A unified empirical model for infrared galaxy counts based on observed physical evolution of distant galaxies - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Accéder directement au contenu
Article Dans Une Revue The Astrophysical journal letters Année : 2012

A unified empirical model for infrared galaxy counts based on observed physical evolution of distant galaxies

Résumé

We reproduce the mid-infrared to radio galaxy counts with a new empirical model based on our current understanding of the evolution of main-sequence (MS) and starburst (SB) galaxies. We rely on a simple Spectral Energy Distribution (SED) library based on Herschel observations: a single SED for the MS and another one for SB, getting warmer with redshift. Our model is able to reproduce recent measurements of galaxy counts performed with Herschel, including counts per redshift slice. This agreement demonstrates the power of our 2 Star-Formation Modes (2SFM) decomposition for describing the statistical properties of infrared sources and their evolution with cosmic time. We discuss the relative contribution of MS and SB galaxies to the number counts at various wavelengths and flux densities. We also show that MS galaxies are responsible for a bump in the 1.4 GHz radio counts around 50 {\mu}Jy. Material of the model (predictions, SED library, mock catalogs...) is available online at http://irfu.cea.fr/Sap/Phocea/Page/index.php?id=537.

Dates et versions

cea-00995639 , version 1 (23-05-2014)

Identifiants

Citer

Matthieu Béthermin, Emanuele Daddi, Georgios Magdis, Mark T Sargent, Yashar Hezaveh, et al.. A unified empirical model for infrared galaxy counts based on observed physical evolution of distant galaxies. The Astrophysical journal letters, 2012, 757 (2), pp.L23. ⟨10.1088/2041-8205/757/2/L23⟩. ⟨cea-00995639⟩
212 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More