thus the Jones polynomial JN(K, q) is

JN(K, q) ∈ Q[q] , (N − 1, 0) = representation of SL2(C).

One is often interested in the q → 1 limit together with the large N limit such that

q → 1 , N → ∞ , u = N ln q = fixed.

One observes that in that limit the Jones polynomial behaves asymptotically like

ln Jn(K, q) ∼
∞∑

k=−1

(ln q)k Sk(u). (7.1)

In 1994, Kashaev [41] made the volume conjecture:

S−1(2πi) = Hyperbolic Volume(S3 \ K). (7.2)

and this was then generalized [42, 46, 43, 45, 47, 48] as

S−1(u) = Chern Simons action(u). (7.3)

This conjecture was proved for very few knots.

In 2010, Dijkgraaf, Fuji and Manabe [19, 20] conjectured that all Sk’s can be found

from the topological recursion, in terms of a spectral curve associated to the knot. The

spectral curve is the so-called A-polynomial of the knot, it is also called the character

variety of the knot. For example: the (geometric component) of the A-polynomial of

the figure of eight knot has equation:

e 2x − e x − 2 − e −x + e −2x = e y + e −y (7.4)

i.e. x and y are (logs of ) meromorphic functions on the algebraic curve C of equation

X2 −X − 2−X−1 −X−2 = Y + Y −1, which is a torus. The fundamental 2nd kind for
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B is expressed in terms of the Weierstrass function and the second Eisenstein series E2

on this torus:

B(z, z′) =

(

℘(z − z′) − E2

3

)

dz dz′ (7.5)

Conjecture 7.1 The colored Jones polynomial is a formal Baker-Akhiezer kernel of

the spectral curve S defined by the A-polynomial:

JN(q)2 = e
∑

g,n
(ln q)2g−2+n

n!

∫
D
...

∫
D
ωg,n (7.6)

where D is a divisor
∑2

i=1 pi − ∞i where x(pi) = (λi − i + c) ln q are related to the

representation (λ1, λ2), and c is an appropriate constant. Notice that u = x(p1) −
x(p2) = N ln q.

The actual statement in fact involves to complete this by the theta terms of [37, 38,

23, 36].

This conjecture is compatible with the volume conjecture, indeed the leading term:

S−1 =

∫ p1

∞
ydx+

∫ p2

∞
ydx (7.7)

is the volume.

For the figure of eight knot, this conjecture has been checked up to the 3rd power

of ln q, in [23].

8 Conclusion

We hope to have shown the reader that topological recursion is a beautiful and powerful

piece of mathematics. It defines new invariants associated to ”spectral curves”.

Topological recursion has found a large number of (sometimes unexpected) appli-

cations.

However, for many cases, the fact that a given enumerative geometry problem sat-

isfies the topological recursion, is most often only conjectured, not yet proved, and

finding proofs is a challenge. Even in proved cases, the proofs are always very technical

and not natural, almost never bijective, so unsatisfactory. Finding a good deep geo-

metric reason (in fact an A-model proof) for the topological recursion is a challenging

open problem.
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