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Abstract

We present an event-file format for the dissemination of next-to-leading-order
(NLO) predictions for QCD processes at hadron colliders. The files contain
all information required to compute generic jet-based infrared-safe observ-
ables at fixed order (without showering or hadronization), and to recompute
observables with different factorization and renormalization scales. The files
also make it possible to evaluate cross sections and distributions with differ-
ent parton distribution functions. This in turn makes it possible to estimate
uncertainties in NLO predictions of a wide variety of observables without
recomputing the short-distance matrix elements. The event files allow a user
to choose among a wide range of commonly-used jet algorithms and jet-size
parameters.

We provide event files for a W or Z boson accompanied by up to four
jets, and for pure-jet events with up to four jets. The files are for the Large
Hadron Collider with a center of mass energy of 7 or 8 TeV.
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A C++ library along with a Python interface for handling these files are
also provided and described in this article. The library allows a user to read
the event files and recompute observables transparently for different pdf sets
and factorization and renormalization scales.

Keywords: QCD, vector boson, jets, LHC, Tevatron.

PROGRAM SUMMARY
Manuscript Title:
Authors:
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Journal Reference:
Catalogue identifier:
Licensing provisions:
Programming language: C++ with Python interface
Computer:
Operating system: Linux, MacOS
RAM: varying bytes
Keywords: QCD, NLO, vector boson, jets.
Classification:
External routines/libraries: Root, lhapdf
Nature of problem: NLO QCD predictions for vector boson + jets and jet processes
for generic observables.

Solution method: Event files

1. Introduction

With last year’s discovery of a Higgs-like boson [1, 2] at the Large Hadron
Collider (LHC), the ATLAS and CMS experiments at CERN have rounded
out our knowledge of the particle content of the Standard Model. Direct
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searches for new physics beyond it, and indirect searches via precision mea-
surements of the properties of the Higgs-like boson and of the top quark,
remain as challenges for ongoing research. Both of these avenues beyond the
Standard Model require extensive calculations in QCD to next-to-leading or-
der (NLO), to high jet multiplicity. NLO is the first order in perturbation
theory to provide a quantitatively reliable estimate of backgrounds due to
Standard-Model processes [3, 4].

NLO calculations require the computation of both virtual and real-emission
corrections to processes with high jet multiplicity. The former require the
evaluation of one-loop corrections to the basic tree-level process, and the
latter require the integration of matrix elements with an additional emitted
parton over the phase space for the additional emission. Both parts of the
correction are computationally intensive. In order to obtain sufficiently small
statistical uncertainties, one must typically evaluate the matrix elements at
millions of different kinematic points when performing phase-space integrals
by Monte Carlo sampling techniques.

The end results of the calculations are total cross sections or differen-
tial distributions for various observables. In developing an analysis1, one
may wish to evaluate these quantities with different choices of experimental
cuts. Different cuts may also be required for comparison with different ex-
perimental analyses. The estimation of uncertainties due to variation of the
unphysical renormalization and factorization scales, and due to our imperfect
knowledge of the proton’s parton distribution functions (pdfs), also require
that we we recompute the same differential distributions many times. The
latter alone can require dozens or grosses of evaluations. A naive rerunning
of the entire calculation would force the computationally expensive short-
distance matrix elements to be recomputed a comparable number of times.

The actual evaluation of multiple differential distributions, given a list
of kinematic points and matrix-element weights, is however computationally
relatively cheap. It is therefore very desirable to amortize the expensive task
of matrix-element computation over many evaluations of differential distri-
butions. We can do this by storing each of the phase-space points, along with
the matrix elements and other information, in data files. In order to compress
these sizeable volumes of data, we store them as Root n-tuple files, or sim-
ply ‘n-tuple files’ for short. We produce n-tuple files using the BlackHat

1We use this term in the sense used by experimenters when analyzing data.
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one-loop library [5] in conjuction with SHERPA [6, 7, 8, 9, 10]. In this paper
we describe in more detail an implementation of this strategy for a class of
interesting multi-jet final states at the Large Hadron Collider (LHC). We
document n-tuple files for processes producing a single electroweak vector
boson (W± or Z) in association with 1, 2, 3, or 4 jets, and files for pure-
QCD processes producing 2, 3, or 4 jets. In addition, we supply a C++

library that provides an interface to the files. The n-tuple files also allow
other researchers, and especially experimenters, to perform their own NLO
analyses, using refined cuts, without the computational expense and man-
agement complexity of running high-multiplicity codes. The computations
recorded in the n-tuple files do not include showering or hadronization, and
the events are not a suitable starting point for matched showers with ex-
isting implementations. In contrast to files containing showered events, the
n-tuple files documented here have a relatively small number of parton mo-
menta recorded per event, which keeps file sizes manageable. A reweighting
technique for estimating scale and pdf uncertainties has also been applied
to particle-level event samples that have been generated by merging NLO
calculations with a parton shower [11].

The paper is organized as follows. In section 2, we discuss the organization
of an NLO calculation. In section 3, we present the content of event files.
In section 4 we explain how to compute differential cross sections using the
event files. In section 5, we discuss additional details needed to change scales
or parton distribution functions from those in the original calculation. In
section 6, we present a software library for reading event files. We summarize
in section 7.

2. NLO Calculations

We wish to store and reuse the matrix-element information computed
during an NLO calculation. In order to explain what information we need to
record, we first review the components of an NLO calculation. We further
refine the information needed in section 5.

Let us consider a process that produces n final-state objects (jets or elec-
troweak bosons). At leading order (LO) in QCD, the prediction for associated
observables would be given in terms of a tree-level matrix element for a pro-
cess scattering two colored partons into n final-state partons or electroweak
bosons. Schematically, at this order we can write the differential cross-section
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in an observable O as follows,

dσLO

dv
=

∫
dσ̂n δv

=

∫
dx1dx2

∫
dLIPSn f1(x1)f2(x2) σ̂n δ

(
v −O({k}n)

)
,

(1)

where f1(x1) and f2(x2) are the pdfs for the partons inside the two incoming
protons, dLIPSn is the n-particle Lorentz-invariant phase-space measure for
momenta {k}n, and σ̂n is the short-distance 2 → n squared matrix element.
We sum over all allowed parton species implicitly. The pdfs f1,2 also depend
on a factorization scale µF, and the parton-level squared matrix element σ̂n

depends on a renormalization scale µR. These two scales will in general
depend on the phase-space point {k}n. However, at LO σ̂n depends on the
renormalization scale only through its (homogeneous) dependence on the
strong coupling αs(µR).

In order for eq. (1) to produce a meaningful answer, the phase space must
be cut off in regions where the squared matrix elements are singular. We are
primarily interested in jet cross sections, and so we shall use a jet algorithm
to impose such cuts. We leave them implicit in eq. (1).

The integral will typically be performed by Monte-Carlo integration, us-
ing a random sample of phase-space points. More sophisticated approaches
will adapt the sample to the squared matrix element. The evaluation will
generate a list of phase-space points and momentum fractions, along with the
associated integration weight. At each phase-space point, we evaluate only a
single subprocess, fixing the incoming and outgoing parton types and flavors.
In order to recompute any observable in an LO calculation, or compute a new
one, it then suffices to save the generated phase-space configurations, along
with each configuration’s integration weight. Each configuration can be saved
by saving the four-momenta of each final-state parton it contains. In order to
estimate the scale sensitivity of observables, we must recompute them with
different choices of renormalization scale. For this purpose, it suffices to save
the choice of µR for each configuration, as the weight is homogeneous in αs

with a fixed power. In order to estimate the uncertainty in an observable due
to imprecise knowledge of the pdfs, we must recompute them with different
pdfs drawn from an error ensemble. For this purpose, we must also save the
initial-state momentum fractions and choice of µF for each configuration. It
is also convenient to save separately the matrix-element weight multiplied
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by the phase-space volume element; this is the quantity that would yield the
integration weight upon multiplication by the pdfs.

The NLO prediction for the same process is more intricate. We can
decompose the computation of an observable into a Born-level contribution,
along with virtual and real-emission corrections,

dσNLO

dv
=

∫ (
dσ̂Born

n + dσ̂virt
n

)
δv +

∫
dσ̂real

n+1 δv , (2)

where the subscripts indicate the number of particles in the final-state phase
space. The virtual and the real-emission corrections are separately infrared
divergent. The virtual corrections, given by the interference of one-loop and
tree matrix elements, have explicit divergences arising from the integration
over the loop momenta. These are usually regulated using dimensional reg-
ularization (D = 4 − 2ǫ), and appear as double and single poles in ǫ. The
infrared divergences in the real-emission contributions arise from regions of
(n+ 1)-body phase space in which two massless partons become collinear or
a gluon becomes soft. We can think of the (n + 1)-body phase space fac-
torizing into a phase space for n final-state objects and an unresolved phase
space over soft or collinear partons. Were we to integrate these contributions
over a dimensionally-regulated unresolved phase space, the resulting poles
in ǫ would cancel against those in the virtual contributions for infrared-safe
observables, allowing us to obtain a finite result in the ǫ → 0 limit.

However, the integration over the dimensionally-regulated real-emission
phase space is intractable analytically in the presence of kinematical cuts.
Accordingly, we must integrate numerically; but it is hard to extract sin-
gularities, and more importantly, the underlying finite term, by numerical
integration in D dimensions. Instead, we seek to separate the real-emission
contributions into two parts: a simple part, containing all singularities, to be
integrated analytically in D dimensions; and a remainder, whose numerical
integral is finite over the complete phase space. The universality of the sin-
gular limits of the matrix elements makes this possible. The most common
approach, which we use as well, is to add and subtract an approximation to
the real-emission squared matrix element that captures all of its divergent
collinear and soft limits, and yet is simple enough to be integrated analytically
over the unresolved phase-space. This approach started with applications to
specific processes [12, 13, 14, 15] and was later generalized by Catani and Sey-
mour [16, 17] to a process-independent method. We use an implementation
of the Catani–Seymour dipole method within the AMEGIC++ [8, 9] and
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Comix [10] tree-level matrix-element package (both parts of SHERPA [6, 7],
with Comix used for the highest-multiplicity processes). Other subtraction
methods have also been applied, especially in NNLO calculations [15, 18], and
related methods are under development [19]. Some of these have also been
automated [20]. With a subtraction term, we obtain the following formula
for a differential cross section computed to NLO,

dσNLO

dv
=

∫
dσ̂Born

n δv +

∫ (
dσ̂virt

n + dσ̂int
n

)
δv +

∫ (
dσ̂real

n+1 − dσ̂sub
n+1

)
δv , (3)

where σ̂int
n is the integral of σ̂sub

n+1 over the unresolved phase space. Each
integral in eq. (3) is now finite as ǫ → 0. (The observable must be infrared
and collinear safe, that is On+1 must approach On in every singular limit, for
this to be true.) As the divergent terms in σ̂virt

n cancel those in σ̂int
n , we can

drop them all, retaining only the finite contributions,

dσNLO

dv
=

∫
dσ̂Born

n δv +

∫
dσ̂fin. virt

n δv +

∫
dσ̂fin. int

n δv +

∫ (
dσ̂real

n+1 − dσ̂sub
n+1

)
δv .

(4)
As in an LO computation, the integrals in eq. (4) are most easily com-

puted by Monte-Carlo sampling. (In our setup, using SHERPA [6, 7], the
code first adapts an integration grid to the integrand, and many independent
integrations are done using these grids.) We generate events separately for
each of the four types of contributions, over n-particle phase space for the
Born (B), virtual (V), and integrated-subtraction (I) contributions, and over
(n + 1)-particle phase space for the subtracted real-emission (R) contribu-
tions. At lower multiplicities, this split-up is sufficient. At higher multiplic-
ities, however, a further subdivision of contributions is desirable. Different
parts of each contribution have very different computational complexities
and magnitudes; for example, the subleading-color contributions are more
costly by at least an order of magnitude with three or more colored partons,
yet give only a small contribution to cross sections. A subdivision according
to initial-state parton types is also helpful in this regard. For each part, we
adapt the number of phase-space points according to its relative contribution
to cross sections. The subdivision also allows us to add more statistics to
selected parts without having to perform additional computations for parts
whose statistics are adequate. In order to keep the subdivision flexible, and
make code using them more robust to future evolution, we simply label the
different parts sequentially within each of the four types, for example (R001,
R002, R003).
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As in an LO calculation, we must save all particle four-momenta in each
phase-space configuration in order to be able to recompute (or compute
afresh) observables. We must also save the renormalization scale µR in order
to be able to vary it, and the initial-state parton momentum fractions x1,2

and factorization scale µF in order to be able to vary the pdfs and thereby es-
timate pdf uncertainties. We must also save each configuration’s integration
weight; alongside it, we again save the matrix-element weight as well.

Unlike for an LO calculation, however, these elements do not suffice in
order to be able to vary scales or pdfs. They do suffice for the Born and
subtracted real-emission contributions, as both the strong coupling and the
pdfs appear as simple overall factors in the integrand. However, the virtual
contribution contains additional dependence on µR arising from the one-
loop amplitude; and the integrated-subtraction contribution contains both
additional dependence on µR and µF, and different dependence on pdfs for
different parton species. We must save more detailed information for these
contributions, as we discuss in greater depth in section 5.

The n-tuple collections we describe are focused on the computation of jet
cross sections. The framework we describe is applicable to other infrared-
safe observables, but the specific files we have generated and are documenting
herein rely on a jet algorithm, and can only be used to compute observables
which also are defined using one of a selected set of jet algorithms. Modern
jet algorithms are characterized by a clustering (or seedless cone) algorithm;
a minimum jet pT; and a jet size R. The event samples described here allow
for any one of the anti-kT [21], kT[22], and SISCone [23] algorithms, in each
case with jet sizes R chosen from the set {0.4, 0.5, 0.6, 0.7}. The SISCone

merging fraction parameter is taken to be f = 0.75. We use the FastJet
library [24] to implement these jet algorithms. The minimum pT is specified
in each file, but is typically 20 or 25 GeV. Only observables imposing this
cut, or a tighter one, are allowed for use with n-tuple files. (If the minimum
pT cut is too tight, the number of events in the sample passing the cut may
be too small for adequate statistical accuracy.) These restrictions on jet
algorithm and minimum jet pT could of course be relaxed by generating new
event samples within our framework.

The main practical tradeoff in this approach is the sizable storage require-
ment for the n-tuple files. For example, the provided 7 TeV n-tuple files for
W++3 jets all together require 50 GB of storage, while the corresponding files
for W+ + 4 jets would require 375 GB. Of course, the storage requirements
depend greatly on the process and on the desired statistics. The files are
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quite voluminous, especially at higher multiplicities; the compression offered
by Root yields a significant reduction compared to a naive binary format
both in disk-space usage and in transmission times.

3. The n-Tuple Files

As described in the previous section, we save collections of phase-space
configurations along with additional information. Each phase-space con-
figuration represents one event at LO. The same is true for three of the
four types of contributions at NLO: the Born (B), the virtual (V), and the
integrated-subtraction (I) contributions. In the fourth type of contribution,
the subtracted real-emission (R) one, each event in general will contain mul-
tiple configurations: one corresponding to an emission, with the rest of the
configurations corresponding to subtractions; we will call each of the con-
figurations ‘entries’. Each Root n-tuple file contains a collection of events.
Each (numbered) part within each of the contribution types (B,V,I,R at
NLO) may in general be split up into a number of different files for con-
venience. The event files we describe in this section were produced using
BlackHat [5] and SHERPA [6, 7, 8, 9, 10], according to the setups de-
scribed in refs. [25, 26, 27, 28, 29, 30, 31]. Each file is a Root file, containing
a set of events, along with information about the file content, and sample
histograms which can be used to cross-check analyses using the file. (For a
review of Root and its file formats, the reader may consult ref. [32].)

Information for the entries in each file is stored in a Root tree called
BHSntuples. The branches of this tree are listed in Table 1. We have chosen
to restrict the numerical precision for the momenta to single precision in order
to limit disk space usage. This means that the weights cannot be recomputed
exactly from the momenta for each entry; but there is of course no need to
do so. For this reason, because each individual weight is in any case not
necessarily accurate even to single precision (see refs. [5, 26, 27, 33, 34] for
examples of numerical uncertainty distributions of matrix elements), and
because the weights include phase-space and Jacobian factors arising from
SHERPA’s integration grids, they are not suitable as reference points for
verifying or comparing matrix elements. For such purposes, reference points
and matrix-element values quoted in refs. [26, 27] should be used.
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Branch name Type Notes
id I ID of the event. Real-emission entries and their

associated counterterms share the same ID.
nparticle I number of particles in the final state
px, py, pz F[nparticle] array of px, py, pz respectively, for final-state

particles
E F[nparticle] array of energies E for final-state particles
kf I[nparticle] PDG codes of the final-state particles

weight D total weight of the entry
weight2 D secondary or correlated weight used to compute

the subtracted real-emission’s statistical errors.
Identical to weight for the B, V, and I con-
tributions; the normalization differs for the R
contribution

me wgt D coefficient of the product of parton-distribution
functions in weight. For the B, V, and R con-
tributions, this is the squared matrix element
multiplied by the phase-space measure and the
Jacobian from SHERPA’s phase-space mapping

me wgt2 D coefficient of the product of parton-distribution
functions in weight2

x1, x2 D fraction of hadron momentum carried by the
first and second incoming partons, respectively

x1p,x2p D secondary momentum fractions x′
1,2 used in in-

tegrated subtraction entries [9]
id1, id2 I PDG codes of the first and second incoming

partons respectively
fac scale D factorization scale used (µF,0)
ren scale D renormalization scale used (µR,0)
nuwgt I number of additional weights

usr wgts D[nuwgt] additional weights needed to recompute the en-
try’s weight for a different scale or pdf choices

part C type of contribution: B, V, I, or R
alphas power S power of the coupling

alphas D αs value used for this entry

Table 1: Branches in a BlackHat+SHERPA Root file. The type of the data entry
follows Root’s notation. In the second column, “D” stands for “double-precision floating
point number”, “F” for “single-precision floating point number”, “I” for “integer”, “S” for
“short integer”, and “C” for “character array”. Square brackets denote an array.
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Process n-tuple file sets References

W±(→ e±
( )

ν ) + 0, 1, 2 jets B001, I001, R001, V001 [25, 26]

W±(→ e±
( )

ν ) + 3 jets B001, I001, R001, V001–V002 [25, 26]
W−(→ e−ν̄) + 4 jets B001, I001, R001, V001 [28, 35]
W+(→ e+ν) + 4 jets B001, I001, R001–R005, V001 [28, 35]

Z(→ e+e−) + 0, 1, 2 jets B001, I001, R001, V001 [27]
Z(→ e+e−) + 3 jets B001, I001, R001, V001–V002 [27]
Z(→ e+e−) + 4 jets B001, I001–I003, R001–R006,

V001–V006
[29]

n jets (n = 1, 2, 3, 4) B001, I001, R001, V001 [31]

Table 2: Available processes at NLO, and their decomposition into n-tuple file sets.

3.1. Coordinates and units

We take the coordinate axes such that the beams are directed along the
z axis, with the initial-state parton with momentum fraction x1 and Particle
Data Group (PDG) code id1 moving in the positive z direction. The trans-
verse directions are labeled by x and y, with (x, y, z) forming a right-handed
coordinate system. The energies of particles are denoted by E and the spa-
tial momenta by (px, py, pz). We use natural units (~ = c = 1) and GeV
for energies, masses and momenta. Weights are normalized to yield cross
sections in picobarns.

3.2. n-Tuple Collections

In this article, we document n-tuple files for the LHC processes listed in
Table 2, which we have made available as described in section 3.3. The cor-
responding references for each class of processes are given in the last column.

As explained in section 2, the events for each process are split up into
different types according to the different terms in eq. (4). They are further
subdivided into different parts, organized in subdirectories, with each part
in turn split into multiple files. We must add together contributions from
all parts within all types of contributions to obtain the complete NLO cross
sections or distributions, as we describe in greater detail in sections 4 and 5.
The different parts are independent, analogous to different subprocesses, so
their statistical integration errors can be added in quadrature. We show the
list of the different parts for each process in Table 2.

The n-tuples were generated using the MSTW2008 [36] NLO parton dis-
tribution functions, and a five-flavor running αs(µ) where the value of αs(MZ)
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is specified by the parton distribution set. The renormalization and factor-
ization scales are,

µF,0 = µR,0 =
1
2
Ĥ ′

T ≡ 1

2

(∑

j

pjT + EV
T

)
. (5)

In this equation, originally given in ref. [28], the sum runs over all partons
in the final state, with pjT the transverse momentum of the jth parton, and
EV

T is the transverse energy of the vector boson,

EV
T =

√
m2

V + (pVT)
2 . (6)

(For pure-jet processes, the EV
T term is of course omitted.) As we explain in

more detail in section 5, the n-tuples can be used to generate predictions for
other parton distributions, and other choices of renormalization and factor-
ization scales2.

The getInfo program (see section 6.4) provides useful information about
the process, input parameters, cuts and jet algorithms for a specific n-tuple
file.

For processes containing a single electroweak boson, we fold in its decay
into a massless lepton pair. We label the pair by e+ν for a W+ boson, e−ν̄
for a W− boson, and e+e− for a Z boson. Results for the corresponding
muon channels are identical in the massless-lepton approximation. Off-shell
effects are taken into account by distributing the lepton-pair invariant mass
in a relativistic Breit-Wigner profile with width ΓV around the mass mV of
the electroweak vector boson V . In the case of the Z boson (that is, e+e−

final states), we include virtual photon γ∗ exchange as well. For all processes
we neglect the contribution of a massive top quark in the quark loops.

3.2.1. W + n-jet processes

For W + n-jet processes, we take the CKM matrix to be diagonal. We
provide separate sets of files for W−+ n-jet and W++ n-jet production. The
files we provide yield results for the W + 4-jet process in the leading-color

2Cross sections and distributions computed using the n-tuples documented here may
not match the results quoted in the references in the last column of Table 2 exactly, because
the earlier results used six-flavor running (above the top-quark mass) and a different
definition of the leading-color approximation.
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approximation for the virtual contributions. The n-tuple collections impose
no cuts on the generated momenta of the final-state electron or neutrino,
no isolation cuts between the leptons and the jets, and no cuts on the jet
rapidities. We impose cuts only on the transverse momenta of the jets,

pjetT > 25 GeV , 7 TeV n-tuples for W + 1, 2, 3, 4 jets ,

pjetT > 20 GeV , 8 TeV n-tuples for W + 1, 2, 3 jets .
(7)

As noted in section 2, the allowed jet algorithms are the anti-kT, kT, and SIS-

Cone ones, in each case with jet sizes R chosen from the set {0.4, 0.5, 0.6, 0.7}.
In the SISCone case the merging parameter is taken to be f = 0.75.

3.2.2. Z, γ∗ + n-jet processes

In contrast to the W + n-jet processes, for Z processes we also impose
a cut on the invariant mass of the e+e− pair in a window around the Z
mass, 60 < Me+e− < 120 GeV, in order to suppress the contribution of the
virtual photon. Otherwise, we again impose only a cut on the jet transverse
momenta,

pjetT > 25 GeV , 7 TeV n-tuples for Z, γ∗ + 1, 2 jets ,

pjetT > 20 GeV , 7 TeV n-tuples for Z, γ∗ + 3, 4 jets ,

pjetT > 20 GeV , 8 TeV n-tuples for Z, γ∗ + 1, 2, 3 jets .

(8)

The allowed jet algorithms are the same as given above for W + n-jet pro-
cesses.

The virtual contributions for the Z + 4-jet process are again computed
in the leading-color approximation described in ref. [29]. Based on studies of
lower multiplicities [26, 27] and also in the case of W +4-jets [35], we expect
these neglected pieces to be on the order of 3% of the total cross section. As
in ref. [29], we also drop the axial- and vector-coupling loop contributions,
along with the effects of top quarks in the loop. We expect these neglected
pieces to contribute under 1%. If we neglect the small effect from the muon
mass, these n-tuples are just as valid for the Z boson decaying into a pair of
muons.

3.2.3. Pure-jet processes

For pure-jet processes, we impose the cut,

pjetT > 40 GeV . (9)
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xsection total cross section 1 bin of width 1
h pt jN transverse momentum of jet N 50 bins: [0, 1000]
h eta jN pseudo-rapidity of jet N 22 bins: [−4.4, 4.4]
h pt NP trans. momentum of the non-parton NP 200 bins [0, 2000]

Table 3: List of the histograms provided to test validate the analysis of an n-tuple file. A
non-parton can be an electron, positron, photon, neutrino or anti-neutrino

We treat the five light-flavor quarks as massless, and drop top-quark loops,
following ref. [31] (this has a sub-percent effect). We include the full color
dependence of all contributions.

3.3. Location

An up-to-date list of available processes is maintained at
http://blackhat.hepforge.org/trac/wiki/Availability

The locations from which the n-tuple files may be obtained are given
in http://blackhat.hepforge.org/trac/wiki/Location. They are cur-
rently available at CERN on CASTOR and on the LHC Grid. At each
location, the files are in

〈base〉/BHSNtuples/PROCESS/ENERGY/PART
where ENERGY is either 7TeV or 8TeV, and PART is one of B, V, I, or R.

3.4. Checks

All n-tuple files contain several histograms which can be used to check
their consistency and the implementation of the program reading them. The
histograms are listed in Table 3.

Each of the histograms listed in Table 3 comes in two copies, one in
which the distributions are computed using the original weights, without
change of renormalization or factorization scale, and a second in which both
µR and µF have been changed to Hall

T , defined to be the scalar sum of
the transverse momentum of all particles (including the neutrino) in the
event3. The histogram names have Orig and HTallp respectively appended
to them.

The program getInfo (see section 6.4) can be used to obtain the cuts
and jet algorithm used for the histograms.

3This scale is not appropriate for observables sensitive to the polarization of the vector
boson, as explained in ref. [37].
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4. Using the n-tuple files

One can analyze the entries in the n-tuple files to generate histograms
with a wide variety of experimental cuts, so long as all of the following
conditions are met:

• One of the jet algorithms used in generating the n-tuple file is applied.
(The list of compatible jet algorithms and parameters are stored in each
file but are the same for all files for the same process and center-of-mass
energy. See section 6.4 for a description of this information and how to
extract it from an n-tuple file.)

• The number of jets passing the algorithm and associated cuts is at least
n for an n-jet process.

• All cuts and observables are defined in terms of jets passing the cuts and
not in terms of partons. (It is perfectly acceptable, and indeed often de-
sirable, to define the renormalization and/or factorization scales using
parton momenta so long as the definition is infrared- and collinear-safe.)

As explained above, each type of contribution (‘B’, ‘R’, . . .) to a process
is split up into a number of parts (R001, R002, . . .). The number of parts
will depend on the process and type of contribution. An analysis should in
general sum over all available parts and all types of contributions. (Once
one has verified that a given part yields a negligible contribution to the
observables of interest compared to the desired accuracy, one may choose to
omit it.) The events for each part may be split up into a number of files; each
file will contain an independent sample of events. An analysis should sum
over as many files as required to obtain the desired statistical accuracy for
the given part and type of contribution, but need not sum over all available
files. Summing over more files for a given part will increase the statistical
accuracy of estimates for that part.

To compute the contribution of a given type t and part p to an observable,
one must sum the weight times the observable’s value over all entries in all
chosen files, and normalize by the total number of entries in these files,

〈O〉(t,p) = 1

Nt,p

Nt,p∑

e=1

wt,p,eOt,p,e , (10)
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where Nt,p is the total number of entries (across all files) for the given part of
the given type, wt,p,e the weight of the entry (given by the weight branch of
the Root file), and Ot,p,e the value of the observable evaluated on the entry.
The value of an observable is then giving by summing over all parts of all
types of contributions,

〈O〉 =
∑

t∈T,p∈Pt

〈O〉(t,p) . (11)

where T is the set of types, and Pt the set of parts in type t. As a simple
example, if we choose Ot,p,e = Θcuts (where Θcuts = 1 if the entry is allowed by
our chosen jet algorithm and all other applied analysis cuts, and 0 otherwise),
we obtain the total cross section. In eq. (10), all types of contributions are
computed in a similar manner. The weight itself can be recomputed to alter
the factorization scale, the renormalization scale, or the pdf, as we shall
explain in section 5. The overwhelming fraction of the computation effort in
an analysis is in the execution of eq. (10). One can combine different batches
or sets of files part-by-part by weighting with the total number of entries in
each,

〈O〉(t,p)1+2 =
1

Nt,p,1+2

(
Nt,p,1〈O〉(t,p)1 +Nt,p,2〈O〉(t,p)2

)
(12)

(where Nt,p,1+2 = Nt,p,1 +Nt,p,2), and then re-evaluating eq. (11). One would
of course typically compute several observables in parallel during a single
pass over the selected files.

In order to compute the error estimate for the observable, we must how-
ever treat the subtracted real-emission contributions (R) specially. For each
part in each of the other types of contributions (B, V, and I), the error
estimate is the standard one for Monte-Carlo integration,

ε
(t,p)
O =

1√
Nt,p(Nt,p − 1)

[Nt,p∑

e=1

(
wt,p,eOt,p,e

)2 − 1

Nt,p

(Nt,p∑

e=1

wt,p,eOt,p,e

)2]1/2
.

(13)
(We denote the error estimate by ε in order to avoid confusion with the cross
section σ.) The R contributions are special, because each event in general
contains more than one entry. (In the Root file, all entries within a given
event share the same id.) The entries (or phase-space configurations) are of
two different kinds, a real-emission configuration and counter-configurations.
The latter correspond to the subtraction term that regulates the squared
matrix element in the soft and collinear limits, where the unregulated matrix
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element diverges. The real-emission configurations and subtraction counter-
configurations for a given event are strongly anticorrelated. This means
that simply adding the weights independently as in eq. (13) will grossly
overestimate the statistical error. (The estimated error would typically be of
order the central value. Using these weights will, however, yield the correct
central value in eq. (10).) The anticorrelation must be taken into account
properly, which we can do using the following formula,

ε
(R,p)
O =

1√
ÑR,p(ÑR,p − 1)

[ ÑR,p∑

e=1

(N̂p,e∑

j=1

w̃R,p,e,jOR,p,e,j

)2

− 1

ÑR,p

(ÑR,p∑

e=1

N̂p,e∑

j=1

w̃R,p,e,jOR,p,e,j

)2]1/2
,

(14)

where ÑR,p is the total number of events (or equivalently, different (file-
name,ID) pairs with the ID given by the id branch) in the files analyzed for

the given part p, in contrast to the total number of entries NR,p; where N̂p,e

is the number of different entries in the given event, and where w̃R,p,e,j is the
secondary or correlated weight of the entry (given by the weight2 branch of
the Root file). For simplicity of use, events are ordered in the n-tuple files,
with real-emission entries and counter-entries with the same id appearing
contiguously.

If we choose to combine different batches of files using eq. (12), we also
need the corresponding formula for combining uncertainty estimates,

ε
(t,p)
O,1+2 =

1√
Nt,p,1+2(Nt,p,1+2 − 1)

×
[
Nt,p,1(Nt,p,1 − 1)

(
ε
(t,p)
O,1

)2
+Nt,p,2(Nt,p,2 − 1)

(
ε
(t,p)
O,2

)2
]1/2

,

(15)

for the B, V, and I contributions, and a similar equation with Nt,p → ÑR,p

for the R contribution.
The different types of contributions are statistically independent, as they

are generated using independent sets of phase-space configurations, and so
the overall error estimate simply adds the error estimates for the different
parts in quadrature,

εO =
[ ∑

t∈T,p∈Pt

(
ε
(t,p)
O

)2]1/2
. (16)
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In addition to overall values of observables, we will typically want to
obtain values of distributions as well. To obtain the prediction for the dis-
tribution in a variable v, we must divide its range B into bins (possibly
including overflow and underflow bins). For each bin, the expected value is
given by, 〈

dσ

dv

〉

b

=
∑

t∈T,p∈Pt

〈
dσ

dv

〉(t,p)

b

, (17)

where 〈
dσ

dv

〉(t,p)

b

=
1

∆b

1

Nt,p

Nt,p∑

e=1

wt,p,eδ̂(vt,p,e, b) , (18)

where ∆b is the bin’s width (in the units of the observable), and where δ̂(v, b)
is 1 if the value lies in the given bin b, and 0 otherwise. The values of the
distribution for different bins can of course be obtained in parallel, by assign-
ing each file entry to the appropriate bin. This formula is what is typically
implemented by histogramming codes, which can be used straightforwardly
to process the n-tuple files for all the types of contributions.

For the error estimates, we must again treat the subtracted real-emission
contribution specially. For each part in each of the other types (B, V, and
I), we have a standard form for the error estimate,

ε
(t,p)
dσ/dv,b =

1

∆b

1√
Nt,p(Nt,p − 1)

[ Nt,p∑

e=1

w2
t,p,eδ̂(vt,p,e, b)

− 1

Nt,p

(Nt,p∑

e=1

wt,p,eδ̂(vt,p,e, b)

)2]1/2
.

(19)

This again is the formula that will typically be the one implemented by
histogramming routines.

For the R contribution, we must take the anticorrelation into account, so
that the error estimate is given by,

ε
(R,p)
O =

1

∆b

1√
ÑR,p(ÑR,p − 1)

[ ÑR,p∑

e=1

(N̂p,e∑

j=1

w̃R,p,e,j δ̂(vt,p,e,j, b)

)2

− 1

ÑR,p

(ÑR,p∑

e=1

N̂p,e∑

j=1

w̃R,p,e,j δ̂(vt,p,e,j, b)

)2]1/2
.

(20)
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A given event is counted as being in a bin if any of its entries are in a bin; a
given event can therefore appear in more than one bin. The extent to which
this happens, and hence the error estimates, will depend on the value of the
integrated subtraction’s αdipole parameter [38], which is 0.03 for all the n-tuple
files documented here. This formula is not what is implemented by standard
histogramming routines; in particular, current versions of Rivet [39] do not
take anticorrelations into account, and so will not compute statistical error
estimates correctly for this contribution. The user will typically need to
supply his or her own histogramming routines to obtain correct estimates.

Histograms with statistical uncertainty estimates obtained using eq. (20)
cannot be rebinned in the usual way (that is keeping track of the sum of the
weights and the sum of the weights squared for each bin). To understand
why, let us consider two neighboring bins b1 and b2 and see what happens if
we want to compute the error associated with the combined bins which we
will refer to as b1+b2. The second term in the calculation of the error will be
the same, whether one considers the bins separately or not. Let us consider
the first term,

ÑR,p∑

e=1

(N̂p,e∑

j=1

w̃R,p,e,j δ̂(vt,p,e,j, b1 + b2)

)2

=

ÑR,p∑

e=1

(N̂p,e∑

j=1

w̃R,p,e,j

(
δ̂(vt,p,e,j, b1) + δ̂(vt,p,e,j, b2)

))2

=

ÑR,p∑

e=1

[(N̂p,e∑

j=1

w̃R,p,e,j δ̂(vt,p,e,j, b1)

)2

+

(N̂p,e∑

j=1

w̃R,p,e,j δ̂(vt,p,e,j, b2)

)2

+2

( N̂p,e∑

j,j′=1;j 6=j′

w̃R,p,e,j δ̂(vt,p,e,j, b1)w̃R,p,e,j′δ̂(vt,p,e,j′, b2)

)]
(21)

The terms on the penultimate line are typically recorded (as the statistical
uncertainty estimate) for each bin alongside the sum of weights. The term
on the last line is not. In the absence of correlations between entries in an
event — if N̂p,e = 1 — the double sum over j and j′ would disappear, and we
would recover the usual formula for combining uncertainty estimates of two
bins. Because the weights of real-emission and counter-configuration entries
in an event are typically anticorrelated, however, the last term typically will
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be negative and will reduce the uncertainty estimate significantly. Accord-
ingly, naively rebinning histograms with uncertainties computed according
to eq. (20) but then combined in quadrature will overestimate the statistical
uncertainty. The same argument applies to extracting cumulative distribu-
tions from a histogram. If the user plans to rebin or extract cumulative
distributions, the last term in eq. (21) should be recorded for all bin pairs
along with the sum of the squared weights.

We again obtain the overall error estimate for each bin by adding the
separate contributions in quadrature,

εdσ/dv,b =
[ ∑

t∈T,p∈Pt

(
ε
(t,p)
dσ/dv,b

)2]1/2
. (22)

5. Changing Scales and Parton Distributions

The BlackHat+SHERPA n-tuple files contain the information needed
to recompute the weight of the event for a different renormalization or fac-
torization scale, or for a different pdf set. The new weights can be used to
compute new central values, or to compute scale-variation bands and pdf-
uncertainty estimates. In the following subsections, we explain the additional
information stored in the n-tuple files, and how to make use of it. We de-
note by f1 and f2 the pdf of the first and second hadron respectively. For the
LHC, in which both beams are protons, they both correspond to proton pdfs.
Variables shown in a distinct font correspond to branches in the Root file.
Indices in arrays such as usr wgts are zero-based.

5.1. Born and subtracted-real contributions

The new weight is given by

n = alphas power , (23)

w = me wgt2 f1(id1, x1, µF) f2(id2, x2, µF)
αs(µR)

n

(alphas)n
, (24)

where µF is the new factorization scale, µR the new renormalization scale,
f1,2 the new pdf, αs the corresponding running coupling, and n the power
of the strong coupling αs. (In the case of W or Z + nj-jet processes, this
power is nj in the Born (B) contribution and nj + 1 in the subtracted-real
(R) contribution.) The new scales must be infrared- and collinear-safe func-
tions of the final-state momenta. If the factorization scale and pdf set are

20



left unchanged, one can simplify the computation of w, eliminating the pdf
function call:

w = weight2
αs(µR)

n

(alphas)n
. (25)

Alternatively, if we leave the renormalization scale unaltered, we could sim-
plify the computation of w to:

w = me wgt2 f1(id1, x1, µF) f2(id2, x2, µF) . (26)

For the Born contribution (but not the subtracted-real one), weight and
weight2 are the same.

5.2. Virtual contribution

The virtual contribution (V) is treated in a similar way as the real and
Born contributions, except that the matrix element has an explicit depen-
dence on the renormalization scale. In dimensional regularization, this de-
pendence arises from the introduction of a scale to give the coupling g the
required dimension, g → gµǫ, along with the MS ultraviolet subtraction that
replaces the bare coupling g0 with the physical coupling g(µR),

gnµǫ
RcΓÂ(1)

n −→ gnµǫ
RcΓÂ(1)

n − b0(n− 2)gncΓÂ(0)
n , (27)

where b0 = 11/2−nf/3, cΓ = Γ(1+ǫ)Γ2(1−ǫ)/
(
(4π)2−ǫΓ(1−2ǫ)

)
, and Â(0,1)

are respectively the tree-level and one-loop amplitude with factors of g and cΓ
removed. This gives rise to a term of the form b0αsA(0) ln(µR/s). Because µR

also enters terms with infrared divergences, there are also double-logarithmic
terms in the virtual contribution. In the sum over all contributions, they will
cancel statistically against similar terms in the integrated-subtraction term,
leaving only double logs of ratios of invariants as well as the linear term in
lnµR. A dependence on lnµR beyond linear will remain from the running
of the strong coupling αs. In calculations using n-tuples, the dependence
on µR,F is taken into account using the additional weights usr wgts. These
weights are computed from the coefficients L(1,2) of the 1/ǫ and 1/ǫ2 poles
respectively in the virtual contribution [with the coupling removed],

usr wgts[0] =
1

2π
L(1)Φ ,

usr wgts[1] =
1

2π
L(2)Φ ,

(28)
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and saved in the n-tuple file. The coefficient L(1) depends on b0. In this
equation, Φ is the phase-space measure at the configuration for the event,
including Jacobian factors from any remappings used by the phase-space
generator. The b0 terms mentioned above reside within L(1). An analysis
code can then recompute the event weight using the following formulas,

n = alphas power , (29)

l = ln

(
µ2
R

ren scale2

)
, (30)

m = me wgt + l usr wgts[0] +
l2

2
usr wgts[1] , (31)

w = mf1(id1, x1, µF)f2(id2, x2, µF)
αs(µR)

n

(alphas)n
. (32)

In these equations, ren scale is the reference renormalization scale µR,0. If
a new pdf set is chosen, the αs should correspond to that set. If we do not
change the renormalization scale, the scale-changing logarithm in eq. (30)
will vanish, and along with it the additional terms in eq. (31). (In the case
of W or Z + nj-jet processes, n is nj + 1 for this contribution.)

5.3. Integrated subtraction contribution

The computation of the new weight for the integrated subtraction con-
tribution (I) is the most complicated. The n-tuple file has 16 additional
weights {usr wgts[2],. . .,usr wgts[17]} which make a re-computation pos-
sible. These weights are computed from the virtual pole coefficients defined
in sect. 5.2, along with other quantities extracted from the Catani–Seymour
subtraction formalism [17]. These additional quantities include the coeffi-

cients V(1,2)
i of the 1/ǫ and 1/ǫ2 poles respectively in the integrated subtrac-

tion functions for parton i, extracted from eqs. (5.32–5.34) of ref. [17],

V(2)
i =





CF , i = q ,

CA , i = g ;
(33)

V(1)
i =





3

2
CF , i = q ,

11

6
CA − nf

3
, i = g ,

(34)
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(CR is the Casimir in representation R of SU(3)); the color- (and helicity-)
summed squared tree-level matrix element with factors of the strong coupling
removed, |M|2; a logarithm ℓik = lnµ2

F,0/|2pi · pk|; and the color-correlated
squared tree-level matrix element as given [up to a different normalization]
in eq. (3.13) of ref. [17],

Mik = 〈1, . . . , n| Ti ·Tk

T2
i

|1, . . . , n〉 , (35)

where |1, . . . , n〉 is the tree amplitude in the color–helicity basis of ref. [17]
(again, with factors of the strong coupling removed).

We also need the four-dimensional regularized Altarelli–Parisi splitting
functions P ab(x), given in eqs. (5.85–5.88) of ref. [17]; an additional function,
related to the splitting functions,

P̆ q,q(x) = 2CF

(
ln

1

1− x
− x− x2

2

)
,

P̆ g,g(x) = 2CA ln
1

1− x
,

P̆ g,q(x) = P̆ q,g(x) = 0 ;

(36)

the auxiliary functionsK
ab
(x), defined in eqs. (8.32–8.25) of ref. [17]; and

additional functions,

K̆q,q(x) = 2CF

(
Li2(x)−

1

2
ln2(1− x) + ln(x) ln(1− x)

)

− CF

(
5− π2

)
,

K̆g,g(x) = 2CA

(
Li2(x)−

1

2
ln2(1− x) + ln(x) ln(1− x)

)

−
[(50

9
− π2

)
CA − 8

9
nf

]
,

K̆q,g(x) = K̆g,q(x) = 0 ,

(37)

and
P̃i(x) = γi

(
1− ln(1− x)

)
, (38)

where γi = V(1)
i is the collinear anomalous dimension given in eq. (5.90) of

ref. [17], with V(1)
i defined in eq. (34).
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In terms of these quantities, we have the following expressions for the set
of usr wgts,

usr wgts[0] = |M|2Φ
[
L(1) + nB b0 −

∑

i 6=k

Mik

|M|2
(
V(1)
i + V(2)

i ln
µ2
R,0

|2pi · pk|
)]

,

usr wgts[1] = |M|2Φ
[
L(2) −

∑

i 6=k

Mik

|M|2V
(2)
i

]
,

usr wgts[2] = |M|2Φ
[
K̆q,a(x) +

(
δqa

∑

i 6=a

Mia

|M|2 P̃i(x)− P̆ q,a(x)ℓia

)]
,

usr wgts[3] = |M|2Φ 1

x′

[
K

q,a
(x′) +

∑

i 6=a

(Mia

|M|2δ
qa γi
1− x′

+
Mai

|M|2P
q,a(x′)ℓia

)]
,

usr wgts[4] = |M|2Φ
[
K̆g,a(x) +

(
δga

∑

i 6=a

Mia

|M|2 P̃i(x)− P̆ g,a(x)ℓia

)]
,

usr wgts[5] = |M|2Φ 1

x′

[
K

g,a
(x′) +

∑

i 6=a

(Mia

|M|2δ
ga γi
1− x′

+
Mai

|M|2P
g,a(x′)ℓia

)]
,

usr wgts[6] = |M|2Φ
[
K̆q,b(x) +

(
δqb

∑

i 6=b

Mib

|M|2 P̃i(x)− P̆ q,b(x)ℓib

)]
,

usr wgts[7] = |M|2Φ 1

x′

[
K

q,b
(x′) +

∑

i 6=b

( Mib

|M|2δ
qb γi
1− x′

+
Mbi

|M|2P
q,b(x′)ℓib

)]
,

usr wgts[8] = |M|2Φ
[
K̆g,b(x) +

(
δgb

∑

i 6=b

Mib

|M|2 P̃i(x)− P̆ g,b(x)ℓib

)]
,

usr wgts[9] = |M|2Φ 1

x′

[
K

g,b
(x′) +

∑

i 6=b

( Mib

|M|2δ
gb γi
1− x′

+
Mbi

|M|2P
g,b(x′)ℓib

)]
,

usr wgts[10] = |M|2ΦP̆ q,a(x) , usr wgts[14] = |M|2ΦP̆ q,b(x) ,

usr wgts[11] = |M|2Φ 1

x′
P q,a(x′) , usr wgts[15] = |M|2Φ 1

x′
P q,b(x′) ,

usr wgts[12] = |M|2ΦP̆ g,a(x) , usr wgts[16] = |M|2ΦP̆ g,b(x) ,

usr wgts[13] = |M|2Φ 1

x′
P g,a(x′) , usr wgts[17] = |M|2Φ 1

x′
P g,b(x′) .

(39)
In these expressions, Φ is again the phase-space measure at the configuration
for the event, including Jacobian factors from any remappings used by the
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phase-space generator; nB is the order in αs of the Born process. In these
equations, a is the initial-state parton type and flavor in hadron 1, and b is
the initial-state type and flavor of the parton from hadron 2. In the weights
where a appears (2–5 and 10–13), x is x1 and x′ is x1p, whereas in the weights
where b appears (6–9 and 14–17), x is x2 and x′ is x2p.

With the additional usr wgts coefficients, an analysis code can use the
following formulas to recompute the event weight,

n = alphas power , (40)

l = ln

(
µ2
R

ren scale2

)
, (41)

ω0 = me wgt + l usr wgts[0] +
l2

2
usr wgts[1] , (42)

ωi = usr wgts[i+1] + usr wgts[i+9] ln

(
µ2
F

fac scale2

)
, (43)

m = ω0 f1(id1, x1, µF) f2(id2, x2, µF)

+

( 4∑

j=1

f
(j)
1 (id1, x1, x1p, µF)ωj

)
f2(id2, x2, µF) (44)

+f1(id1, x1, µF)

( 4∑

j=1

f
(j)
2 (id2, x2, x2p, µF)ωj+4

)
,

w = m
αs(µR)

n

(alphas)n
, (45)

where (r = 1 or 2)

f (1)
r (i, x, x′, µF) =

{
i = quark: fr(i, x, µF) ,

i = gluon:
∑

quarks q fr(q, x, µF) ,
(46)

f (2)
r (i, x, x′, µF) =

{
i = quark: fr(i, x/x

′, µF)/x
′ ,

i = gluon:
∑

quarks q fr(q, x/x
′, µF)/x

′ ,
(47)

f (3)
r (i, x, x′, µF) = fr(g, x, µF) , (48)

f (4)
r (i, x, x′, µF) = fr(g, x/x

′, µF)/x
′ . (49)

The sums over quarks are taken over the quark flavors active at the scale µF,
typically five. In these equations, ren scale is the reference renormalization
scale µR,0, and fac scale is the reference factorization scale µF,0. (In the
case of W or Z + nj-jet processes, n is nj + 1 for this contribution.)
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6. Library for Reading BHS n-Tuple Files

This section describes a C++ library, nTupleReader, which provides an
easy-to-use interface to the n-tuple files described in the above sections.

6.1. Dependencies

The library depends on lhapdf [40] (http://lhapdf.hepforge.org/)
and Root [32] (http://root.cern.ch/drupal/).

6.2. Installation

The library is an autotools package, and is installed using the usual
paradigm of configure; make; make install. Along with the usual auto-
tools options, the library’s configure script offers the following options:

--with-lhapdf-path=〈path to lhapdf installation〉
Sets the location of the lhapdf installation;
this option is needed only if the helper program
lhapdf-config is not in the executable search path.

--with-root-path=〈path to Root installation〉
Sets the location of the root installation;
this option is needed only if the helper program
root-config is not in the executable search path.

--enable-pythoninterface

Compiles the python interface (see section 6.7).

To install the library, unpack the .tar.gz file,

tar -xzf ntuplereader-〈version〉.tar.gz
where 〈version〉 is a string like ‘1.0’. Configure, with options as needed,

cd ntuplereader-〈version〉
./configure 〈options〉
and then compile and install,

make

make install

To install in a different location than the standard one, use the --prefix

option to the configure script.

26



6.3. Usage

Your source code must include the header file nTupleReader.h to use the
library. Your code may access information in the n-tuple files via an object
of the nTupleReader class. We give an example of a C++ program using the
library in section 6.8.

The nTupleReader-config script returns the compiler and linker flags
needed to compile a user program and link it to the library. The script
is located in the bin subdirectory of the installation directory. Assuming
this script is in your executable search path, you would compile and link a
program as follows,

CFLAGS=‘nTupleReader-config --include‘

g++ -c $CFLAGS -o NTRexample.o NTRexample.cpp

LDFLAGS=‘nTupleReader-config --libs‘

g++ $LDFLAGS -o NTRexample NTRexample.o

6.4. The getInfo program

The make step creates a program called getInfo along with the library.
This program takes one argument, the name of a n-tuple file. The program
prints useful information about events in the file:

• their center-of-mass energy;

• their initial-state hadrons;

• the process that generated them;

• the part of the NLO calculation to which they contribute;

• the jet algorithms and parameters allowed in an analysis;

• the minimum jet transverse-momentum cut allowed;

• additional generation-level cuts, such as the lepton invariant-mass cut
for processes with a Z boson.;

• the electroweak parameters used;

• the pdf set used in the n-tuple generation.
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6.5. Member functions of an nTupleReader object

This section describes the member functions of the nTupleReader class,
which allow access to the data in n-tuple files. We give an example of their
use in section 6.8.

The member functions are,

void addFile(const std::string &fileName)

Adds a file to the reader.
fileName is the name of the file.

void addFiles(std::vector<std::string> fileNames)

Adds a list of files to the reader
fileNames is a vector of std::string containing the names of the

files to be added, which will be read in the order given.

double computeWeight(double newFactorizationScale,

double newRenormalizationScale)

Returns the weight (weight) of the current entry recomputed for the
new scales, using the current pdf member number in the current pdf
set.

newFactorizationScale is the new factorization scale (in GeV)
newRenormalizationScale is the new renormalization scale (in

GeV)

double computeWeight2(double newFactorizationScale,

double newRenormalizationScale)

Returns the secondary weight (weight2) of the current entry recom-
puted for the new scales, using the current pdf member number in the
current pdf set. One should use this weight for the real part in order to
take into account the correlation between the entry and counter entries.

newFactorizationScale is the new factorization scale (in GeV)
newRenormalizationScale is the new renormalization scale (in

GeV)

short getAlphasPower()

Returns the power of the strong coupling constant in the current entry.

long getEndEntryIndex()

Returns the (1-based) index of the entry at which reading will stop.
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double getEnergy(int i)

Returns the energy of the ith particle in the current entry.
i is a 0-based index; an argument equal to or larger than the number

of final state particles will throw an nTR OutOfBounds exception.

void getEntry(long index)

Reads the entry corresponding to the index specified; nextEntry() will
start from that position.

index is the index of the entry to be read.

double getFactorizationScale()

Returns the factorization scale used to compute the weights for the
current entry.

int getID()

Returns the ID of the current event.

double getId1()

Returns the PDG code for the first (forward) incoming parton in the
current entry.

double getId2()

Returns the PDG code for the second (backward) incoming parton in
the current entry.

long getIndexOfNextEntry()

Returns the index of the next entry.

double getMEWeight()

Returns the weight for the current entry omitting pdf factors.

double getMEWeight2()

Returns the secondary weight for the current entry omitting the pdf
factors, to be used as described in section 4 to obtain the correct esti-
mate of the statistical uncertainty.

long getMaxEvent()

Returns the ID of the event (phase-space configuration–counter-configuration
group of entries, or simply entries for contribution types with one entry
per event) after which reading will stop.
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long getNumberOfEntries()

Returns the total number of entries.

int getPDGcode(int i)

Returns the PDG code of the ith particle in the current entry.
i is a 0-based index; an argument equal to or larger than the number

of final state particles will throw an nTR OutOfBound exception.

int getParticleNumber()

Returns the number of final state particles in the current entry.

double getRenormalizationScale()

Returns the renormalization scale used to compute the weights for the
current entry.

long getStartEntryIndex()

Returns the (1-based) index of the entry at which reading will start.

char getType()

Returns the type of the current entry, ‘B’ standing for born, ‘I’ for
integrated subtraction, ‘V’ for the virtual, and ‘R’ for the subtracted
real emission.

double getWeight()

Returns the weight (weight) for the current entry.

double getWeight2()

Returns the secondary weight (weight2) for the current entry, to be
used as described in section 4 to obtain the correct estimate of the
statistical uncertainty.

double getX(int i)

Returns the x component of the ith particle’s momentum in the current
entry.

i is a 0-based index; an argument equal to or larger than the number
of final state particles will throw an nTR OutOfBound exception.

double getX1()

Returns the momentum fraction x1 in the current entry.
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double getX2()

Returns the momentum fraction x2 in the current entry.

double getY(int i)

Returns the y component of the ith particle’s momentum in the current
entry.

i is a 0-based index; an argument equal to or larger than the number
of final state particles will throw an nTR OutOfBound exception.

double getZ(int i)

Returns the z component of the ith particle’s momentum in the current
entry.

i is a 0-based index; an argument equal to or larger than the number
of final state particles will throw an nTR OutOfBound exception.

bool nextEntry()

Reads the next entry and returns true upon success, false otherwise
(including when the end of the file is reached).

void setEndEntryIndex(long index)

Sets the index of the entry at which reading will stop.
index 1-based index at which the reading will stop (the index-th

entry will not be read)

void setMaxEvent(long count)

Sets the reader to stop reading entries when the given number of events
(phase-space configuration–counter-configuration groups of entries, or
simply entries for contribution types with one entry per event) have
been read.

count is a 1-based sequence number specifying the first event that
will not be read.

void setPDF(const std::string &name)

Sets the pdf set to be used.
name is the name of the file to be loaded by LHAPDF, for example

CT10.LHgrid.

void setPDFmember(int member)

Sets the pdf member number to be used.
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member is an integer labeling the member; 0 is typically used to
denote the central value.

void setPP()

Sets the initial state to proton–proton. This is the default if no calls
to setPP() or setPPbar() are issued. This routine should only be
invoked before using files generated for proton–proton colliders.

void setPPbar()

Sets the initial state to proton–antiproton. This routine should only
be invoked before using files generated for proton–antiproton colliders.

void setStartEntryIndex(long index)

Sets the index of the entry at which reading will start.
index 1-based index at which the reading will start (the index-th

entry will be read at the next call of nextEntry())

void setStartEvent(long count)

Sets the number for the event sequence counter at which the library will
start reading in events (phase-space configuration–counter-configuration
groups of entries, or simply entries for contribution types with one en-
try per event).

count is a 1-based sequence number specifying the first event that
will be read.

6.6. Histogram Implementation Example

This section gives an example of the implementation of a histogramming
procedure, as described in section 4.

nTupleReader r;
...

bool notFinished=r.nextEntry();

int lastID=r.getID();

while(notFinished){

double wgt;

// compute the value of the weight wgt here...

int ID=r.getID()
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int bin=findBin(x);

finalHistogram[bin]+=wgt;

tempHistogram[bin]+=wgt;

if (ID != lastID){

for (int bin=0;bin<NbrBins;bin++){

weightsSquare[bin]+=tempHistogram[bin]*tempHistogram[bin];

if ( tempHistogram[bin] != 0.0 ){

NbrEntries[bin]++;

}

tempHistogram[bin]=0.;

}

lastID=id;

}

notFinished=r.nextEvent()

}

where NbrBins is the numbers of bins in the histograms.

6.7. Example of the usage of the python interface

To use the python interface, make sure that the installation path for the
libraries installed with the C++ library is included in the locations searched
for python modules. The following is a sample python program,

import nTupleReader as NR

r=NR.nTupleReader()

r.addFile(’@prefix@/share/ntuplereader/sample.root’)

r.nextEntry()

for i in range(r.getParticleNumber()):

print "p(%d)=(%f,%f,%f,%f)" % (

i,

r.getEnergy(i),

r.getX(i),

r.getY(i),
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r.getZ(i)

)

6.8. Example of the usage of the library in a C++ program

The following listing shows an example of a C++ program using the
nTupleReader library. This example is included after installation in the
directory share/ntuplereader/.

#include "nTupleReader.h"

using namespace std;

int main(){

std::vector<std::string> fs;

fs.push_back("@prefix@/share/ntuplereader/sample.root");

nTupleReader r;

r.setPDF("cteq6ll.LHpdf");

r.addFiles(fs);

while(r.nextEntry()){

int id=r.getID();

cout <<

"Checking momentum conservation for event ID: "

<< id << std::endl;

double sumX=0;

double sumY=0;

double sumZ=0;

int nbrP=r.getParticleNumber();

std::cout << "Number of particles: "

<< nbrP << std::endl;

for (int i=0;i<nbrP;i++){

sumX+=r.getX(i);
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sumY+=r.getY(i);

sumZ+=r.getZ(i);

}

std::cout << "Sum X: " << sumX << std::endl;

std::cout << "Sum Y: " << sumY << std::endl;

std::cout << "Sum Z: " << sumZ

<< " to be compared with: "

<< 3500 * (r.getX1()-r.getX2())

<< std::endl;

}

return 0;

}

7. Conclusions

In this Article we described software tools for obtaining predictions to
NLO in QCD using an n-tuple event-file format generated by SHERPA using
the BlackHat software library. This framework offers a convenient means
for evaluating cross-sections and distributions with different parton distri-
bution functions, bypassing repeated and computationally costly evaluations
of matrix elements. The set-up described here makes it straightforward to
compute scale-variation bands and to obtain uncertainty estimates due to
imprecise knowledge of the parton distribution functions. The n-tuple files
also make it convenient to study the effects of varying jet algorithms and
cuts, within a wide range of commonly-used ones. These tools have already
proved useful in a number of theoretical [31, 41, 34] and experimental stud-
ies [42, 43]. The reader may find an up-to-date list of available n-tuple sets
at http://blackhat.hepforge.org/trac/wiki/Availability, stored at
locations given in http://blackhat.hepforge.org/trac/wiki/Location.
We look forward to further theoretical and experimental studies using the
tools described here.
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Appendix A. Tables of Cross Section Values

In this appendix we provide tables of cross sections obtained using the√
s = 8 TeV n-tuples currently available on CASTOR and on the LHC Grid.

These can serve as a reference for comparison purposes, and as a cross check
that the sum over different contributions has been carried out correctly in
user code. We list cross sections for a specific set of cuts identical to the ones
used at 7 TeV in refs. [28, 29, 31]. (Sample distributions listed in Table 3 are
included with each n-tuple file.)

Appendix A.1. Inclusive W + n-jet Production

Process W− LO W− NLO W+ LO W+ NLO
W + 1 341.4(0.2) 422.3(0.6) 487.4(0.4) 597(2)
W + 2 105.1(0.1) 104.1(0.3) 158.1(0.2) 154.0(0.5)
W + 3 27.6(0.04) 23.9(0.1) 43.85(0.08) 37.2(0.4)

Table A.4: Total cross sections in pb for W + n jet production at the LHC at
√
s = 8 TeV,

using the anti-kT jet algorithm with R = 0.5.
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We display the
√
s = 8 TeV cross sections for W + n jet production in

Table A.4. We define jets using the anti-kT algorithm [21] with parameter
R = 0.5. We apply the following cuts,

Ee
T > 20 GeV , |ηe| < 2.5 , /ET > 20 GeV ,

pjetT > 25 GeV , |ηjet| < 3 , MW
T > 20 GeV . (A.1)

The transverse mass of the W -boson is computed from the kinematics of its
decay products, W → eνe: MW

T =
√

2Ee
TE

ν
T(1− cos(∆φeν)). In this case,

the factorization and renormalization scales are set to,

µR,0 = µF,0 =
1
2
Ĥ ′

T , (A.2)

where Ĥ ′
T is defined in eq. (5). The LO cross sections are computed using

MSTW2008 [36] LO pdfs, and the NLO cross sections using the MSTW2008
NLO pdfs. In each case, we use the αs(µ) corresponding to the parton
distribution set. The corresponding 7 TeV cross sections are given in table I
of ref. [34].

Appendix A.2. Inclusive Z, γ∗ + n-jet Production

Process LO NLO
Z + 1 84.05(0.04) 102.6(0.2)
Z + 2 26.86(0.02) 26.50(0.06)
Z + 3 7.452(0.009) 6.58(0.09)

Table A.5: Total cross sections in pb for Z, γ∗ + n jet production at the LHC at
√
s =

8 TeV, using the anti-kT jet algorithm with R = 0.5 and the cuts given in eq. (A.3).

For the 8 TeV cross sections listed in Table A.5, we choose the anti-kT
algorithm with R = 0.5 and impose the following set of cuts,

Ee
T > 20 GeV , |ηe| < 2.5 , 66 GeV < Me+e− < 116 GeV ,

pjetT > 25 GeV , |ηjet| < 3 , (A.3)

where η is the pseudorapidity and Me+e− is the invariant mass of the e+e−

decay pair. The invariant-mass cut is tighter than that used in generating the
n-tuples, and other cuts are added in this calculation, illustrating precisely
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this flexibility of the n-tuple setup. The factorization and renormalization
scales are set to

µR,0 = µF,0 =
1

2
Ĥ ′

T , (A.4)

where Ĥ ′
T is defined in eq. (5). The MSTW2008 parton distribution functions

are used. Cross sections at 7 TeV are given in ref. [29].

Appendix A.3. Inclusive n-jet Production

Jets LO NLO
2 1232.5(0.2) 1526.(2)
3 126.74(.03) 71.9(0.3)
4 14.36(0.01) 8.12(0.17)

Table A.6: Total cross sections in nb for pure jet production at the LHC at
√
s = 8 TeV,

using the anti-kT jet algorithm with R = 0.4 and the cuts given in eq. (A.5).

The cross sections for 2, 3, 4-jet production at
√
s = 8 TeV are given in

Table A.6. In this case we use the anti-kT jet algorithm with R = 0.4 with
the same cuts as in ref. [31]:

pjetT > 60 GeV , pleading jet
T > 80 GeV , |y|jet < 2.8 , (A.5)

where pleading jet
T is the transverse momentum of the leading jet ordered in

transverse momentum and yjet is the rapidity of a jet. In this case, the
factorization and renormalization scale are chosen to be,

µR,0 = µF,0 ≡ µ =
1

2

∑

j

pjT , (A.6)

where the sum runs over all final-state partons j. Again we use the MSTW2008
parton distribution functions. The 7 TeV cross sections are given in table I
of ref. [31].
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Kosower, D. Mâıtre, K. Ozeren, Next-to-Leading Order W + 5-Jet Pro-
duction at the LHC, Phys. Rev. D88 (2013) 014025. arXiv:1304.1253,
doi:10.1103/PhysRevD.88.014025.

[35] H. Ita, K. Ozeren, Colour Decompositions of Multi-quark One-
loop QCD Amplitudes, JHEP 1202 (2012) 118. arXiv:1111.4193,
doi:10.1007/JHEP02(2012)118.

[36] A. Martin, W. Stirling, R. Thorne, G. Watt, Parton distributions
for the LHC, Eur. Phys. J. C63 (2009) 189–285. arXiv:0901.0002,
doi:10.1140/epjc/s10052-009-1072-5.

[37] Z. Bern, G. Diana, L. J. Dixon, F. Febres Cordero, D. Forde, T. Gleis-
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