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ABSTRACT

Recent Herschel observations have confirmed that filaments are ubiquitous in molecular clouds and suggest that irre-
spectively of the column density, there is a characteristic width of about 0.1 pc whose physical origin remains unclear.
We develop an analytical model that can be applied to self-gravitating accreting filaments. It is based on one hand on
the virial equilibrium of the central part of the filament and on the other hand on energy balance between the turbulence
driven by accretion onto the filament and dissipation. We consider two dissipation mechanisms the turbulent cascade
and the ion-neutral friction. Our model predicts that the width of the filament inner part is almost independent of the
column density and leads to values comparable to what is inferred observationally if dissipation is due to ion-neutral
friction. On the contrary turbulent dissipation leads to a structure that is bigger and depends significantly on the
column density. Our model provides a reasonable physical explanation which could explain the observed filament width
when they are self-gravitating. It predicts the correct order or magnitude though hampered by some uncertainties.
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1. Introduction

With the recent observations performed with Herschel
(e.g. André et al. 2010, Molinari et al. 2010), it has become
clearer that filaments are ubiquitous in molecular clouds
and that they may play a central role in star formation.
While the exact influence filaments may have on the star
formation process remains to be clarified, it is important to
understand the properties of these filaments since they are a
direct consequence of the physics at play within molecular
clouds. In this respect, a particularly intriguing observa-
tional result has been found by Arzoumanian et al. (2011)
who showed that the central widths of the interstellar fila-
ments have a narrow distribution that is peaked around a
value of 0.1 pc. Moreover this characteristic width does not
depend on the column density within the filament. Since it
is believed that turbulence is important in molecular clouds
and largely triggers their evolution, this result is at first
sight counterintuitive since turbulence is responsible in a
great variety of contexts for producing scale-free powerlaw
distributions. Indeed, this suggests that there is probably a
physical process involved in setting this distribution which
unlike turbulence presents a characteristic scale.

A recent proposal made by Fischera & Martins (2012,
see also Heitsch 2013, Gomez & Vázquez-Semadeni 2013) is
that it may result from self-gravitating equilibrium. Indeed
by solving hydrostatic equilibrium in an isothermal fila-
ment, Fischera & Martins (2012) show that the filament
width does not vary significantly and remains at a scale
close to the observed 0.1 pc. While this explanation is ap-
pealing, a few questions arise. First it assumes the existence
of some confining pressure outside the filament whose na-

ture remain to be specified. Second it fails to explain why
the gravitationally unstable filaments which are collapsing
also present this typical width.

In this paper, we explore the idea that the typical width
of a self-gravitating filament is due to the combination
of accretion-driven turbulence onto the filament, as sug-
gested by the recent velocity dispersion measurements of
Arzoumanian et al. (2013), and to the dissipation of this
turbulence by ion-neutral friction which indeed has a char-
acteristic scale. We stress that although ambipolar diffu-
sion is considered here, the underlying idea is totally dif-
ferent from the classical magnetically regulated star for-
mation (e.g. Shu et al. 1987) in which the magnetic field
is envisaged as the dominant support and ambipolar dif-
fusion as the process through which the support can be
circumvented. In the present picture clouds are typically
supercritical. Note also that we do not address the reason
why filaments form. As discussed in Hennebelle (2013) this
is may be due to the shear of the turbulence with possibly
further amplification of the anisotropy by gravity for the
most massive of them.

The plan of the paper is as follows. In the second section,
we present the various assumptions and physical processes
used in our simple model. The third section describes the
results and the fourth section concludes the paper.

2. Model and Assumptions

2.1. Characteristics of the filament

Herschel observations (eg. Palmeirim et al. 2013) suggest
that the typical average structure of self-gravitating fil-
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aments is constituted by i) a central cylinder of nearly
uniform density ρf and radius rf , ii) an envelope whose
density profile is ∝ r−2. This radial structure is reminis-
cent of many self-gravitating objects such as Bonnor-Ebert
spheres. More precisely, filaments that are collapsing in a
self-similar manner are expected to present an envelope
with a profile ∝ r−2/(2−γ) where γ is the adiabatic index
of the gas (Kawachi & Hanawa 1998). As it is likely that
self-gravitating filaments are indeed collapsing in a way not
too different from, although not identical to, a self-similar
collapse, assuming an r−2 profile is thus a well motivated
assumption, both from observations and theory. One im-
portant difference with such self-similar solutions however
is that the central density plateau does not seem to be
shrinking with time.

If L is the length of the filament, the mass of the central
part is obviously Mf = πρfr

2
fL = mfL where Mf is the

mass and mf the mass per unit length. The total mass of
the central part plus the surrounding envelope is

Mtot = Mf [1 + 2 ln(rext/rf )] ≡ Mfµ(rext/rf ), (1)

where µ(x) = 1 + 2 ln(x). It has been assumed that the
density outside the filament is ∝ 1/r2 and that the filament
stops at some radius rext. Note that below we assume rext ≃
L/2.

2.2. Gravitational potential within the filament

The gravitational potential, in the radial direction is ob-
tained by the Gauss theorem

r < rf , φ(r) = πGρf r
2 = Gmf . (2)

r > rf , φ(r) = Gmf

(

1 + 2 log(r/rf ) + 2(log(r/rf ))
2
)

,

≡ Gmf (1 + G(r/rf )).

where G(x) = 2 ln(x) + 2(ln(x))2.

2.3. Magnetic field

As the ion-neutral friction dissipation depends on the mag-
netic field, it is necessary to know its dependence.

We proceed in two steps. First, we discuss the expected
value of the magnetic field in the parent clump, Bc. Second,
we infer the value of the magnetic field in the filament Bf

from the value of Bc.

2.3.1. Magnetic field in the parent clump

The magnetic field in the clump is assumed to be propor-
tional to the square root of the density Bc = B0

√

ρc/ρ0
as indeed observed (e.g. Crutcher 1999). Typical values are
B0 ≃ 25µG and n0 ≃ 103 cm−3 where n0 = ρ0/mp. In the
following we will use the vA,0 = B0/

√
4πρ0 ≃ 1 km s−1 as

a fiducial value.
Note that the magnetic field dependence is still debated

and there are alternative choices. First, as suggested by
Basu (2000), the magnetic field could indeed scale as σ

√
ρ,

where σ is the velocity dispersion, rather than just as
√
ρ.

Second Crutcher et al. (2010) now favor B ∝ ρ2/3. These
relations do not represent large variations and would there-
fore not affect our results very significantly.

2.3.2. Magnetic field in the filament

To link the magnetic field in the filament to the magnetic
field in the parent clump, we proceed as follows. First we
assume that the magnetic field is perpendicular to the fila-
ment. This configuration is well supported by observations
in massive filaments as Taurus (Heyer et al. 2008, Palmeirin
et al. 2013) or DR21 (e.g. Kirby 2009), and is also natu-
ral on physical grounds as the gas is expected to accumu-
late preferentially along the field lines. This implies that at
least a fraction of the gas accreted by the filament, is not
impeded by the magnetic Lorentz force. There may also
be gas accreted perpendicularly to the field lines, which is
therefore likely slowed down by magnetic pressure. However
if the field is strong, then most of the material is presum-
ably channeled along the field lines while if the field is weak
it also has a weak influence.

Second, we assume flux freezing which at these scales is
a reasonable assumption. This implies that the magnetic
field in the filament is simply the magnetic field in the
clump compressed along the direction perpendicular to the
field and the filament axis. Thus Bf ≃ Bc × ηL/rf since
the matter that is inside the radius rf comes from a dis-
tance comparable to the clump’s size, ηL, where η typically
varies with time between 0 and 1/2. A similar reasoning
can be applied to get a relation between ρc and ρf since
Mf ∝ ρfr

2
fL ≃ ρcη

2L3. We thus obtain ρf = ρc(ηL/rf )
2.

Combining the expression for Bc obtained above with the

latter expression, we get Bf = B0

√

ρf

ρ0
that is to say

the magnetic field in the filament is also expected to be
nearly proportional to

√
ρf implying that the Alfvén veloc-

ity should remain nearly constant.
This relation is valid as long as flux freezing can be

assumed. While this is a reasonable assumption in the col-
lapsing envelope, which is not magnetically supported, it
is not the case in the central part, which is presumably
close to equilibrium. Indeed, the typical ambipolar diffu-
sion timescale is given below by Eq. (13). For densities on
the order of 104−7 cm−3, the field is diffused in about 0.1-1
Myr, which is shorter than or comparable to, the accretion
time of the filaments. Moreover, as emphasized by Santos-
Lima et al. (2012), turbulence also tends to diffuse out the
field. However since self-gravitating filaments are likely ac-
creting, the magnetic flux cannot leak out far away since it
is confined by the infalling gas. Therefore, while the mean
magnetic intensity within the central part of such filaments

is probably on the order of Bf = B0

√

ρf

ρ0
, it is likely that

the magnetic field gradient is much reduced with respect to
the ideal MHD case.

2.4. Virial equilibrium

The virial theorem is applied to the filament inner part of
radius rf . The expression for a filament is (e.g. Fiege &
Pudritz 2000)

2

∫

PdV + 2Ecyl
kin = Wgrav + 2PextV. (3)

where Wgrav is the gravitational term, P and Pext are the

internal and external pressure and V the volume. Ecyl
kin =

0.5Mf(2σ
2
1D) is the kinetic energy in the direction perpen-

dicular to the filament axis and σ1D is the non-thermal
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one dimensional velocity dispersion. This expression is how-
ever not strictly valid since our model filament is accret-
ing. Indeed further terms should be taken into account (see
Goldbaum et al. 2011 and Hennebelle 2012) which corre-
sponds to the surface terms that do not cancel as it is
usually the case. When the surface terms are taken into
account, the virial expression becomes

1

2
Ṁ2

dr2f
dM

+ 2

∫

PdV + 2Ecyl
kin = Wgrav + 2(Pext + Pram)V.(4)

At this stage we do not consider the influence that mag-
netic field may have on the equilibrium because it is not
expected to change our conclusions qualitatively. In par-
ticular as discussed in the previous section, the magnetic
gradient within the central part of the filament is probably
smoothed due to ambipolar diffusion. Another complication
arises because of the anisotropy introduced by the magnetic
field being perpendicular to the filament axis, which would
require a bi-dimensional analysis.

Using the different expressions obtained above we get

1

2

ṁ2
f

mf

dr2f
dmf

+ 2c2s + 2σ2
1D = Gmf + 2

Pram

ρf
, (5)

where Pram is the ram pressure exerted by the incoming
flow and where the pressure of the external medium has
not been taken into account. The ram pressure will be es-
timated below. For the sake of simplicity, we will also use
the simplified form of the virial equilibrium

2σ2
1D ≃ Gmf . (6)

2.5. Mechanical energy balance

The mechanical energy balance within the cylinder of radius
rf leads to

Mf
σ2
3D(rf )

2τdiss
≃ ǫeffṀ (φ(rext)− φ(rf )) . (7)

Obviously the left hand-side is the dissipation which can
be due either to the turbulence cascade or to the friction
between ions and neutrals as described below. Note that
it is assumed that the turbulence is isotropic which is why
σ3D is used. The right hand-side describes the source of
turbulence which is due to the accretion onto the central
part of the filament (Klessen & Hennebelle 2010). The effi-
ciency, ǫeff , is not well known. Klessen & Hennebelle (2010)
proposed that it can be related to the density contrast be-
tween the density of the incoming flow and the density of
the actual gas in which energy is injected. In the present
case, the accretion shock may not be clearly defined be-
cause of the turbulent nature of the flow. In any case, the
present calculation remains at this stage largely indicative.
Below the value ǫeff = 0.5 is used because it leads to good
agreement with the data. We stress that since our model re-
mains indicative, ǫeff could also take into account various
other uncertainties. For the sake of simplicity we have also
ignored terms associated to the volume variation and the
external pressure (e.g. Goldbaum et al. 2011) as they do not
modify the results substantially but makes the mechanical
energy balance much more complex.

2.6. Accretion rate

The accretion rate remains uncertain since it is difficult to
infer observationally (see however Palmeirim et al. 2013 for
an estimate in the case of the Taurus B211/3 filament).
Here, we consider two different possibilities. This will allow
us to test the robustness of our conclusion.

2.6.1. Gravitational accretion rate

To estimate the accretion rate, we assume that it can be
computed from the density within the parent clump and
the infall velocity. Assuming that the parent clump has a
cylindrical radius of about L/2 and a length equal to L, we

get Ṁ = πL2ρcVinf .
The infall velocity is due to the gravitational field of

the filament which is given by Eq. (2). We assume that
the material which enters the clump at radius r ≃ L/2
has no initial velocity and we estimate the infall velocity at
r = L/4 leading for Vinf to

Vinf ≃
√

2Gmf

(

G
(

L

2rf

)

− G
(

L

4rf

))1/2

. (8)

Note that this is again a rough estimate but since the grav-
itational potential varies logarithmically with r, this esti-
mate does not depend severely on these assumptions.

The density within the clump is also needed to get
the accretion rate and we assume that ρc = mpnc follows
the Larson relations, (Larson 1981, Falgarone et al. 2009,
Hennebelle & Falgarone 2012) mp being the mass per par-
ticle

nc = n0

(

Rc

1pc

)−ηd

, σ3D = σ0

(

Rc

1pc

)η

, (9)

where nc is the clump gas density and σ3D the internal
rms velocity. The exact values of the various coefficients
remain somewhat uncertain. Originally, Larson (1981) es-
timated ηd ≃ 1.1 and η ≃ 0.38, but more recent estimates
(Falgarone et al. 2009) using larger sets of data suggest that
ηd ≃ 0.7 and η ≃ 0.45− 0.5. For the sake of simplicity, we
use ηd = 1 and take n0 = 1000 cm−3.

Ṁ ≃ πL2−ηdρ0(1pc)
ηd
√

2Gmf

(

G
(

L

2rf

)

− G
(

L

4rf

))1/2

(10)

The typical accretion timescale is simply given by
τaccret = M/Ṁ . With Eq.(10), it is easy to show that
τaccret ∝

√
ρf .

2.6.2. Turbulent accretion rate

As it is not clear what controls the accretion rates onto
interstellar filaments, we also consider a turbulent accretion
rate constructed from the Larson relations as described in
Hennebelle (2012).

Ṁ ≃ Mtot

τc
≃ Mtot

2Rc/(σ3D/
√
3)

≃ Ṁ0

(

Mtot

M0

)ηacc

, (11)

where ηacc ≃ 0.7−0.8 depending on the exact choice of the
parameter η and ηd that is retained. We will adopt ηacc ≃
0.75 as a fiducial value. We typically have Ṁ0 = 10−3 M⊙
yr−1 for M0 = 104 M⊙.
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2.6.3. Ram pressure

The ram pressure which appears in Eq. (5) can be esti-
mated as follows. It is equal to the product of Vinf (rf )

2

and ρin = Ṁ/(2πrfLVinf (rf )), where ρin is the density
that is obtained assuming a constant accretion rate. Note
that ρin < ρf which implies that an accretion shock is con-
necting the infalling envelope and the central part of the
filament. Since the above expression is assuming that the
flow is isotropic and since we are assuming the structure of
the flow rather than inferring an exact solution, this value
remains hampered by large uncertainties and is certainly
valid within a factor of a few. We have tested the influence
of vaying the ram pressure by a factor of a few and found
that it has a limited influence on the solution at low density
while it has no influence at high density.

2.7. Dissipation timescales

The dissipation timescale to be used in Eq. (7) is a crucial
issue. Here we emphasize two dissipation mechanisms, the
turbulent cascade time and the ambipolar diffusion time.
Quantitative estimates of these two timescales have been
recently estimated by Li et al. (2012) in turbulent two fluid
MHD simulations. They found that under typical molecular
cloud conditions both contribute but the latter dominates
over the former.

2.7.1. Dissipation by turbulent cascade

First, we consider the standard turbulent cascade timescale,
which is the crossing time of the system

τdiss,c ≃
2rf
σ1D

(12)

The energy is cascading to smaller and smaller scales until
the size of the eddies reaches the viscous scale.

2.7.2. Dissipation by ion-neutral friction

Second, we investigate the dissipation induced by the ion-
neutral friction. Its expression has been first inferred by
Kulsrud & Pearce (1969, see also Lequeux 2005) and is
given by

τdiss,amb =
2γdampρi
v2A(2π/λ)

2
=

2νni
v2A(2π/λ)

2
, (13)

where vA is the Alfvén speed, λ is the wavelength assumed
to be equal to rf and νni is the ion-neutral coupling coeffi-
cient. The reason for choosing λ ≃ rf is that if most of the
energy is dissipated at a scale much smaller than rf , then
the relevant time would be the crossing or cascading time
which would be necessary for the energy to cascade from
rf . In this case, the timescale would be thus similar to the
turbulent cascade timescale discussed above. The coefficient
γdamp = 3.5×1013 cm3 g−1 s−1 is the damping rate. The ion
density, ρi is assumed to be ρi = C

√
ρn where C = 3×10−16

cm−3/2 g1/2. For wavelengths, λ < λc = πvA/(γdampρi),
the critical wavelength, the Alfvén waves do not even prop-
agate except at very small wavelengths when the ions and
the neutrals are entirely decoupled. With n ≃ 104 cm−3

and vA ≃ 1 km s−1, λc ≃ 5× 10−2 pc.

Note that the expression stated by Eq. (13) is strictly
valid only for Alfvén waves. The corresponding expression
for the compressible modes has been inferred by Ferrière et
al. (1988). They are slightly more complex as it entails the
angle between the field and the direction of propagation,
but the order of magnitude is not different.

3. Results

To infer the radius of the filament as a function of the
central density, ρf , we have to combine Eqs. (2), (6) and
(7) together with the accretion rate given by Eq. (10) or
Eq. (11) respectively.

With the gravitational accretion rate (Eq. 10), we ob-
tain

ρ
1/2
f rf

τdiss
=

4

3

√
2πǫeffρ0(1pc)

√
GG1(L/rf) (14)

where G1(u) = (G(u/2)− G(u/4))1/2 G(u/2).
With the turbulent accretion rate (Eq. 11), we get the

relation

(πρfr
3
f )

1−ηacc

τdiss
=

4ǫeffṀ0G2(L/rf)

3Mηacc

0 (L/rf )1−ηacc
(15)

where G2(u) = µ(u/2)ηaccG(u/2).

3.1. Dynamical equilibrium with turbulent dissipation

Combining Eq. (12) with Eq. (6), we get τdiss = 2
√
2√

πGρf

which in turn together with Eq. (15) leads to the expression

rf = ρ
ηacc−3/2
3(1−ηacc)

f

(

8
√
2

3π3/2−ηacc

√
G

ǫeffṀ0G2(L/rf )

Mηacc

0 (L/rf )1−ηacc

)
1

3(1−ηacc)

(16)

For the canonical value ηacc = 0.75, we find that
rf ∝ 1/ρf . That is to say, the typical filament radius de-
creases with the central density as displayed in Fig. 1 (see
line labeled turbulence). Note that the value ǫeff = 0.5 has
been used in this calculation. For larger values of ηacc we
still get significant variations of rf with ρf . For ηacc = 1 we
would even predict that the central density is independent
of rf . This is only for ηacc ≃ 3/2 that a filament radius
independent of the central density is obtained. The gravi-
tational accretion rate expression leads to a very similar ex-
pression with rf ∝ 1/ρf and the corresponding expression
is not given here for conciseness as the obvious conclusion is
that this behaviour is incompatible with the filament width
being nearly constant.

3.2. Dynamical equilibirum with ion-neutral friction

Combining Eq. (13) and Eq. (6), with Eq. (14), we infer

rf =
3π3/2v2a,0

2
√
2ǫeffγdampCρ0(1pc)

√
GG1(L/rf )

. (17)

where we see that rf does not depend on ρf . That is to say
the width of the filament does not change with its column
density as suggested from the results of Arzoumanian et
al. (2011). To test the robustness of this result, it is worth
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(p
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turbulence
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Fig. 1. Filament radius as a function of filament density for
four models. The curve labeled “turbulence” shows result
for a turbulent crossing time (Eq. 16), the three curves la-
beled “friction” show results when ion-neutral friction time
is assumed to be the energy dissipation time (Eqs. 17- 18).
Frictions A and C used a gravitational accretion rate and
Friction B a turbulent one.

investigating what the turbulent accretion rate stated by
Eq. (11) is predicting. The corresponding expression is

rf = ρ
ηacc−1/2
1−3ηacc

f

(

2γdampC

3π3−ηaccv2a,0

ǫeffṀ0G2(L/rf )

Mηacc

0 (L/rf )1−ηacc

)
1

1−3ηacc

(18)

As can be seen for an accretion rate exponent ηacc of the
order of 0.75, we find that rf ∝ ρ−0.2

f , which implies a very
shallow dependence of the filament radius rf . For a value

of ηacc = 1, we have rf ∝ ρ
−1/4
f which is still a shallow

dependence as displayed by Fig. 1 where the two expres-
sions stated by Eqs. (17) and (18) are displayed (labeled as
friction A and B respectively).

3.3. A more accurate model

Finally, we investigate the solutions when the thermal
support and ram pressure are considered as stated in
Eq. (5). The corresponding curve is labeled as friction C.
Equation (5) is an ordinary differential equation in rf ,
which can be solved using a standard Runge-Kutta method.
Since it is necessary to specify a radius and a density to
start the integration, we have explored various cases. We
found that for a large range of radii (rstart ≃ 0.01 − 0.1
pc) at low density, the solutions quickly converge towards
the one that is presented here and for which the radius at
n = 103 cm−3 is equal to about 0.05 pc.

As can be seen more variability is introduced, particu-
larly at low density where we see that the filament radius
decreases at low density. In order to better understand the
physical meaning of this solution we plot in Fig. 2, the val-
ues of the various virial terms as a function of density.

While the equilibrium between gravity and turbulent
support at high density is robust and independent of the
choice of the boundary condition, rstart, the behaviour at
low density is less robust and varies with it.

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

log(nf ) (cm
−3 )

6

7

8

9

10

11

12

lo
g
(v

ir
ia
l
te
rm

s)

kinetic

gravitation

ram pressure

thermal

Fig. 2. Amplitude of the various terms which appear in
the virial equilibrium (Eq. (5)). While at high density the
filament equilibrium is due to the balance between gravity
and velocity dispersion, it is due to the balance between
ram and thermal pressure at low density.

It is important to stress a few points. First the ram
pressure term which causes most of the variation remains
uncertain since our model is not fully self-consistent in the
sense that the density and velocity fields, although reason-
able, are not proper solutions of the problem. Second in
the low density regime, the filament is not gravitationally
accreting and it is likely that the validity of the model is
questionable.

3.4. Comparison of the two dissipation timescales

It is enlighting to compare the values of the dissipation
timescales as a function of density for the filament radius
corresponding to model B. As expected the turbulent dis-
sipation timescale is much longer than the ion-neutral fric-
tion timescale for densities lower than 106 cm−3. It is also
increasing with density while the turbulent one is decreas-
ing with density. This behaviour is the very reason which
explains the nearly constant width of the filaments in our
model because as can be seen in Fig. 3, the accretion time
present the same dependence.

To summarize, assuming that the relevant timescale for
energy dissipation within the central part of the filament is
the turbulent crossing time, we find under reasonable as-
sumptions for the accretion rate that the width changes sig-
nificantly with density. This is because τdiss,c ∝ 1/

√
ρf . On

the other hand, when we assume that the relevant timescale
for energy dissipation is the ion-neutral friction time, we
find that the width varies much less with the filament den-
sity. This is because, τdiss,amb ∝ ρi ∝ √

ρf ∝ τaccret.
Since the relevant timescale is the shortest one, which cor-
responds to the smallest value of rf , one expects ion-neutral
friction to be the dominant mechanism for energy dissipa-
tion up to densities equal to a few 106 cm−3 (see Fig. 1).

3.5. Comparison with observations

Finally, we confront the present models with the Herschel
observational result of Arzoumanian et al. (2011). Figure 4
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Fig. 3. Comparison between the turbulent dissipation and
ion-neutral friction times as a function of density. Also
shown is the accretion timescale. It scales exactly as the
ion-neutral friction times.

Fig. 4. Comparison between the models and the filaments
width distribution (adapted from Arzoumanian et al. 2011).

shows filament width as a function of filament column den-
sity. As can be seen the model based on ion-neutral friction
and gravitational accretion (friction B and C) work very
well. Note that the model based on turbulent dissipation
predicts a constant column density and a variable radius.

4. Conclusion

We have presented a simple model to describe the evolution
of accreting self-gravitating filaments within molecular
clouds. It assumes virial equilibrium between gravity
and turbulence and mechanical energy balance between
accretion which drives turbulence in the filament and the
dissipation of this energy. We show that while dissipation
based on turbulent cascade fails to reproduce the narrow
range of radius inferred from Herschel observations,
dissipation based on ion-neutral friction leads to a filament
width that depends only weakly on the filament density
and is very close to the ≃0.1 pc value although our ana-
lytical approach is hampered by significant uncertainties.

We conclude that the combination of accretion-driven tur-
bulence and ion-neutral friction is a promising mechanism
to explain the structure of self-gravitating filaments and
deserves further investigation.
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