HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Arctic curves of the octahedron equation

Abstract : We study the octahedron relation (also known as the $A_{\infty}$ $T$-system), obeyed in particular by the partition function for dimer coverings of the Aztec Diamond graph. For a suitable class of doubly periodic initial conditions, we find exact solutions with a particularly simple factorized form. For these, we show that the density function that measures the average dimer occupation of a face of the Aztec graph, obeys a system of linear recursion relations with periodic coefficients. This allows us to explore the thermodynamic limit of the corresponding dimer models and to derive exact "arctic" curves separating the various phases of the system.
Complete list of metadata

Contributor : Emmanuelle de Laborderie Connect in order to contact the contributor
Submitted on : Friday, June 6, 2014 - 11:51:17 AM
Last modification on : Wednesday, September 12, 2018 - 2:13:57 PM

Links full text


  • HAL Id : cea-01002519, version 1
  • ARXIV : 1402.4493



P. Di Francesco, R. Soto-Garrido. Arctic curves of the octahedron equation. 2014. ⟨cea-01002519⟩



Record views