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Institut de Physique Théorique, CEA-Saclay (CNRS-URA 2306)

F-91191 Gif-sur-Yvette Cedex (France)
e-mail: andre.voros@cea.fr

dedicated to Professor Takashi AOKI for his 60 th birthday

Abstract

We review generalized zeta functions built over the Riemann zeros (in short:
“superzeta” functions). They are symmetric functions of the zeros that display a
wealth of explicit properties, fully matching the much more elementary Hurwitz zeta
function. As a concrete application, a superzeta function enters an integral repre-
sentation for the Keiper–Li coefficients, whose large-order behavior thereby becomes
computable by the method of steepest descents; then the dominant saddle-point en-
tirely depends on the Riemann Hypothesis being true or not, and the outcome is a
sharp exponential-asymptotic criterion for the Riemann Hypothesis that only refers
to the large-order Keiper–Li coefficients. As a new result, that criterion, then Li’s
criterion, are transposed to a novel sequence of Riemann-zeta expansion coefficients
based at the point 1/2 (vs 1 for Keiper–Li).

It is a great honor and pleasure to dedicate this work to Professor AOKI, who has had
zeta functions among his numerous activities; we are specially grateful to him for setting
up a major conference in Osaka in 2003 [1] that much stimulated our work afterwards.
And the present work also touches another theme in which we have much longer fruitfully
interacted with him (and collaborators, mainly at the RIMS), namely complex exponential
asymptotics (here embodied in the method of steepest descents).

1 (Generalized) zeta functions

Discrete numerical sets {wk} that have “natural”, “collective” definitions (e.g., roots of
equations, spectra, . . . ), are often better accessible through their symmetric functions,
which easily display richer and more explicit properties than the initial data. Specially
fruitful symmetric functions turn out to be the zeta functions, defined (formally) as

Z(x) =
∑

k

w−x
k (standard zeta), Z(x, w) =

∑

k

(wk + w)−x (generalized zeta), (1)
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typically for complex arguments. As a rule, the exponent (here, x) is the key variable;
the shift parameter (w) adds useful flexibility but retains an auxiliary status.

Based on [31] and references therein, we will specifically review cases where {wk}
is the set of nontrivial zeros {ρ} of Riemann’s zeta function (or some related set, or a
generalization) - we will name the resulting functions (1) “superzeta” functions for brevity.

Our starting set {wk} will however be the natural integers, with the zeta functions

ζ(x) =

∞
∑

k=1

k−x (Riemann), ζ(x, w) =

∞
∑

k=0

(k + w)−x (Hurwitz) (Re x > 1) (2)

(the standard notations, in which ζ(x) ≡ ζ(x, w = 1)), because
a) ζ(x) gives rise to the first superzeta functions, those over the Riemann zeros ;
b) ζ(x, w) provides the basic template for the full set of explicit properties ultimately

displayed by those less elementary superzeta functions.

1.1 Predicted pattern of general results for zeta functions

For our later sets {wk} (all countably infinite), typical results can be categorized as:

• A - Analytic structure in the whole complex x-plane (at fixed w): our zeta functions
will be defined by (1) only over a half-plane in x, as in (2), but will then admit a meromorphic

continuation to the whole x-plane, with exactly and fully computable poles and principal parts.
(E.g., Hurwitz’s ζ(x, ·) = 1/(x− 1)+ [entire function].)

• F - Functional relation (often): this may link the analytic continuation of Z(x, w)
to another function of Mellin-transform type (as in (10) for the Hurwitz case); when it
exists, F may also readily supply all the explicit features announced here.

• R
T

- Special-value formulae for Z(x, w) at all integers x = ∓n: Rational
Transcendental

respectively (such will be the layout of the Tables), and having quite distinct origins:

R for x = −n (in conjunction with A): our zeta functions relate to Mellin transforms,
e.g., Z(x, w) = Γ(x)−1

∫∞

0
f(z, w) zx−1 dz (like (7) for Hurwitz) where f(z, w) will have an

explicit z → 0 power expansion: this feature makes the Mellin integral meromorphic for all x
by continuation and also yields its explicit poles and principal parts (A), plus (upon the division
by Γ(x)) explicit rational (R) values for Z(x, w) at all x = −n (0 and the negative integers).
By “rational” we mean: polynomial in w and in the expansion coefficients of f at z = 0.

T for x = +n : zeta functions relate to zeta-regularized products D(w) =
∏

k

(w + wk) by

logD(w)
def
= −∂xZ(x, w)|x=0 for Z(x, w) =

∑

k

(wk + w)−x (3)

=⇒ Z(n, w) =
(−1)n−1

(n− 1)!
(logD)(n)(w) for n = 1, 2, . . . outside poles of Z, (4)

vs

{

FPx=1Z(x, w) = (logD)′(w) (FP: finite-part extraction)
FPx=nZ(x, w) = [a bulkier formula] for n ≥ 2 [31, § 2.6.1]

}

on poles of Z (5)

(the very last case is unused here); thus, formulae (3)–(5) express zeta values at all x = +n
( 0 and the positive integers), in terms of a function D(w) which is entire, has {−wk} as
zeros, and will be transcendental (T) but hopefully known. E.g., in the Hurwitz case:
{wk} = {0, 1, 2, . . .} leads to

D(w) =
√
2π/Γ(w). (6)
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1.2 Results for the Hurwitz zeta function ζ(x, w)

We recall classic results [9], to be needed for the notations and for later reference.

• F- Functional relation (will imply A): we start from the (obvious) Mellin-transform
representation of ζ(x, w), then convert it to a Hankel integral:

ζ(x, w) =
1

Γ(x)

∫ ∞

0

e(1−w)z

ez −1 zx−1 dz (Re x > 1, Re w > 0) (7)

=
Γ(1− x)

2iπ

∫

C′

e(1−w)z

ez −1 (−z)x−1 dz (x 6∈ N
∗, 1 ≥ Re w > 0) (8)

=
Γ(1− x)

2iπ
lim

R→+∞

∫

CR

e(1−w)z

ez−1 (−z)x−1 dz (x 6∈ N
∗, 1 ≥ Re w > 0) (9)

(see Fig. 1); then this contour integral is readily evaluated by the residue calculus, giving

ζ(x, w) =
Γ(1− x)

(2π)1−x i
[eiπx/2 F (e2iπw, 1− x)− e−iπx/2 F (e−2iπw, 1− x)] (F) (10)

for F (u, y)
def
=

∞
∑

n=1

un

ny
, and Re x < 0, 1 ≥ Re w > 0 (A) (11)

(Lerch or polylogarithm function; (10): Jonquière’s formula).

R
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i

i

i
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Figure 1: Integration paths in (8)–(9) leading to the functional relation (10) for ζ(x,w).

• R
T

- Special values: R resulting from (7), followed by T from (6), are listed in Table 1.

Moreover, (10) reduces at w = 1 to Riemann’s Functional Equation:

ζ(x) ≡ 2(2π)x−1 sin
πx

2
Γ(1− x) ζ(1− x) ⇐⇒ Ξ(1

2
+ t) ≡ Ξ(1

2
− t), (12)

in terms of a completed zeta function

Ξ(x) = x(x− 1)π−x/2Γ(x/2) ζ(x) (our normalization: Ξ(0) = Ξ(1) = 1), (13)
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x ζ(x, w) =
∞
∑

k=0

(k + w)−x

−n ≤ 0 − 1
n + 1Bn+1(w)

0 1

2
− w R

0
(x-derivative) ζ ′(0, w) = log(Γ(w)/

√
2π) T

+1
(finite part) FPx=1ζ(x, w) = −(log Γ)′(w)

+n > 1
(−1)n
(n− 1)!

(log Γ)(n)(w)

Table 1: Special-value formulae for the Hurwitz zeta function, Rational
Transcendental

at all integer

x = ∓n. (Bn(w) : Bernoulli polynomials.)

and of the convenient variable t ≡ x− 1
2
. Remarkable values of t are then

t = 0 (the center of symmetry for Ξ(1
2
+ ·)) and t = +1

2
(the pole of ζ(1

2
+ ·)).

Due to (12), ζ(x) has trivial zeros : x = −2k, k = 1, 2, . . ., plus those of Ξ(x) : the
Riemann zeros ρ; the latter are countably many, 2-by-2 symmetrical about t = 0, as

ρ = 1
2
± iτk (Re τk > 0) (k = 1, 2, . . .), (14)

and lie within the critical strip {0 < Re ρ < 1}; moreover, the Riemann Hypothesis [24]
(still an open conjecture) puts them all on the critical line:

Re ρ = 1
2
⇐⇒ τk is real for all Riemann zeros. [RH] (15)

2 Superzeta functions, in the Riemann zeros’ case

Over the set of Riemann zeros {ρ} (always counted with multiplicities, if any), several
generalized zeta functions are conceivable:

Z (s | t) =
∑

ρ

(1
2
+ t− ρ)−s, Re s > 1 (1st kind) (16)

Z(σ | t) =
∞
∑

k=1

(τk
2 + t2)−σ, Re σ > 1

2
(2nd kind) (17)

Z(s | τ) =
∞
∑

k=1

(τk + τ)−s, Re s > 1 (3rd kind) (18)

where the parameter t has the same meaning as in (12); those functions are 2-by-2 in-
equivalent, except at a single parameter location where a confluence occurs:

(2 cos 1
2
πs)−1

Z (s | 0) ≡ Z(12s | 0) ≡ Z(s | 0) ≡
∞
∑

k=1

τ −s
k ; (19)

(19) can be taken as a standard (one-variable) zeta function over the Riemann zeros.
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year Z (s | t) = ∑

ρ
(12 + t− ρ)−s Z(σ | t) =

∞
∑

k=1

(τ 2
k + t2)−σ Z(s | τ) =

∞
∑

k=1

(τk + τ)−s

1860 Riemann (unpubl.):
∑

ρ
ρ−1

T

1917 Mellin t = ±1
2 AR Mellin τ = ±1

2 i A

1949
1966
1970
1971

←−−−−−−−−−
Guinand AF

Delsarte A

ChakravartyF
” AR















t = 0 (confluent case) −−−−−−−−−→

1985
1988

Matsuoka
Lehmer

}

∑

ρ
ρ−n

{

t = 1
2

s = n
T

1988 Kurokawa t = 1
2 A

1989 Matiyasevich

{

t = 1
2

σ = n
T

1992
1994

Keiper
Zhang–Williams

}

∑

ρ
ρ−n

T

1992
1994

Deninger
Schröter–Soulé

}

∂sZ (0 | t)
{

A

T

Table 2: The pre-2000 literature on “superzeta” functions of all 3 kinds (to our knowledge),
sorted by kind (columns). (A–T : classes of results, cf. Sect. 1.1; n means any positive integer;
the references are listed in full at the end.)

Those zeta functions over the Riemann zeros (or “superzeta” functions, for brevity) got
considered quite sporadically until the turn of the century: we found but a dozen studies,
all partially focused and incomplete even as a whole (Table 2). From 2000 onwards we
have gradually filled gaps in the description [27][29][28], ending up with a more global
perspective, also set in new coherent notations, as a book [31]. The present text then
basically condenses the main results of [31], where the details skipped here can be found.

2.1 The superzeta function of the 1st kind Z (s | t)
2.1.1 Basic functional relation / continuation formula

Z (s | t) is only defined by (16) where its series converges, i.e., in the half-plane {Re s > 1}.
Now, in terms of the partner zeta function over the trivial zeros of ζ(x),

Z(s | t) def
=

∞
∑

k=1

(1
2
+ t+ 2k)−s ≡ 2−sζ(s, 5

4
+ 1

2
t), (20)

and of another Mellin transform,

J (s | t) =
∞
∫

0

ζ ′

ζ
(1
2
+ t + y) y−s dy (Re s < 1), (21)

Z (s | t) admits an analytic continuation formula which reads as

Z (s | t) = −Z(s | t) + (t− 1
2
)−s +

sin πs

π
J (s | t) (Re s < 1), (22)
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valid in a cut t-plane: 1
2
+ t must avoid all negatively oriented half-lines drawn from the

Riemann zeros and the pole (whose cut t ∈ (−∞,+1
2
] imposes special treatments for both

remarkable values t = 0 and 1
2
).

The argument of proof (parallel to (7)–(9), and sketched by Fig. 2) shows (22) to be
the counterpart of the functional relation (10) from the Hurwitz case, i.e., (22) gives the
property F for Z .

Im y Im (x+y )

Re y

x+yRe ( )

R

x−
−6 −2 0 1

0 C’

C

−4

Figure 2: Integration paths applied to the Mellin transform (21) similarly to Fig. 1, leading to
the analytic continuation formula (22) for Z (s | t). (x ≡ 1

2 + t; • : zeros of ζ(x+ y), including
mock “Riemann zeros” with imaginary parts contracted to fit into the frame.)

Moreover, by the same logic as in Sect. 1.1.R, the y → 0 Taylor expansion of the
integrand in (21) induces the continuation of J (s | t) (and of the F-identity (22)) to the
whole s-plane, and it fully specifies the poles and residues of J . As a result, the product
[sin πsJ (s | t)] in (22) is regular everywhere (and computable at all zeros of sin πs as
well, in preparation to Sect. 2.1.2). Its regularity alone implies that Z (s | t) has the same
singular structure as −Z(s | t) : i.e., only the simple pole s = 1, of residue −1

2
(property A).

2.1.2 Special values of Z (s | t)
Once we can compute [sin πsJ (s | t)] at all integers s, the corresponding values of Z (s | t)
plus ∂s Z (0 | t) readily follow from the F-identity (22) (as extended to all s). Then, in
the resulting Table 3 of special values, the superzeta function Z proves fully on par with
the much more elementary Hurwitz zeta function of (1) !

Since J (s | t) is regular for s < 1, its transcendental values get killed in (22) by the sin πs
factor at all s = 0,−1,−2, . . ., making those Z (−n | t) values rational (R).

The remaining, transcendental (T), values Z (n | t) (n = 1, 2, . . .; more detail about
n = 1 in [31, § 7.4]) also directly stem from a generating function that goes back to a
symmetric Hadamard product for Ξ(x) [7, § 1.10],

Ξ(x) =
∏

ρ

(1− x/ρ) =⇒ d

dy
log Ξ(1

2
+ t+ y) ≡

∞
∑

n=1

Z (n | t) (−y)n−1. (23)
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s Z (s | t) =
∑

ρ

(1
2
+ t− ρ)−s ζ(s, w) =

∞
∑

k=0

(k + w)−s

−n < 0 2n
n+ 1 Bn+1(

1

4
+ 1

2
t) + (t+ 1

2
)n + (t− 1

2
)n − 1

n + 1Bn+1(w)

0 1

2
(t+ 7

2
) R 1

2
− w

0
(s-derivative) −1

2
(log 2π) t+ 1

4
log 8π − log Ξ(1

2
+ t) T −1

2
log 2π + log Γ(w)

+1
(finite part)

1
2
log 2π + (log Ξ)′(1

2
+ t) −(log Γ)′(w)

+1 (log Ξ)′(1
2
+ t) ∞

+n > 1
(−1)n−1

(n− 1)!
(log Ξ)(n)(1

2
+ t)

(−1)n
(n− 1)!

(log Γ)(n)(w)

Table 3: Central column: the special values for the superzeta function of the 1st kind Z (s | t),
Rational

Transcendental
at all integer s = ∓n. Right column, for comparison: the same for the Hurwitz

zeta function, rewritten from Table 1. (Bn(·) : Bernoulli polynomials; Ξ(·) : the completed Riemann
zeta function (13).)

The special values Z (n | t) also display some imprints of the fundamental symmetry
of the Riemann zeros (ρ←→ (1−ρ), t←→ −t) (vs nothing we know of for non-integer s):
- obvious: Z (n | −t) ≡ (−1)n Z (n | t) for n = 1, 2, . . ., implying Z (n | 0) ≡ 0 for n odd
(vs eiπs/2Z (s | t)− e−iπs/2Z (s | −t) ≡ 2i(sin πs)Z(s | it) 6≡ 0 for non-integer s, cf. (30));

- less obvious: Z (−n | −t) ≡ (−1)n Z (−n | t) + 1
n + 1Bn+1(

1
2
− t) for n = 0, 1, 2, . . .

(as computed from Table 3-R, with Bn+1(·) : Bernoulli polynomial);

- even less obvious: 0 ≡
∞
∑

k=n

(

k−1
n−1

)

tk−n Z (k | t) for each odd n = 1, 3, . . .

(skeleton of proof: expand identity (1
2
−ρ)−n ≡ (1

2
+ t−ρ)−n [1− t/(1

2
+ t−ρ)]−n in powers

of t, then sum over {ρ}, and finally use Z (n | 0) ≡ 0 for n odd).

The next two Tables exemplify Table 3 for Z0(s)
def
= Z (s | 0), resp. Z∗(s)

def
= Z (s | 1

2
).

s Z0(s) ≡
∑

ρ

(ρ− 1
2
)−s [t = 0]

even 2−n+1(1− 1

8
En)−n ≤ 0

{

odd −1

2
(1−2−n)

Bn+1

n+1
0 7/4 R

0
(s-derivative) Z ′

0 (0) = log [211/4π1/2Γ(1
4
)−1|ζ(1

2
)|−1] T

+1
(finite part) FPs=1 Z0(s) =

1
2
log 2π

odd 0
+n ≥ 1

{

even 2n+1 − 1
2
[(2n−1) ζ(n) + 2nβ(n)]− (log |ζ |)(n)(1

2
)

(n− 1)!

[

ζ(n) ≡ (2π)n|Bn|
2n!

]

Table 4: (
En

Bn
:

Euler
Bernoulli numbers; β(x)

def
=

∞
∑

k=0

(−1)k(2k + 1)−x : Dirichlet β-function.)
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s Z∗(s) ≡
∑

ρ

ρ−s [t = 1
2
]

−n < 0 1− (2n−1)Bn+1

n+1
0 2 R

0
(s-derivative) Z ′

∗ (0) =
1
2
log 2 T

+1
(finite part) FPs=1 Z∗(s) = 1− 1

2
log 2 + 1

2
γ

+1 1− 1
2
log 4π + 1

2
γ

+n > 1 1− (1−2−n) ζ(n) +
gcn

(n− 1)!
≡ 1− (−1)n2−nζ(n)− (log |ζ |)(n)(0)

(n− 1)!

Table 5: (γ : Euler’s constant; gcn : cumulants of the Stieltjes constants [14, § 5][2][27, § 3.3][4],
of generating function log [y ζ(1 + y)] ≡ −

∞
∑

n=1

(−1)n
n!

gcn y
n ; ζ(n) ≡ (2π)n|Bn|

2n!
for n even.)

2.2 The superzeta function of the 2nd kind Z(σ | t)
Defined by (17) for Re σ > 1

2
, Z(σ | t) appears (for t 6= 0) functionally independent from

the function of the 1st kind Z (s | t); contrary to the latter, it manifestly embodies the full
symmetry of the Riemann zeros, through the identity Z(σ | t) ≡ Z(σ | −t).

On the other hand, Z(σ | t) for t 6= 0 displays no tractable functional relation F.
Still, by expansion in powers of t around the known confluent case (19) [27, § 6.1][31,
§ 8.3], Z(σ | t) is proved meromorphic in σ, now with double poles σ = 1

2
,−1

2
,−3

2
, . . ., and

all principal parts plus rational values Z(−m | t) (m ∈ N) explicitly computable (A+R). E.g.,
the leading pole σ = 1

2
has the principal part (t-independent)

Z(12 + ε | t) = 1

8π
ε−2 − log 2π

4π
ε−1 + [regular term], ε→ 0. (A) (24)

2.2.1 Special values of Z(σ | t) (continued)
The remaining, transcendental (T), values Z(m | t) (m = 1, 2, . . .) stem from a variant
of (23) [7, § 1.10],

Ξ(x) =
∏

Im ρ>0

[

1− x(1− x)

ρ(1− ρ)

]

⇒ d

dw
log Ξ(1

2
+ (t2 + w)1/2) ≡

∞
∑

m=1

Z(m | t) (−w)m−1;

(25)
only the derivative ∂σ Z(σ | t)|σ=0 is harder to obtain (see [27, § 4][31, § 8.4]), and that
completes Table 6.

The change of variables t + y = (t2 + w)1/2 in the generating function (23) (at fixed
t, say t ≥ 0) also has to yield (25), hence the Z(m | t) (m = 1, 2, . . .) must relate to the

Z (n | t) (1 ≤ n ≤ m). To get a fully explicit connection, our shortcut (new) is to use the
residue calculus twice, inside small positive contours encircling y = 0, resp. w = 0 :

(−1)n−1

2πi

∮

d log Ξ(1
2
+ t+ y)

yn
=

{

Z (n | t) for n = 1, 2, . . . ,
0 for n ∈ Z otherwise;

(26)
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Z(m | t) =
(−1)m−1

2πi

∮

d log Ξ(1
2
+ (t2 + w)1/2)

wm
=

(−1)m−1

2πi

∮

d log Ξ(1
2
+ t+ y)

(2ty + y2)m

=
(−1)m−1

2πi

∮ ∞
∑

ñ=−m

(−1)m+ñ

(

2m+ñ−1
m− 1

)

(2t)−2m−ñyñ d log Ξ(1
2
+t+y) (t 6= 0)

≡
m
∑

n=1

(

2m−n−1
m− 1

)

(2t)−2m+n
Z (n | t) for m = 1, 2, . . . , and t 6= 0 (27)

by (26) (vs (28) below for t = 0); e.g., the first of the identities (27) is Z(1 | t) ≡ Z (1 | t)
2t

.

σ Z(σ | t) =
∞
∑

k=1

(τk
2 + t2)−σ

−m < 0 (t2 − 1

4
)m − 2−2m−3

m
∑

j=0

(m
j

)

(−1)j E2j (2t)
2(m−j)

0 7/8 R

0
(σ-derivative) ∂σ Z(0 | t) = 1

4
log 8π − log Ξ(1

2
+ t) T

+m ≥ 1
(−1)m−1

(m− 1)!

dm

d(t2)m
(log Ξ)(1

2
+ t)

Table 6: The special values for the superzeta function of the 2nd kind Z(σ | t), Rational
Transcendental

at all integer σ = ∓m. (En : Euler numbers; Ξ(·) : the completed Riemann zeta function (13).)

All in all and notwithstanding its lack of a tractable functional relation F, the superzeta
function of the 2nd kind matches its partner of the 1st kind (or the Hurwitz zeta function)
for its stock of explicit fixed-σ properties.

Next, we exemplify those formulae at the special parameter values t = 0 and 1
2
.

For Z0(σ) = Z(σ | t = 0) (the confluent case), Table 4 can be reused since (19) entails

Z0(m) ≡ 1
2
(−1)m Z0(2m) (m ∈ Z),

d

dσ
Z0 (0) =

d

ds
Z0 (0). (28)

Whereas for Z∗(σ) = Z(σ | t = 1
2
), Table 6 plus (27) specialize to:

σ Z∗(σ) =
∞
∑

k=1

(τk
2 + 1

4
)−σ [t = 1

2
]

−m < 0 −2−2m−3
m
∑

j=0

(m
j

)

(−1)j E2j

0 7/8 R

0
(σ-derivative) Z ′

∗(0) =
1
4
log 8π T

+m ≥ 1
m
∑

n=1

(

2m−n−1
m− 1

)

Z∗(n)

Table 7: As Table 6, but at t = 1
2 . (En : Euler numbers; values Z∗(n) : see Table 5.)
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2.3 The superzeta function of the 3rd kind Z(s | τ)
Defined by (18) for Re s > 1, Z(s | τ) is less regular than the other two kinds [12, § 3][27,
§ 6.2], nevertheless it reduces to functions of the 1st kind: indeed, the straightforward
identity

Z (s | t) ≡ eiπs/2 Z(s | it) + e−iπs/2
Z(s | −it) (29)

can be inverted, yielding [23, § 8][31, Chap. 9]

Z(s | τ) ≡ 1

2i sin πs
[eiπs/2 Z (s | −iτ)− e−iπs/2

Z (s |+iτ)]. (30)

The singular structure of Z is thus computable just as before; on the other hand, only one

special value remains explicit: the finite part of Z(s | τ) at s = 0, which reads
7

8
+
log 2π

2π
τ .

2.4 Extensions

Those currently include, but should not be limited to, (zeta functions over the) zeros of:

• Dedekind zeta functions (for algebraic number fields) [16][12][11][13][28]

• Dirichlet L-functions (for real primitive Dirichlet characters) [28]

• Selberg zeta functions (for cocompact subgroups of SL(2,R)) - with more work ([31,
App. B] and refs. therein).

In every such extension, Z∗(1) =
∑

ρ 1/ρ is closely related to the associated generalized
Euler constant (= Euler–Kronecker invariant), a major invariant of the zeta function
[11][13].

3 Complex-asymptotic view of Riemann Hypothesis

3.1 The Keiper–Li coefficients λn

The sequence of real numbers

λn =
∑

ρ

[1− (1− 1/ρ)n] (n = 1, 2, . . .), (31)

(in Li’s notation [19], amounting to n times Keiper’s λn [15]), of generating function

log Ξ
(

x =
1

1− z

)

≡
∞
∑

n=1

λn

n
zn, (32)

has served to recast the Riemann Hypothesis (RH) (cf. (15)), as
RH ⇐⇒ λn > 0 for all n (Li’s criterion) [19][2].

Here we review the (large-n) asymptotics of the λn instead [15][20][30][17], and our
resulting asymptotic criterion for RH that involves just the tail of the sequence {λn}
[30][31, Chap. 11].
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3.2 Exponential-asymptotic large-n analysis of λn

The Hadamard product formula in (25) implies

log Ξ
( 1

1− z

)

=

∞
∑

k=1

log
[

1 +
z

(τk2+
1
4
)(1− z)2

]

= −
∞
∑

m=1

Z∗(m)

m

(−z)m
(1− z)2m

(33)

(the Z∗(m) are in Table 7); then, expanding (1 − z)−2m by the generalized binomial
formula, reordering in powers of z and substituting into (32), we get [30][31, § 8.6.2]

λn = −n
n

∑

m=1

(−1)m
m

(

m+ n− 1

2m− 1

)

Z∗(m), n = 1, 2, . . . . (34)

This yields a representation by an integral over the superzeta function Z∗(σ) ≡ Z(σ | 12)
(of the 2nd kind),

λn =
(−1)nn i

π

∮

C

Γ(σ + n)Γ(σ − n)

Γ(2σ + 1)
Z∗(σ) dσ, (35)

as proved by reduction to (34) using the residue calculus, see Fig. 3. Our point is now
that for n → +∞ (and after using the Stirling formula in the numerator), the integral
form (35) is asymptotically computable thanks to the method of steepest descents [8].

0
C

Reσ
1/2 1 2 n−1

Im σ

Figure 3: Contour of integration for (35). ( ××× : poles of the integrand.)

With the integrand in (35) behaving like n2σ−1 for n → +∞, that means to push
the integration path toward decreasing Re σ, up to saddle-points of the integrand where
dominant contributions to the integral will localize. Here, saddle-points σ∗ of two species
compete in the half-plane {Re σ > 1

2
} for dominance (= largest Re σ∗), see Fig. 4 [30]:

C

σRe

Im σ C’

?
0−1 11/2 n

σr

σk’

σk

Figure 4: Integration-path deformation for a large-n evaluation of the integral (35). • : typical
saddle-points (none on scale); σk(n) comes from a Riemann zero 1

2 +iτk on the critical line (and
is irrelevant, beyond reach), σk′(n) comes from a putative (“?”) zero 1

2 + iτk′ off the critical line
(and then, gives a dominant contribution), finally σr(n) is the real saddle-point tending to the
pole σ = 1/2 from above (and gives the dominant contribution if and only if RH holds).
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• using Z∗(σ) =
∑

k(τk
2+ 1

4
)−σ to integrate (35) term by term: then the k-th integrand has

a saddle-point σk(n) ∼ 1
2
n i/τk, which is relevant iff arg τk > 0, as this is the necessary and

sufficient condition for that saddle-point to ultimately reside in the half-plane {Re σ > 1
2
}

(that is, for n & | Im 1/τk|−1);

• the pair of poles σ = +1
2
of Z∗ as in (24) and σ = 1 of Γ(σ − n) together force a real

local minimum in the modulus of the integrand, unconditionally: σr(n) ∼ 1
2
+ 1

logn
, this

is another saddle-point, and the dominant one iff all arg τk ≡ 0 (i.e., RH true).

Thus, the competition between both types of saddle-point contributions to (35) results
in this asymptotic criterion for RH [30]: as n→ +∞,

- if RH is false, λn has an exponentially growing oscillatory behavior:

λn ∼ −
∑

{arg τk>0}

(τk + i/2

τk − i/2

)n

+ c. c. (mod o(eεn) ∀ε > 0) (36)

- if RH is true, λn has a tempered growth to +∞ :

λn ∼ 1
2
n (logn− 1 + γ − log 2π) (mod o(n)). (37)

However, if a numerical crossover from the latter (RH) to the former (non-RH) be-
havior is sought as a signal of a violation of RH, that has to await a huge value n ≈ 1018

at least, corresponding to the present height up to which Re ρ = 1
2
has been verified [17].

3.3 Extensions

For zeros of a more general zeta function as in Sect. 2.4, and such that

Z∗(
1
2
+ ε) = R−2 ε

−2 +R−1 ε
−1 +O(1)ε→0 (with R−2 > 0), (38)

(generalizing (24) from the case of the Riemann zeros), then the Generalized Riemann
Hypothesis is equivalent to

λn ∼ (−1)n 2n Resσ=1/2

[

Γ(σ + n)Γ(σ − n)

Γ(2σ + 1)
Z∗(σ)

]

(39)

∼ 2πn [2R−2(log n− 1 + γ) +R−1] (mod o(n)) (40)

for its corresponding Keiper–Li sequence {λn} as n → ∞ [17]; the constants R−2, R−1

are also those governing the asymptotic counting function of the zeros’ ordinates, as

N(T ) ∼ 2T [2R−2(log T − 1) +R−1] (T → +∞). (41)

3.4 (New) Shifted asymptotic and Li criteria for RH

(returning to the Riemann-zeta case alone, for the sake of definiteness).
The Keiper–Li (KL) generating series (32) combines two features: a high sensitivity

to the Riemann Hypothesis through its radius of convergence (|z| = 1 if and only if RH
holds vs strictly less otherwise), obtained by the use of a conformal mapping z 7→ x that
sends the disk {|z| < 1} to the half-plane {Re x > 1

2
}; and an expansion basepoint (the

12



image of z = 0) set to x = 1 (hence the parameter t ≡ x− 1
2
is 1

2
in the superzeta function

entering § 3.2: Z∗(σ)
def
= Z(σ | 12)). The two features always appeared coupled, as the

conformal mapping was invariably prescribed to be x = 1/(1− z), as in (32).
Yet, we claim that imposing only x = 1 as basepoint is an unnecessary limitation. To

wit, we present an alternative KL-like framework based at the other remarkable point
x = 1

2
(the center of symmetry), i.e., t = 0. In the last minute, we saw that the idea of a

general basepoint had been developed elsewhere, only recently and in a different manner
that just excludes our preferred symmetrical point x = 1

2
[26].

For expanding Ξ(x) about x = 1
2
, due to (12) the good variable is w = t2, in which

the above half-plane {Re x > 1
2
} maps to the cut w-plane C \ R−; this cut can then be

truncated to any half-line (−∞,−w′] with 0 < w′ < infρ{| Im ρ|2} (that only deletes a
zero-free segment), and here we choose w′ = 1

4
just to make the formulae simpler and

closest to the KL case. There now remains to map to the cut w-plane C \ (−∞,−1
4
] from

a unit disk {|y| < 1}, which is achieved by w = y/(1 − y)2. Under the resulting y 7→ x
correspondence, we will need the preimages of a Riemann zero ρ = 1

2
+ iτk, as

yk,± = 1− 1

2τk2
± i

τk

(

1− 1

4τk2

)1/2

≡ e±iθk with θk
def
= 2 arcsin

1

2τk
. (42)

Now we start from the generating function (25) at t = 0 and integrate in w, to get

log Ξ0(
1
2
+ w1/2) ≡ −

∞
∑

m=1

Z0(m)
m (−w)m where Ξ0(x)

def
= Ξ(x)/Ξ(1

2
), amounting to

∞
∑

n=1

λ0
n

n
yn

def
= log Ξ0

(1

2
+

y1/2

1− y

)

≡ −
∞
∑

m=1

Z0(m)

m

(−y)m
(1− y)2m

; (43)

thus, we created a KL-like sequence of “central” coefficients λ0
n. Comparing to (32)–

(33), we see that the relationships (34) persist with the λn substituted by the λ0
n and the

superzeta function Z∗ by Z0. (Equivalently, by (28) and Table 3 at t = 0,

λ0
n = −n

2

n
∑

m=1

(

m+n−1
2m− 1

)

1

m
Z0(2m) = n

n
∑

m=1

(

m+n−1
2m− 1

)

1

(2m)!
(log Ξ)(2m)(1

2
), (44)

and the last line in Table 4 displays Z0(2m) in most reduced form.) E.g.,

λ0
1 = Z0(1) =

1
2
(log Ξ)′′(1

2
) ≈ 0.0231050, (45)

λ0
2 = 4Z0(1)− Z0(2) = 2(log Ξ)′′(1

2
) + 1

12
(log Ξ)(4)(1

2
) ≈ 0.0923828, . . . (46)

Being based upon (34), our asymptotic analysis of {λn} sketched in § 3.2 [30][31,
Chap. 11] then carries over likewise to {λ0

n}, and it now yields this shifted asymptotic
criterion for RH:

- if RH is false, λ0
n ∼ −

∑

{arg τk>0}

y −n
k,− + c. c., (47)

an exponentially growing oscillatory behavior (like (36)) since |y−1
k,−| > 1 if arg τk > 0;

- if RH is true, λ0
n ∼ 1

2
n (log n− 1 + γ − log 2π), (48)

the latter being unchanged from (37), as according to § 3.3 it arises from the principal
part (24) of Z(σ | t) at σ = 1

2
, and (24) is t-independent.
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Finally, Li’s criterion [19] shifts as well: by the Hadamard product formula in (25),

log Ξ0

(1

2
+

y1/2

1− y

)

=
∑

k

log
[

1 +
y

τk2(1− y)2

]

(49)

=
∑

k

(− log(1− y)2 + log [(1− y/yk,−)(1− y/yk,+)]) (50)

=
∞
∑

n=1

[

∑

k

(2− y −n
k,− − y −n

k,+ )
]yn

n
(51)

=⇒ λ0
n ≡

∑

k

(2− y −n
k,− − y −n

k,+ ) by identification with (43). (52)

Now if RH is true, then for all k, τk is purely real and so is θk in (42), in which case
yk,± = e±iθk makes (52) manifestly positive for all n. Whereas if RH is false, then as
n → +∞, the growing oscillatory behavior (47) will force some λ0

n into the negative
range. So, the Li criterion transfers to this “central” sequence:

RH ⇐⇒ λ0
n > 0 for all n. (53)

Remark: Other expressions for the λ0
n, derivable from (43) by using the residue

calculus both ways (similarly to the proof of (27)), are

λ0
n ≡

n

2πi

∮

log Ξ0

(1

2
+

y1/2

1− y

) dy

yn+1
(n = 1, 2, . . .) (54)

≡ n

4πi

∮

log Ξ0(
1
2
+ t) (t2 + 1

4
)−1/2

[ t2

y(t)

]n dt

t2n+1

(upon the change of variable t ≡ y1/2

1− y
implying dy(t) = (t2 + 1

4
)−1/2y

dt

t
)

≡ 1

4 [2(n− 1)]!

( d

dt

)2n[

(t2 + 1
4
)−1/2(1− y(t))−2n log Ξ0(

1
2
+ t)

]

t=0
. (55)
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