A. Aviram and M. A. Ratner, Chem. Phys. Lett, vol.29, p.277, 1974.

F. L. , Carter 2nd Intl Symp. Molecular Electronic Devices (M. Dekker, p.149, 1982.

A. Aviram, C. Joachim, and M. Pomerantz, Chem. Phys. Lett, vol.146, p.490, 1988.

G. Lambin, M. H. Delvaux, A. Calderone, R. Lazzaroni, J. L. Brédas et al.,

P. Rabe, Mol. Cryst. Liq. Cryst, vol.235, p.75, 1993.

D. M. Cyr, B. Venkataraman, G. W. Flynn, A. Black, and G. M. Whitesides, J. Phys. Chem, vol.100, p.13747, 1996.

W. Han, E. N. Durantini, T. A. Moore, A. L. Moore, D. Gust et al., J. Phys. Chem. B, vol.101, p.10719, 1997.

H. Nejoh, Nature, vol.353, p.640, 1991.

W. Mizutani, M. Shigeno, K. Kajimura, and M. Ono, Ultramicroscopy, vol.42, 1991.

D. Porath and O. Millo, J. Appl. Phys, vol.81, p.2241, 1997.

B. Michel, G. Travaglini, H. Rohrer, C. Joachim, and M. Amrein, Z. Phys. B, vol.76, p.99, 1989.

X. Lu, K. W. Hipps, X. D. Wang, and U. Marzur, J. Am. Chem. Soc, vol.118, p.7197, 1996.

L. A. Bumm, J. J. Arnold, M. T. Cygan, T. D. Dunbar, T. P. Burgin et al., Science, vol.271, p.1705, 1996.

C. Dekker, S. J. Tans, B. Oberndorff, R. Meyer, and L. C. Venema, Synth. Met, vol.84, p.853, 1997.

R. M. Metzger, B. Chen, U. Höpfner, M. V. Lakshmikantham, D. Vuillaume et al., J. Am. Chem. Soc, vol.119, p.10455, 1997.

S. Datta, W. Tian, S. Hong, R. Reifenberger, J. I. Henderson et al., Phys. Rev. Lett, vol.79, p.2530, 1997.

A. Dhirani, P. Lin, P. Guyot-sionnest, R. W. Zehner, and L. R. Sita, J. Chem. Phys, vol.106, p.5249, 1997.

C. Joachim, J. K. Gimzewski, R. R. Schlitter, and C. Chavy, Phys. Rev. Lett, vol.74, p.2102, 1995.

C. Joachim and J. K. Gimzewski, Europhys. Lett, vol.30, p.409, 1995.

P. Sautet and C. Joachim, Chem. Phys. Lett, vol.185, p.23, 1989.

V. Mujica, M. Kemp, A. Roitberg, and M. Ratner, J. Chem. Phys, vol.104, p.7296, 1996.

V. Rousset, C. Joachim, B. Rousset, and N. Fabre, J. Phys.III, vol.5, p.1985, 1995.

S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley et al., Nature, vol.386, p.474, 1997.

T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi et al., Nature, vol.382, p.54, 1996.

M. A. Reed, Science, vol.278, 1997.

C. J. Muller, B. J. Vleeming, M. A. Reed, J. J. Lambda, R. Hara et al., Tour Nanotechnology, vol.7, p.409, 1996.

J. M. Van-ruitenbeek, A. Alvarez, I. Pineyro, C. Grahmann, P. Joyez et al., Rev. Sci. Instrum, vol.67, p.108, 1995.

. Ulman, Ultrathin organic films, 1991.

J. M. Tour, J. Am. Chem. Soc, vol.117, p.9529, 1995.

C. Lebreton, , vol.6, 1996.

J. G. Simmons, J. Appl. Phys, vol.34, p.1793, 1963.

R. J. Keijsers, O. I. Shklyarevskii, J. G. Hermsen, and H. Van-kempen, Rev. Sci. Instrum, vol.67, p.2863, 1996.

S. Alvarez, For this calculation we used the following 3s, 3p and 3d parameters for the S atoms, Hii = ?20 eV, 1989.

C. Kergueris, J. P. Bourgoin, and S. Palacin, Nanotechnology, vol.10, 1999.

B. Liedberg, Z. Yang, I. Engquist, M. Wirde, U. Gelius et al., J. Phys. Chem. B, vol.101, p.5951, 1997.

H. Sellers, A. Ulman, Y. Shnidman, and J. E. Eilers, J. Am. Chem. Soc, vol.115, p.9389, 1993.

, The right value to use with the T3 molecule is not available in the litterature. A self-consistent approach within the DFT formalism is expected to provide a reliable value, C. Bureau, C. Kergueris, and J. P. Bourgoin

W. Tian, S. Datta, S. Hong, R. Reifenberger, J. I. Henderson et al., J Chem. Phys, vol.109, p.2874, 1998.

, The use of a shift in energy of the molecular levels with regard to the Fermi level of the electrodes is a formal convenient way to account for a more complex reality. Indeed, the adjustment of the molecular levels to the electrodes levels should be accounted for in the density of states of the metal electrodes

C. Joachim and J. F. Vinuesa, Europhys. Lett, vol.33, p.635, 1996.

M. Magoga and C. Joachim, Phys. Rev. B, vol.56, p.4722, 1997.

M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B, vol.31, p.6207, 1985.

, This value is also compatible with experimental ones. Given the experimental conditions we nevertheless think that the formation of T6 is unlikely. An other possibility is to consider T3 conformers. Twisting the central thiophene ring from planar geometry anti-anti to planar geometry syn-syn, G was found to vary in the range 1.5?73.5 nS at midgap. Since the calculated energy differences between the conformers are varying less than 1.02 kCal/mol, Performing the same calculation on T6, the dimer of T3 formed by disulfide coupling, gives G= 3 nS at midgap, vol.46

E. G. Emberly and G. Kirczenow, Phys. Rev. B, vol.58, p.10911, 1998.

S. Datta, Electronic Transport in Mesoscopic Systems, 1995.
DOI : 10.1017/cbo9780511805776

C. Kergueris, J. P. Bourgoin, M. Magoga, C. Joachim, and S. Palacin,

D. Porath, Y. Levi, M. Tarabiah, and O. Millo, Phys. Rev. B, vol.56, p.1, 1997.

C. Ziegler, Conductive polymers: spectroscopy and physical properties, Handbook of organic conductive molecules and polymers, vol.3, 1997.

C. Zhou, M. R. Deshpande, M. A. Reed, L. Jones, I. I. et al., Appl. Phys. Lett, vol.71, p.611, 1997.

, A temperature of 600 K was used in the calculation to account for a possible broadening of the level due to the adsorption or induced by the surrounding

A. Korotkov and Y. Nazarov, Physica B, vol.173, p.217, 1991.

R. Lazzaroni, A. Calderone, J. L. Brédas, and J. P. Rabe, J. Chem. Phys, vol.107, p.99, 1997.

C. Bureau, C. Kergueris, and J. P. Bourgoin,

C. Joachim and J. K. Gimzewski, Chem. Phys

. Lett, , vol.265, p.353, 1997.

D. Weinmann, W. Haisler, and B. Kramer, Ann. Physik, vol.5, p.652, 1996.