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Morrison5

ABSTRACT

We present observations of the molecular gas in the GN20 proto-cluster of

galaxies at z = 4.05 using the Expanded Very Large Array (EVLA). This group

of galaxies is the ideal laboratory for studying the formation of massive galaxies

via luminous, gas-rich starbursts within 1.6 Gyr of the Big Bang. We detect

three galaxies in the proto-cluster in CO 2-1 emission, with gas masses (H2)

between 1010 and 1011 × (α/0.8) M⊙. The emission from the brightest source,

GN20, is resolved with a size ∼ 2”, and has a clear north-south velocity gradient,

possibly indicating ordered rotation. The gas mass in GN20 is comparable to

the stellar mass (1.3 × 1011 × (α/0.8) M⊙ and 2.3 × 1011 M⊙, respectively),

and the sum of gas plus stellar mass is comparable to the dynamical mass of

the system (∼ 3.4 × 1011[sin(i)/sin(45o)]−2 M⊙), within a 5kpc radius. There

is also evidence for a tidal tail extending another 2” north of the galaxy with

a narrow velocity dispersion. GN20 may be a massive, gas rich disk that is

gravitationally disturbed, but not completely disrupted. There is one Lyman-

break galaxy (BD29079) in the GN20 proto-cluster with an optical spectroscopic

redshift within our search volume, and we set a 3σ limit to the molecular gas

mass of this galaxy of 1.1× 1010 × (α/0.8) M⊙.
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1. Introduction

Numerous lines of evidence support the hypothesis that massive elliptical galaxies form

the majority of their stars quickly at early epochs, including: stellar population synthesis

studies of nearby elliptical galaxies (Renzini 2006; Collins et al. 2009), a faster decline with

cosmic time in the star formation rate per unit stellar mass with increasing galaxy mass

(Moresco et al. 2010), and the direct observation of ‘red and dead’ ellipticals in clusters at

high redshift (Kurk et al. 2009; Doherty et al. 2009; Andreon & Huertas-Company 2011).

Plausible progenitors for these evolved galaxies at high redshift are even higher redshift

submm galaxies (SMGs), corresponding to dusty, luminous starburst galaxies found in wide-

field submm surveys (Blain et al. 2002). These hyper-luminous high-z galaxies may trace

high over-densities, and are likely related to the formation of clusters and large ellipticals

(Stevens et al. 2003; Aravena et al. 2010; although cf. Chapman et al. 2009; Williams et

al. 2011). While the space density of SMGs peaks around z ∼ 2.3 (Chapman et al. 2003),

it is becoming clear that there is a substantial high-redshift tail of the SMG population,

extending to z > 4 (Capak et al. 2011, Riechers et al. 2010; Wardlow et al. 2011). Daddi

et al. (2009a) conclude, based on SMG space densities and duty cycles, that there are likely

enough SMGs at z > 3.5 to account for the known populations of old massive galaxies at

z ∼ 2 to 3.

A key question for the SMGs is: what drives the prolific star formation? Tacconi et

al. (2006; 2008) argue, based on imaging of higher-order CO emission from a sample of

z ∼ 2 SMGs, that SMGs are predominantly nuclear starbursts, with median sizes < 0.5” (<

4kpc), ‘representing extreme, short-lived, maximum star forming events in highly dissipative

mergers of gas rich galaxies.’ This conclusion is supported by VLBI imaging of the star

forming regions in two SMGs (Momjian et al. 2005; 2010). However, recent imaging of the

lower order CO emission in a few SMGs (Ivison et al. 2010; Carilli et al. 2010; Riechers et al.

2011 in press), suggests that the lower-excitation molecular gas reservoirs can be significantly

more extended.

Daddi et al. (2009a) have identified a unique region in GOODS-N, containing the

three galaxies: GN20, GN20.2a, and GN20.2b, at z ∼ 4.05± 0.01, within 20′′ of each other

(projected physical separation = 140 kpc). GN20 is among the brightest submm galaxies

known, with a 350 GHz flux density of 23mJy. The galaxies GN20.2a and b are separated

by only a few arcseconds, and hence are not spatially distinct in typical submm bolometer
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images. The two galaxies have a summed flux density of S350GHz ∼ 9.9mJy. The implied IR

luminosities (8 to 1000µm) are LTIR ≥ 1013 L⊙, with star formation rates are > 1000 M⊙

yr−1 (Daddi et al. 2009a). High order CO emission (4-3 and/or 6-5) has been detected from

all three galaxies, although only marginally in the case of GN20.2b (Daddi et al. 2009a).

The GN20 field also contains numerous Lyman Break Galaxies (LBGs) at similar red-

shift, and an overdensity of zphot > 3.5 IRAC selected galaxies (Daddi et al. 2009a). Hence,

this field offers an unprecedented opportunity to perform a definitive study of the gas dis-

tribution, kinematics, and physical conditions in a proto-cluster of galaxies within 1.6 Gyr

of the Big Bang. In this paper we present a survey with the Expanded Very Large Array

(EVLA; Perley et al. 2011), of the CO 2-1 emission from the GN20 proto-cluster. The

low order transitions are critical for determining the total gas mass. We also search for CO

emission from other galaxies in the cosmic volume surveyed.

2. The GN20 proto-cluster: a massive galaxy formation laboratory

The HST I-band image of the bright SMG GN20 shows diffuse emission about 1.5” in

extent (Daddi et al. 2009a), although offset from the radio and submm emission by ∼ 1”,

implying high obscuration of the most active star forming regions in the galaxy. GN20 is

detected at 1.4 GHz, and resolved on a scale of ∼ 1.5”, with a total flux density at 72±13µJy

(Morrison et al. 2010; Casey et al. 2009). High resolution imaging of the 850µm emission

shows resolved structure, with a north-south extension possibly as large at 1.5” (Younger et

al. 2008; Iono et al. 2006). The 6.2µm PAH spectral feature has been detected in GN20 using

Spitzer (Riechers et al. in prep). The integrated CO 1-0 and 2-1 emission from GN20 has

been imaged at resolutions down to 0.2” with the VLA (Carilli et al. 2010). The molecular

gas is extended on a scale of at least 1.5”, and at high resolution forms a partial ring, or disk.

Unfortunately, the old VLA correlator provided no velocity information. The excitation of

the integrated CO emission from GN20 is higher than the Milky Way, but lower than high

redshift quasar hosts and the nuclear starburst regions of IR-luminous galaxies. The CO 4-3

line strength in GN20 is more than a factor of two lower than expected for thermal excitation

(Carilli et al. 2010).

GN20.2a shows a complex and extended morphology in the HST images (Daddi et al.

2009a), and it is a relatively strong radio source (S1.4 = 181µJy), likely corresponding to a

radio AGN. The SED in the optical through near-IR is consistent with a star forming galaxy.

GN20.2a has been detected in CO 4-3 emission by Daddi et al. (2009a). Daddi et al. derive

an IR luminosity (8 to 1000µm) of LIR = 1.6× 1013 L⊙.
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GN20.2b is faint and compact in the HST image. It is also detected in the radio

continuum at S1.4 = 32µJy, consistent with star formation. CO 4-3 emission is marginally

detected with the Plateau de Bure Interferometer, and appears to be broad (700 km s−1;

Daddi et al. 2009a).

Daddi et al. (2009a) find 15 B-band dropout galaxies in a 25′′ radius centered on GN20,

an overdensity of a factor of 6 compared to the full GOODS-N area, which is significant at

the 7σ level. A spike in the redshift distribution of galaxies at z = 4.06 ± 0.02 is observed

in all of GOODS-N (13 spectroscopic redshifts in total at this redshift). Lastly, the SMG

GN10 at z = 4.04 is located 9′ from GN20 (Daddi et al. 2009b; Dannerbauer et al. 2008).

Therefore, it appears that the GN20 volume has a very significant overdensity, indicating a

proto-cluster environment at z ∼ 4.05. Daddi et al. (2009a) estimate a total mass for this

structure of ∼ 1014 M⊙.

3. Observations

We observed the GN20 field with the Expanded Very Large Array in the D (1km)

configuration in March and April, 2010. Observations were made of the CO 2-1 line, using a

total bandwidth of 246 MHz and in each of two polarizations, centered at 45.655 GHz. The

velocity coverage is 1600 km s−1, including the CO 2-1 lines in the three galaxies. The total

observing time was 28 hours, but only about 22 to 24 antennas were available at a time due

to on-going EVLA work.

Dynamic scheduling to ensure good weather is now standard at the EVLA. Fast switch-

ing phase calibration was employed (Carilli & Holdaway 1999) on timescales between two

and three minutes using the VLA calibrator J1302+5748. Data were edited to remove time

ranges of poor phase stability. The source 3C286 was used for flux density calibration. Stan-

dard EVLA data calibration and editing was performed using AIPS. After calibration and

data editing, images were synthesized using the robust weighting scheme of the uv data with

R=2 (Cornwell et al. 1999).

The final resolution for the images was 1.9”. Spectral line cubes were generated at

12MHz per channel (78 km s−1). The rms noise per channel at 12MHz resolution is 0.11

mJy beam−1. All images were corrected for the VLA primary beam response, which has a

FWHM ∼ 1′ at 45 GHz. The field pointing center was located 10” west of GN20.
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4. Results

Figure 1 shows the CO 2-1 emission integrated over the full frequency range covered by

these observations for the GN20 group. The crosses mark the 1.4 GHz continuum positions

of the three galaxies GN20, 20.2a,b (Morrison et al. 2010), and the optical position of one

LBG with a spectoscopic redshift in the redshift range of the CO 2-1 observations (Section

5.2). We have added the previously published D array observations (Carilli et al. 2010)

to improve signal-to-noise. Unfortunately, the previous data did not have the exact same

velocity coverage, and hence the velocity-integrated flux densities are not accurate. Hence,

this image acts as a finding chart for the CO emitting regions, but accurate line fluxes will

be based on subsequent analysis of the new EVLA data itself.

We detect CO 2-1 emission from GN20, GN20.2a, and GN20.2b. GN20 is extended on

a scale ∼ 2” (see below). GN20.2a is not spatially resolved by these observations. GN20.2b

may be extended, although the signal-to-noise of these data are not conclusive.

Figure 2 shows spectra of the three sources. For GN20, we integrate over an area of 2”.

For the other two sources we only consider the spectra at the peak of the velocity integrated

CO image. Results for Gaussian fits to the lines are given in Table 1. The lines are broad for

GN20 and GN20.2a (∼ 800 km s−1), although not outside the range of the zero intesity line

widths seen in some nearby ULIRGs (Downes & Solomon 1998). However, we note athat,

due to the bandwidth limitation for the early EVLA, the very lowest frequency (highest

velocity) emission for GN20 may be truncated by these observations, although the higher

order CO transitions show that we expect little emission beyond our lowest spectral channel

(Daddi et al. 2009a). GN20.2b shows a narrower profile at the peak position. However, the

detection in the velocity integrated image over the full frequency range (Figure 1), suggests

that the emission may be extended both spatially and spectrally. A possibly broader line is

also suggested for the higher order CO emission, but again, the high order CO detection is

only marginal (Daddi et al 2009a). We have investigated this possibility with the current

data, and conclude that more sensitive observations are required to better characterize the

CO emission from GN20.2b, and we simply present the spectrum at the peak position herein.

Figure 3 shows the velocity channel images for the GN20 CO 2-1 emission at 78 km s−1

channel−1 and 1.9” resolution. The emission clearly moves from the south to the north with

increasing frequency. An interesting feature is seen in channel 6, corresponding to a frequency

of 45.598 GHz (or z = 4.05588). The emission in channel 6 appears to be substantially more

extended than in other channels. Inspecting our bandpass calibration, we find no channel-

dependent calibration errors that would lead to such a difference in morphology for this

single channel. In channel 6 the emission extends well to the north, with a total of extent of

∼ 4”. Admittedly, the signal-to-noise is not high, but this extended emission is suggestive of
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a gravitationally induced tidal feature. Such tidal tails in nearby galaxies often occur over a

narrow velocity range (Hibbard & Mihos 1995).

Figure 4a shows the CO 2-1 emission from GN20 integrated over the velocity range

shown in the channel maps of Figure 3. The emission appears extended, in particular to the

southwest. A formal Gaussian fit to the emission yields a total flux density of 0.69 ± .07

mJy, a peak surface brightness of 0.49 ± 0.03 Jy beam−1, and a deconvolved source size

of 1.5” × 0.9” with major axis position angle PA = 69o. Figure 4b shows the iso-velocity

contours (first moment) of the CO 2-1 emission, ie. the weighted mean velocity derived

after first blanking the channel images below 3σ per channel. There is a velocity gradient

north-south, with a magnitude of ±250 km s−1. Given the low spatial resolution of these

images, this corresponds to a lower limit to the true projected rotational velocity.

5. Analysis

5.1. Masses

We derive the mass in molecular gas (H2) from the observed CO 2-1 luminosities using

the standard relationships in Solomon & Vanden Bout (2005). We extrapolate from CO

2-1 to 1-0 luminosity assuming constant brightness temperature, which is certainly correct

to within 10% for these galaxies (Carilli et al. 2010). We adopt a CO luminosity to H2

conversion factor of α = 0.8 M⊙ K km s−1 pc2, appropriate for nearby nuclear starburst

galaxies (Downes & Solomon 1998). The resulting values are listed in Table 1.

Admittedly, the uncertainty on α is significant. A minimum gas mass can be derived

assuming optically thin emission, and adopting a temperature and a CO to H2 abundance

ratio. Ivison et al. (2010) show that for reasonable assumptions (Galactic CO abundance in

molecular clouds, and temperatures 40 K to 50 K), the lower limit to α ∼ 0.65 (see also

Aalto et al. 1995).

The gas mass in GN20 is 1.3× 1011 × (α/0.8) M⊙. Daddi et al. (2009a) derive a stellar

mass of 2.3× 1011 M⊙ from IR through optical SED fitting.

We can obtain a very rough estimate of the gravitational mass of GN20 from the CO

velocity field, although there are substantial uncertainties due to the low spatial resolution

of these observations. For the rotational velocity, we adopt the extremes of the velocity

channels with significant emission in Figure 3, or 390/sin(i) km s−1. For the radius, we

adopt the value for the CO ring seen in the high resolution 2-1 observations presented in

Carilli et al. (2010), ∼ 5 kpc. The inclination angle remains uncertain. The gravitational
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mass inside this radius is ∼ 3.4×1011[sin(i)/sin(45o)]−2 M⊙. This naively derived dynamical

mass is comparable to the sum of the stellar and gas masses.

5.2. Lyman-break galaxy molecular mass limits

There is one Lyman-break galaxy within our field with a spectroscopic redshift placing

the CO 2-1 line within our band: J123711.48+622155.8 at z = 4.058 (BD29079; Daddi et

al. 2009a; Shim et al. 2011). We find no CO emission from this galaxy, to a 1σ limit of

0.17 mJy beam−1 at 78 km s−1 channel−1, after primary beam correction. Convolving to

312 km s−1, we set a 3σ limit to the CO 1-0 luminosity of L′

CO1−0
< 1.4× 1010K km s−1 pc2,

assuming constant brightness temperature from CO 2-1 to 1-0. The implied molecular gas

mass of this galaxy is < 1.1×1010× (α/0.8) M⊙. The stellar mass of this galaxy is 2.6×1010

M⊙ (Daddi et al. 2009a), hence the gas-to-stellar mass ratio is < 0.53× (α/0.8).

Daddi et al. (2009a) estimate a star formation rate of 150 M⊙ year−1 for BD29079, or

an IR luminosity of 1.5 × 1012 L⊙. Daddi et al. (2010) have considered the ’star formation

law’ in high z galaxies, ie. the relationship between IR luminosity and CO luminosity, and

find for galaxies of this luminosity at z ∼ 2: L′

CO1−0
∼ 0.02LFIR K km s−1 pc2. Adopting

this relation implies an expected CO luminosity of L′

CO1−0
∼ 3×1010 L⊙. Hence, BD29079 is

under-luminous in CO emission relative to the standard star formation law, although within

the broad (factor three) scatter at any given luminosity.

There are 11 other LBGs within our field, and with photometric redshifts that are

consistent with the sampled range, although the zphot error bars are such that the galaxies

could be outside the velocity range of the CO observations. We have looked for CO emission

at all these positions, and find no significant detections to similar limits to those quoted

above.

We emphasize that there is a large uncertainty in the derived H2 mass for the LBGs,

due to the unknown conversion factor, α. It is possible that metal poor star forming galaxies

have a much larger value of α than ULIRGs or even the Milky Way due to CO dissociation

by the more pervasive UV radiation field (Madden et al. 1997; Papadopoulos & Pelupessy

2010).

6. Discussion

We have detected CO 2-1 emission from three galaxies in the GN20 proto-cluster at

z = 4.05 using the EVLA. The molecular gas masses range from 1.9 × 1010 × (α/0.8) M⊙
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to 1.3× 1011 × (α/0.8) M⊙. Hence, we are observing a group of molecular gas rich galaxies

undergoing extreme starburts within 1.6 Gyr of the Big Bang.

GN20 presents a particularly interesting case, given its very high luminosity, and large

spatial extent. We find that the sum of the stellar and gas mass in GN20 is comparable

to the dynamical mass. While the assumptions involved in all three mass calculations are

uncertain, it appears that the baryons likely dominate the mass content within 5 kpc radius

of GN20. Moreover, their is little room for a CO luminosity to gas mass conversion factor

substantially larger than 0.8 M⊙ K km s−1 pc2. High resolution observations are required to

confirm the rotational aspect of the emission, and to obtain a more accurate derivation of

the dynamical mass.

The morphology and velocity field for GN20 suggest a rotating disk, with a possible tidal

tail extending 10kpc to the north in a single 78 km s−1 channel. We can speculate that GN20

is a gas rich disk galaxy that has been gravitationally torqued by its neighboring galaxies.

This gravitational disturbance has not distrupted the disk, but has greatly enhanced star

formation in the disk, as well as generating the extended, tidal gas distribution.

Lastly, we have searched for CO emission from LBGs in the GN20 protocluster. We

set an upper limit of 1.1 × 1010 × (α/0.8) M⊙ to the molecular gas mass in these galaxies,

including one with an accurate spectroscopic redshift. Our limit is below the expected value

based on the standard star formation law at this redshift, but within the broad scatter.

We are obtaining high resolution CO imaging observations of the GN20 proto-cluster

with the EVLA and the Plateau de Bure interferometer to perform a more detailed dynamical

analysis, and study the spatial distribution of the CO excitation and gas-to-dust ratio of this

forming cluster of massive galaxies at z = 4.05.

We thank the referee for useful comments. ED acknowledges the funding support of

ERC-StG-UPGAL-240039, and ANR-08-JCJC-0008. DR acknowledges support from from

NASA through Hubble Fellowship grant HST-HF-51235.01 awarded by the Space Telescope

Science Institute, which is operated by the Association of Universities for Research in As-

tronomy, Inc., for NASA, under contract NAS 5-26555.
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Table 1: Results from Gaussian fitting to the CO 2-1 line profiles
Source Redshift Peak FWHM ICO Velocitya L’CO M(H2)

mJy km s−1 Jy km s−1 km s−1 K km s−1 pc2 M⊙

GN20 4.0554 1.21±0.11 679±88 0.87±0.088 -11±32 1.6× 1011 1.3× 1011

GN20.2a 4.0508 0.54±0.065 723±110 0.41±0.050 -283±45 7.6× 1010 6.1× 1010

GN20.2b 4.0567 0.42±0.083 290±70 0.13±0.025 67±29 2.4× 1010 1.9× 1010
aVelocity relative to z = 4.0556.
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Fig. 1.— The CO 2-1 emission at 1.9” resolution integrated over the full observed velocity

range for the GN20 group of galaxies. In this case, no primary correction is applied in order

to ensure a flat noise across the image to search for sources. Crosses show the 1.4 GHz

continuum positions of the three galaxies GN20, 20.2a,b (Morrison et al. 2010), and the

optical position of one LBG with a spectoscopic redshift. The contour levels are linear, in

steps of 1σ (30 µJy beam−1), starting at ±2σ. Negative contours are dashed.
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Fig. 2.— CO 2-1 spectra for GN20, GN20.2a, and GN20.2b at 78 km s−1 spectral resolution.

Results for the Gaussian fitting are given in Table 1.
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Fig. 3.— Channel images of the GN20 CO 2-1 spectrum at 1.9” resolution and 78 km s

channel−1. The contour levels are linear, in steps of 1σ (0.12 mJy beam−1), starting at ±2σ.

Negative contours are dashed.
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Fig. 4.— Upper: Total intensity CO 2-1 image of GN20, summing all the line channels

(channels 1 to 12). The contour levels are linear, in steps of 1σ (30µJy beam−1), starting at

±2σ. Negative contours are dashed. Lower: Velocity contours of the CO 2-1 emission from

GN20 (first moment image). Contours range from -250 km s−1 to +250 km s−1, in steps of

50 km s−1, with zero velocity corresponding to z = 4.0556. Negative velocities are dashed.
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