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ABSTRACT

We study the influence of a dynamo magnetic field on the buoyant rise and emergence of twisted magnetic flux ropes
and their influence on the global external magnetic field. We ran three-dimensional MHD numerical simulations
using the ASH code (anelastic spherical harmonics) and analyzed the dynamical evolution of such buoyant flux
ropes from the bottom of the convection zone until the post-emergence phases. The global nature of this model
can only very crudely and inaccurately represent the local dynamics of the buoyant rise of the implanted magnetic
structure, but nonetheless allows us to study the influence of global effects, such as self-consistently generated
differential rotation and meridional circulation, and of Coriolis forces. Although motivated by the solar context, this
model cannot be thought of as a realistic model of the rise of magnetic structures and their emergence in the Sun,
where the local dynamics are completely different. The properties of initial phases of the buoyant rise are determined
essentially by the flux-rope’s properties and the convective flows and consequently are in good agreement with
previous studies. However, the effects of the interaction of the background dynamo field become increasingly strong
as the flux ropes evolve. During the buoyant rise across the convection zone, the flux-rope’s magnetic field strength
scales as B ∝ ρα , with α � 1. An increase of radial velocity, density, and current density is observed to precede
flux emergence at all longitudes. The geometry, latitude, and relative orientation of the flux ropes with respect
to the background magnetic field influences the resulting rise speeds, zonal flow amplitudes (which develop within
the flux ropes), and the corresponding surface signatures. This influences the morphology, duration and amplitude of
the surface shearing, and the Poynting flux associated with magnetic flux-rope emergence. The emerged magnetic
flux influences the system’s global polarity, leading in some cases to a polarity reversal while inhibiting the
background dynamo from doing so in others. The emerged magnetic flux is slowly advected poleward while being
diffused and assimilated by the background dynamo field.
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1. INTRODUCTION

It is well known that the Sun undergoes recurrent phases of
intense magnetic activity. The most visible signature of mag-
netic activity is the presence of sunspots and active regions
(ARs). These correspond to particularly strong concentrations
of magnetic field that cross the surface of the Sun as a conse-
quence of the underlying magnetoconvective dynamics and the
flux-emergence phenomena in combination. Flux emergence oc-
curs, nevertheless, at a very broad range of spatial and temporal
scales, with the sunspots contributing to only a fraction of the to-
tal photospheric magnetic flux (Schrijver et al. 1997). The ARs
are often composed of a mixture of large (unipolar) spots and
small-scale polarities, which have a broad distribution of life-
times ranging from days up to two solar rotation periods. During
this period of time, they are observed to rotate and have their
main polarity pairs separate, giving rise to more complex and
dynamic polarity distributions. These magnetic structures are
believed to be the surface tracers of twisted magnetic flux ropes
generated further below (at the tachocline) that rise buoyantly up
to the surface. They then emerge (at least partially) through the
photosphere and provide the strong and coherent magnetic field
structures composing the solar AR, which are prone to host erup-
tive events in the solar corona. Such events are likely to involve
the surface convection, coronal dynamics, flux rope, and coro-
nal magnetic flux. Furthermore, it is now becoming clear that
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localized magnetic flux emergence is influenced by the large-
scale magnetic field structure. Emergence events feed magnetic
flux into the corona and may lead to important reconfigurations
of its magnetic field, either in a quasi-steady or in an impulsive
way (e.g., Liu et al. 2012). Conversely, the triggering of flares
(or even coronal mass ejections) depends to a certain extent on
the interaction of AR magnetic fields with their surroundings,
namely on the orientation and gradients of the coronal field (Shi-
bata et al. 1989; Forbes 2000; Kusano et al. 2012). Recent SDO
(Solar Dynamics Observatory) observations indicate that flux
emergence in one location can indeed trigger eruptive events in
very distant parts of the solar surface (Schrijver & Title 2011).
This emphasizes the idea that some of the physical processes
relating to flux emergence are global in nature. The causal link
between such seemingly independent events remains illusive
and calls for the use of global-scale analysis.

The Sun has been going through its activity cycle for
thousands of years, as revealed, for instance, by the modulation
of the 10Be concentration in Earth’s polar ice cores (Beer et al.
1998). These cycles show a quasi-regular 11 yr period (22 if one
distinguishes between opposite polarities of the Sun’s global
magnetic field), with the rising phase taking a shorter period
of time than the decaying phase (DeRosa et al. 2012). There
are some cycle-to-cycle variations (duration and intensity). For
example, cycle 23 was longer than usual, with several months of
unspotted solar surface between 2007 and 2009. Large sunspots
and complex ARs are now regularly appearing as cycle 24
becomes stronger. Sunspots appearing more frequently during
the rising phase of the cycle and at the activity maximum
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contribute to the renewal of the coronal field and the global
polarity reversal (Leighton 1969; Wang & Sheeley 1991).

Understanding the physics behind this wealth of inter-related
phenomena certainly is a challenging affair. Numerical MHD
simulations have been employed recurrently as a tool to model
different aspects of the general flux-rope rise and emergence
problem. The buoyant twisted flux ropes are generally believed
to arise from the tachocline (or nearby) as a result of hydro-
magnetic instabilities taking place there. These have been stud-
ied using mostly numerical models with local setups aiming
specifically to resolve as much as possible the small-scale pro-
cesses involved. A remarkable exception is the work by Nelson
et al. (2011, 2013), who were able to produce self-consistently
several buoyant toroidal structures that developed into omega
loops in a fast-rotating convection zone (three times the so-
lar rotation rate). Their breakthrough relied partly on the im-
plementation of a numerical spatial scheme for the diffusive
terms that allowed them to artificially reach substantially higher
Reynolds and magnetic Reynolds numbers than they could have
otherwise.

Kinematic dynamo models (e.g., Cameron & Schüssler 2007;
Jouve et al. 2008) have been shown to be able to reproduce
the long timescale properties of the global magnetic fields (the
“butterfly diagram,” Jouve & Brun 2007; Charbonneau 2010)
and predict, to some extent, the latitudes and times of sunspot
formation (Işık et al. 2011; Nandy et al. 2011; Cameron &
Schüssler 2007, 2012), but without accounting for the detailed
magnetoconvective dynamics.

The study of the late phases of the buoyant rise and emergence
of magnetic flux ropes has also resorted mostly to local high-
resolution settings (e.g., Archontis & Hood 2010; Aulanier et al.
2005; Cheung et al. 2009; Linton et al. 1996; Archontis et al.
2005; Cheung et al. 2010; Hood & Priest 1979; Komm
et al. 2011; Galsgaard & Nordlund 1997; Martı́nez-Sykora et al.
2008, 2009). These studies use simulation domains that typi-
cally span a few megameters above and below the photosphere.
Such simulations attempt to describe the very strongly stratified
photospheric layers as finely as possible, which justifies in most
cases the use of high-resolution local simulation domains. One
or multiple buoyant twisted magnetic flux ropes are introduced
near the lower boundary (typically a few megameters below the
surface) and evolve in more or less turbulent media until they
emerge. For a more detailed discussion of local flux emergence,
see the review by Fan (2009). Some of these works have been
very successful at reproducing features observed at the surface
of the Sun, but neglect (or strongly simplify) the constraints
imposed by the large-scale dynamics. The global background
dynamo and magnetoconvective processes at the origin of the
large-scale meridional and zonal flows cannot be fully taken
into account by this type of model.

The properties of the buoyant rise of magnetic flux ropes
down from their assumed generation site up to the surface of
the Sun require, to some extent, the use of global models of the
convective zone. Studies based on the thin flux-tube approxima-
tion (Weber et al. 2011, 2012, among many others) allow one
to follow the evolution of slowly buoyant tubes for very long
timescales at the expense of neglecting all sources of magnetic
or dynamical erosion caused by the background flows. Global
simulations resorting to finite-width magnetic flux ropes, con-
versely, can take into account the interaction between the tube
and the background convective motions and associated mean
flows. They are nevertheless restricted to moderate Reynolds
numbers and to the study of sufficiently strong flux ropes (as

the buoyant rise time needs to be considerably shorter than the
diffusive timescales). The limits of the global approach can, in
principle, be explored in more detail by resorting to local setups
reaching higher spatial resolutions and hence higher Reynolds
numbers (e.g., Hughes & Falle 1998). But these cannot cap-
ture the effects of the large-scale flows on the trajectories of
such flux ropes, nor can they self-consistently quantify the an-
gular momentum transport phenomena related to the rise of
such coherent and presumably self-connected structures. The
different approaches briefly listed in this paragraph are com-
plementary and supply different pieces of the puzzle. There are
two main options: (1) study local models that embed a large-
scale magnetic structure in a highly turbulent flow; or (2) study
global models that embed a large-scale magnetic structure in
a large-scale, laminar (or weakly turbulent) flow. In the for-
mer, the magnetic structures feel a more realistic (relative to the
solar case) bombardment by small-scale turbulence, but the dis-
advantage is that self-consistent large-scale fluid motions and
large-scale background magnetic fields are omitted (although
non-self-consistent versions could be added, e.g., Dorch 2007).
The latter has the advantage that such large-scale effects can be
included self-consistently. However, the numerical restrictions
that the global geometry imposes only allow the study of the
rise of the magnetic structure in a laminar or weakly turbulent
flow, where magnetic structure and velocity scales are compara-
ble and diffusion, advection, and transport times are all similar,
thereby simulating a completely different problem from that en-
countered in the solar situation. We deliberately chose the latter
option, as did Jouve & Brun (2009), to which this paper is meant
to be compared.

Jouve & Brun (2009; hereafter JB09) specifically considered
the influence of the global convective dynamics on the evolution
of finite-width buoyant magnetic flux ropes. They performed a
series of simulations of individual twisted magnetic flux ropes
inside a spherical convection zone possessing both large-scale
mean flows (e.g., solar-like differential rotation and meridional
circulation) and fully developed hydrodynamical convection.
They found that indeed latitudinal and longitudinal modulation
of convective patterns and large-scale flows have a direct
influence on the flux emergence of toroidal magnetic structures
that are below 6 − 7 Beq ∼ 4 × 105 G, where Beq has been
evaluated by computing the kinetic energy (KE) of the strongest
downflows. Above such a threshold, the structures tend to rise
and emerge almost as if they were embedded in a purely
isentropic layer. In such global-scale convective simulations,
the differential rotation was also found to influence the rise
trajectory of the flux ropes. As in Wissink et al. (2000) and
Abbett et al. (2001), the inertial (Coriolis) forces due to the
flux-rope displacement have an azimuthal component and a
(secondary) component pointing toward the rotation axis, which
opposes the buoyant force (reducing its radial rise speed) and
pushes the flux rope poleward. In JB09, the amplitude of
this effect depends on the latitude at which the flux ropes
are initially placed, and more specifically on the differential
rotation profile at that latitude. They found that a solar-like
background differential rotation makes flux-rope emergence
more difficult at low latitudes. They further confirmed the
existence of thresholds for the amount of twist and initial field
amplitude to obtain a radial rise of uniformly buoyant magnetic
structures.

The goal of this paper is to continue this effort by studying the
evolution of twisted magnetic flux ropes in a fully magnetized
three-dimensional convection zone with a background magnetic
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field generated self-consistently by dynamo processes. We will
thus focus on the large-scale effects rather than the small-
scale turbulent processes involved. We introduce such twisted
structures at the bottom of a magnetized turbulent convection
zone and let it evolve for a long period of time—a few times
longer than that of the buoyant rise timescale. This allows
us to investigate whether and by what means the background
magnetic field has an influence on the evolution of the coherent
magnetic flux ropes. We note that while it might have been easier
to impose a simpler steady global magnetic background field
(as in Dorch 2007), we believe that only a time-varying multi-
scale field as developed by dynamo action properly captures
the dynamics involved in the issues we address here. We also
address the importance of the buoyant rise and emergence
of such flux ropes on the global energy and magnetic flux
budgets. Furthermore, we explore whether surface diagnostics
(evaluated at the top of the numerical domain), which precede
and accompany the emergence of magnetic flux ropes, depend
on the properties of the background field (Wang & Sheeley 1991;
Schrijver & DeRosa 2003; Işık et al. 2011; Benevolenskaya
2004).

The remainder of this manuscript is organized as follows:
Section 2 describes the model equations and numerical setup
and discusses the parameter space explored and the scope
and limitations of our model. Section 3 describes the early
phases of the evolution of the twisted flux ropes (namely,
the buoyant rise through the convection zone, CZ), Section 4
describes the flux-emergence phases, Section 5.1 describes
the later phases (post-emergence and re-assimilation), and
Section 5.2 discusses the consequences of the flux-emergence
episodes in the corona. A general discussion follows in
Section 6.

2. MODEL SETUP

2.1. Anelastic MHD Equations

The simulations described here were performed with the
anelastic spherical harmonic (ASH) code. ASH solves the
three-dimensional MHD anelastic equations of motion in a
rotating spherical shell using a pseudo-spectral semi-implicit
approach (Clune et al. 1999; Brun et al. 2004). The effects
of compressibility on the convection are taken into account
by means of the anelastic approximation, which correctly
describes the advective dynamics while filtering out sound
waves that would otherwise severely limit the time steps allowed
by the simulation. ASH also uses a large-eddy simulation
(LES) approach, with parameterization to account for subgrid-
scale (SGS) motions. These equations are fully nonlinear in
velocity and magnetic fields. The thermodynamic variables are
linearized with respect to a spherically symmetric mean state
with density ρ̄, pressure P̄ , temperature T̄ , and specific entropy
S̄. Perturbations are denoted as ρ, P, T, and S. The equations
being solved are

∇ · (ρ̄v) = 0 , (1)

∇ · B = 0 , (2)

ρ̄

[
∂v
∂t

+ (v · ∇) v + 2Ω0 × v
]

= −∇P + ρg

+
1

4π
(∇ × B) × B − ∇ · D − [∇P̄ − ρ̄g] , (3)

ρ̄T̄
∂S

∂t
+ ρ̄T̄ v · ∇(S̄ + S) = ∇ · [κr ρ̄cp∇(T̄ + T )

+ κ0ρ̄T̄ ∇S̄ + κρ̄T̄ ∇S] +
4πη

c2
j2

+ 2ρ̄ν

[
eij eij − 1

3
(∇ · v)2

]
, (4)

∂B
∂t

= ∇×(v×B) − ∇× (η∇×B) , (5)

where cp is the specific heat at constant pressure, v = (vr, vθ , vφ)
is the local velocity in spherical geometry in the rotating frame
of constant angular velocity Ω0 = Ω0êz, B = (

Br, Bθ , Bφ

)
is

the magnetic field, j = c
4π

∇×B is the current density, g is the
gravitational acceleration, κr is the radiative diffusivity, and D
is the viscous stress tensor with components

Dij = −2ρ̄ν

[
eij − 1

3
(∇ · v) δij

]
, (6)

where eij is the strain rate tensor. As mentioned above, the
ASH code uses an LES formulation where ν, κ , and η are
assumed to be, respectively, an effective eddy viscosity, an eddy
diffusivity, and a magnetic diffusivity (chosen to accommodate
the resolution) that represent unresolved SGS processes. The
thermal diffusion κ0 acting on the mean entropy gradient
occupies a narrow region in the upper convection zone. Its
purpose is to transport heat through the outer surface where
radial convective motions vanish (Gilman & Glatzmaier 1981;
Wong & Lilly 1994). To close the set of equations, linearized
relations for the thermodynamic fluctuations are taken as

ρ

ρ̄
= P

P̄
− T

T̄
= P

γ P̄
− S

cp

. (7)

This assumes the ideal gas law

P̄ = Rρ̄T̄ , (8)

where R is the ideal gas constant, taking into account the
mean molecular weight μ corresponding to a mixture composed
roughly of three-fourths hydrogen and one-fourth helium per
mass. The reference or mean state (indicated by overbars)
is derived from a one-dimensional solar structure model and
is regularly updated with the spherically symmetric components
of the thermodynamic fluctuations as the simulation proceeds
(Brun et al. 2002). It begins in hydrostatic balance, so the
bracketed term on the right-hand side of Equation (3) initially
vanishes. However, as the simulation evolves, both the turbulent
and magnetic pressures drive the reference state slightly away
from strict hydrostatic balance.

Finally, the boundary conditions for the velocity are impen-
etrable and stress-free at the top and bottom of the shell. We
impose a constant radial entropy gradient at the top and bottom.
A latitudinal entropy profile is imposed at the bottom, as in
Miesch et al. (2006). We match the magnetic field to an external
potential magnetic field both at the top and the bottom of the
shell (Brun et al. 2004).

2.2. Background Dynamo Model

Our experiments consist of introducing a toroidal magnetic
flux rope at the base of the convection zone in a thermally
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Table 1
Summary of the Background Dynamo Parameters

Domain 0.72–0.97 R�
Grid resolution (Nr × Nθ × Nφ ) 256 × 1024 × 2048
Diffusive coefficients (mid-CZ) ν = 1.13 × 1012 cm2 s−1

κ = 4.53 × 1012 cm2 s−1

η = 2.83 × 1011 cm2 s−1

Dimensionless numbers Pr = 0.25, Pm = 4
Ra = 1.85 × 105 > Rac

Re = 120, Rm ∼ 480
Ta = 1.8 × 106, Roc = 0.63

Notes. ν, κ , and η are the effective viscosity, thermal diffusivity, and magnetic
diffusivity. Pr and Pm are the Prandtl and magnetic Prandtl numbers. Ra and Rac

are the Rayleigh and critical Rayleigh numbers. Re and Rm are the Reynolds and
magnetic Reynolds numbers. Ta and Roc are the Taylor and convective Rossby
numbers. See Section 2.2 for more details.

equilibrated convection model in which a dynamo is operating.
The study of the purely hydrodynamic case was the subject of
JB09.

Our numerical model presents a simplified description of the
physical processes acting on the magnetized solar convection
zone. Solar values are taken for the heat flux, rotation rate,
mass, and radius, and a perfect gas is assumed since the upper
boundary of the shell lies below the H and He ionization zones.
Contact is made with a seismically calibrated one-dimensional
solar structure model for the radial stratification. Table 1
summarizes the model’s main parameters, which we describe
in detail below. The computational domain extends from about
0.72 R� to 0.97 R�. The numerical domain uses 256 grid points
in the radial direction, 1024 in the latitudinal direction, and
2048 in azimuth. The reference state was obtained through the
one-dimensional CESAM stellar evolution code (Morel 1997;
Brun et al. 2002), which uses a classical mixing-length treatment
calibrated on solar models to compute convection. We consider
the central portion of the convection zone, while the penetrative
convection below that zone and the atmosphere above (which is
stable with respect to convection) are not taken into account. See
Browning et al. (2006), Brun et al. (2011), Pinto & Brun (2011),
and Warnecke et al. (2012) for simulations of solar convection
coupled to lower and upper stable layers.

The effective viscosity, thermal diffusivity, and magnetic
diffusivity ν, κ , and η are here taken to be functions of radius
alone and are chosen to scale as the inverse of ρ̄1/3. We use
the values ν = 1.13 × 1012 cm2 s−1, κ = 4.53 × 1012 cm2 s−1,
and η = 2.83 × 1011 cm2 s−1 at mid-CZ, corresponding to a
Prandtl number Pr = 0.25 and a magnetic Prandtl number
Pm = 4. The diffusive coefficients are, inevitably, much higher
than those believed to represent the real solar conditions. The Pm
value stated above is, consequently, considerably higher than the
solar one, but eases the development of a sustained dynamo. The
magnetic Prandtl number is held fixed in all the runs described
in this manuscript. In all cases, the spherical shell is initially
rotating at the rate Ω0 = 2.6 × 10−6 rad s−1 (corresponding to a
rotation period of 28 days).

We start from a spherically symmetric convection zone with
a realistic density stratification profile and solid-body rotation.
The density contrast in this convective case is about 24 between
the top and the bottom of the domain. The convection zone
is initially in hydrostatic equilibrium but convection is readily
triggered, as the background plasma is convectively unstable.
The entropy gradient is dS/dr = −10−7, and the Rayleigh
number was chosen to be supercritical Ra = 1.85 × 105 > Rac

(the critical Rayleigh number being Rac ∼ 104; Jones &
Kuzanyan 2009). The system then relaxes (after about one
viscous timescale or hundreds of convective overturning times)
to a statistically stationary state with a well-balanced radial
energy flux throughout the whole domain (see the bottom panel
of Figure 2 of JB09). The convection is moderately turbulent,
with an rms Reynolds number Re = vconv(rtop − rbot)/νmidCZ =
120, where the characteristic length scale is chosen as the
depth of the CZ and vconv = 80 m s−1. In the simulations,
the Taylor number is Ta = 1.8 × 106 and the convective
Rossby number is then Roc = Ra/(TaPr ) = 0.63 < 1,
thus ensuring a prograde differential rotation (Brun & Toomre
2002). Figure 1 displays the radial convective velocity along
with the differential and meridional circulation achieved self-
consistently in the simulation. As described in more detail in
JB09, convection is dominated at low latitudes by elongated
patterns (the so-called banana convective cells), whereas high-
latitude convective patterns are more isotropic. We note at
mid-latitude a zone of strong horizontal shear associated with
the large axisymmetric differential rotation realized in the
simulation. The radial and latitudinal profile of the angular
velocity are solar-like when compared to helioseismic inversions
(Schou et al. 1998; Thompson et al. 2003), with a fast equator,
slow pole, and conical profile at mid-latitude. However, we
acknowledge that we do not model the tachocline nor the near
surface shear layer. For the former, we adopt the latitudinal
thermal wind forcing used in Miesch et al. (2006; see Brun
et al. 2011 for a more self-consistent approach). Finally, we
also display the axisymmetric meridional flow present in the
simulation. It is mostly poleward near the surface, with one
large dominant cell on the order of 20 m s−1. Small counter cells
are also seen near the boundaries and in the polar cap, where
azimuthal averages are harder to perform due to the small lever
arm there.

Starting from such a hydrodynamical convective state, we
then add a seed magnetic field that evolves by the action
of the dynamo processes driven by the turbulent motions
described above. A weak seed magnetic field was chosen to
be a {l = 5,m = 4} multipole introduced in the convection
zone. The system was then evolved for 800 days, or about 28
solar rotations. With our choice of parameters, the magnetic
Reynolds number is Rm = Re × Pm ∼ 480. This is well above
the threshold of about 300 for dynamo action in stratified and
rotating solar convective shells, as evaluated by Brun et al.
(2004). Figure 2 displays the ratio between magnetic energy
(ME) and kinetic energy (KE) over the last 400 days of the
simulation. We indeed see that dynamo action takes place, as
ME/KE increases steadily. We clearly also see the exponential
growth and the change of the slope when nonlinear feedback
from the Lorentz force starts to be felt by the flow. We ran the
simulation until ME reaches an amplitude on the order of 2% of
KE. We chose to stop the simulation at that instant (t = 0 day
in the figure) as we did not want the averaged background field
to be too intense and the large-scale axisymmetric flows to
be influenced by the growing magnetic field. This somewhat
arbitrary choice allows us to have a multi-scale background
magnetic field while keeping the background large-scale flows
unchanged, hence allowing us to establish a direct link with
previous works (e.g., Jouve & Brun 2009). In particular, the
differential rotation remains solar-like, similar to the one shown
on Figure 1, since Maxwell stresses are not yet strong enough
to modify significantly the redistribution of angular momentum
(see Brun et al. 2004 for a more detailed discussion).
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Eq

Meridional Flow

Figure 1. Convective motions and mean flows in our model. The left panel shows the radial velocity profile near the top of the shell, with yellow and dark blue tones
representing, respectively, upflows and downflows. The middle panel shows the differential rotation profile, and the right panel shows the meridional circulation. The
last two panels show longitude- and time-(272 days) averaged data. For the meridional flow, dashed (solid) lines represent counterclockwise (clockwise) circulation,
and the intensity varies approximately between about −20 and 20 m s−1.

(A color version of this figure is available in the online journal.)

Figure 2. Evolution of the ratio of magnetic energy (ME) to kinetic energy
(KE) for the background dynamo field. The instant t = 0 corresponds to the
introduction time of the magnetic flux rope.

In Figure 3, we show the surface radial magnetic field at
t = 0 day. This corresponds to the instant of introduction
(addition to the background field) of our twisted magnetic flux
ropes (see Section 2.3). As already discussed in Brun et al.
(2004), the radial component of the field is mostly found in the
downflow lanes and ME can locally be more intense than KE
(see also Cattaneo 1999).

Figure 4 shows more precisely the distribution of the magnetic
field’s strength on the section of the CZ traversed by the flux
ropes (see Section 2.3 for more details) at t = 0. The average
background field amplitude is about 0.7 × 103 G, and the upper
tail of the distribution extends up to about 5×104 G. In the region
traversed by the magnetic flux ropes, the radial component of the
magnetic field is on average slightly smaller than the horizontal
components. To show this better, the bottom panel in Figure 4
displays the background magnetic field’s pitch angle distribution

Figure 3. Mollweide projection of the radial component of the background
dynamo magnetic field near r = 0.96R at t = 0. Dark tones denote negative
polarity. The color table scales from −170 to +170 G. Note the presence of
mixed field polarity in the downflow lanes. The dotted black line indicates the
position of the spherical surface placed at r = 1 R�.

(A color version of this figure is available in the online journal.)

in the same sub-domain. The pitch angle ψ is defined here as
the angle between the magnetic field vector and the azimuthal
direction, such that

tan ψ =
√

B2
r + B2

θ

Bφ

. (9)

If the magnetic field vectors had random spatial orientations
everywhere in the domain, then the probability distribution
function (PDF) for the pitch angle f (ψ) would be such that

f (ψ) dψ = 2πB2 |sin ψ | dψ

4πB2
= 1

2
|sin ψ | dψ. (10)

The function f (ψ) is represented by the dashed line in the
bottom panel of Figure 4. This shows that the background field
is slightly more toroidal than poloidal in this region.
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Figure 4. PDF of the magnetic field amplitude B =
√

(B2
r + B2

θ + B2
φ ) at t = 0 in the latitudinal interval [25◦N, 45◦N] covered by the flux-rope’s evolution (top panel;

note, all three B components are superimposed). Note that the histogram bins are distributed logarithmically. The global dynamo field peaks between 102 G and 103 G
and the FWHM of the distribution is of about one order of magnitude around that value. The bottom panel shows the PDF for the magnetic field’s pitch angle in the
same latitudinal interval (thick continuous line) and the expected distribution for a uniform random distribution of poloidal and toroidal fields (thin dashed line).

Table 2
Flux-rope Parameters for the Runs Discussed in the Text

Run Bmax
φ

(
105 G

)
A0

(
103

)
q As

Standard flux rope 1.73 3.30 20 0.00
Negative flux rope −1.73 −3.30 20 0.00
Left-handed flux rope 1.73 3.30 −20 0.00
Left-handed negative flux rope −1.73 −3.30 −20 0.00
Weak flux rope 8.66 1.65 20 0.00
Medium flux rope 1.30 2.48 20 0.00
No dynamo, standard flux rope 1.73 3.30 20 0.00
High buoyancy, medium field 1.30 2.48 20 52.3
High buoyancy, weak field 8.66 1.65 20 23.2

For comparison purposes, we also prepared a purely hydro-
dynamical background with the same properties (stratification,
meridional flows, and rotation pattern) as the dynamo runs but
without a background magnetic field.

2.3. Introduction of a Flux Rope

We introduced axisymmetric toroidal twisted magnetic flux
ropes near the lower boundary of the computational domain.
The (background) initial conditions are those resulting from the
evolution of a dynamo run, as presented above (Section 2.2). We
performed several runs, whose parameters are listed in Table 2.
Figure 5 shows the initial state of a typical run (our standard
case).

The magnetic geometry of the flux rope is expressed by the
two potential functions A and C

A (r, θ ) = − A0r × δ (r, θ ) , (11)

C (r, θ ) = − A0a
2q

2
× δ (r, θ ) , (12)

where

δ (r, θ ) = exp

[
−

(
r − Rt

a

)2
] [

1 + tanh

(
2
θ − θt

a/Rt

)]
.

These potential functions define a divergenceless and axisym-
metric magnetic field B in terms of the poloidal–toroidal de-
composition

B = ∇×∇× (Cer ) + ∇× (Aer ) , (13)

amplitude of which at the axis of the structure (r = Rt, θ = θt )
is given by

B0 ≡ Bmax
φ = 2A0

Rt

a
. (14)

The pitch angle ψ of the twisted magnetic field lines with respect
to the azimuthal direction at the flux-rope’s boundary is such
that

tan ψ ≈ qa

Rt + a
. (15)

We also apply the following entropy perturbation to the
background field:

δS = −AS

2Rt

a
exp

[
−

(
r − Rt

a

)2
] [

cosh2

(
2
θ − θt

a/Rt

)]−1

,

(16)

where its maximum amplitude is ΔS = −2AsRt/a at the flux-
rope’s axis. The flux ropes are initially setup in pressure equi-
librium with the surrounding plasma. This condition constrains
the density deficit Δρ/ρ (relative to the background density) to

Δρ

ρ
= 1 − exp

[
−ΔS

cp

] [
1 − B2

0

8πP

]1/γ

. (17)

We only consider in this paper δ (r, θ ) and δS perturbations,
which are axisymmetric, such that the flux-rope buoyancy is
independent of the azimuthal coordinate (unlike in Fan 2008;
Jouve et al. 2013).

As shown by Emonet & Moreno-Insertis (1998), there is a
threshold in magnetic twist that the flux rope must have in order
to maintain its coherence during its rise through the convection
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Figure 5. Initial conditions. Snapshot of a twisted magnetic flux rope introduced at the bottom of the CZ in the dynamo run described in Section 2.2. The left panel
shows a sample of magnetic field lines from the entire numerical domain (for which red/green tones represent strong/weak B field). The right panel shows the flux
rope in more detail over a small sub-domain of the numerical setup. In both the panels, blue and yellow volumes represent, respectively, convective upflows and
downflows (only the strongest down and upflows are represented on the left panel).

(A color version of this figure is available in the online journal.)

zone. This threshold is expressed in terms of a minimum pitch
angle ψ at the tube’s periphery

sin ψt =
∣∣Bpoloidal

∣∣
‖B‖ �

[
a

Hp

∣∣∣∣Δρ

ρ̄

∣∣∣∣ β

2

]1/2

, (18)

where a is the flux-rope’s radius, Hp is the background pressure
scale height, Δρ is the density deficit relative to the background
density ρ̄, and β is the ratio of gas to magnetic pressures.
In simple terms, a flux rope is able to rise cohesively if its
magnetic tension is able to counteract the torque applied by
the flows around the magnetic structure as it buoyantly rises.
Equation (18) describes this balance in the plane orthogonal
to the flux-rope’s axis, which is to say the poloidal plane in an
axisymmetric setup. The overall picture of the conditions for the
cohesive rise of such flux ropes in three-dimensional convective
shells was subject of previous studies (Archontis et al. 2005;
Jouve & Brun 2009, among others). Detailed discussions of
the evolution of twisted flux ropes near, above, and below this
threshold can be found in Jouve & Brun (2009). Following
those studies’ conclusions, in this paper we will only consider
magnetic structures that are expected to rise cohesively. The
focus here is on how the globally magnetized medium, rather
than a purely hydrodynamic one, interacts with and affects
the evolution of these magnetic structures (as explained in
Section 2.2).

Figure 6 shows the parameter space |B| versus ΔS used to
define the runs listed in Table 2 and summarizes the relations
between all the flux-rope parameters. Contours of constant Δρ/ρ
(black continuous lines) and sin ψt (blue dashed lines) were
overplotted to show how the different runs relate to each other in
terms of these two fundamental parameters. The density deficit
Δρ/ρ (and consequently, the buoyant rise speed) increases
from left to right and from bottom to top. For a given B0, a
positive ΔS translates into a density deficit higher than that in
the ΔS = 0 case. The buoyant rise speed increases accordingly,

Figure 6. Flux-rope parameter space |B| vs. ΔS. The continuous black lines are
contours of the perturbation Δρ/ρ at the center of the twisted flux ropes, which
corresponds to a given pair {|B0| , ΔS}. The blue dashed lines represent sin ψt ,
where ψt is the twist threshold for a given flux rope. The filled regions (gray
horizontal lines) are excluded a priori, corresponding to sin ψ � 1 or magnetic
fields below the minimum field strength threshold (B = 6.1×104 G for ΔS = 0)
found in Jouve & Brun (2009). The red dashed line represents an empirical re-
evaluation of this threshold as an outcome of our simulations. The red asterisk
represents our standard case. The dotted blue line follows the contour of constant
Δρ/ρ, which contains the standard case. The blue and red asterisks represent the
cases that are more thoroughly discussed in this manuscript. The other symbols
represent runs used to verify the consistency in our approach.

(A color version of this figure is available in the online journal.)

and the so does the corresponding threshold pitch angle ψt .
A negative ΔS produces the opposite effect. It is also possible
to explore different flux-rope magnetic field strengths while
keeping the same density deficit. Decreasing the magnetic field
amplitude B0 then implies increasing ΔS. This corresponds
to an upward and leftward trajectory over one of the Δρ/ρ
contour lines in the plot, and therefore to an increase in the pitch
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angle threshold. Indeed, torque balance in the meridional plane
(or in the plane orthogonal to the flux-rope’s axis) requires
that the flux ropes keep the same poloidal magnetic field
amplitude if the buoyant driver remains the same (having all
other parameters—a and Hp—fixed). The only way to satisfy
this condition while decreasing B0 is to increase the flux-rope’s
pitch angle. Increasing the magnetic field amplitude B0 while
keeping Δρ/ρ constant has the opposite consequences; namely,
this implies a decrease in ΔS and pitch angle threshold ψt . The
same type of reasoning can be applied to paths of constant ψt in
the {B0, ΔS} parameter space. The areas of the parameter space
for which it is impossible to form cohesive buoyant flux ropes
are grayed out. These correspond specifically to {B0, ΔS} pairs
that imply sin ψt > 1 and to density deficits not strong enough
to counteract the strongest convective downflows in the CZ. We
note that in practice the latter limit actually underestimates the
minimum value for Δρ/ρ that can be used. The red dashed line
represents an empirical re-evaluation of the Δρ/ρ threshold,
as an outcome of our simulations. Very slowly rising buoyant
flux-rope’s may require extremely low diffusivities, such that
the corresponding diffusive timescales are larger than their
long buoyant rise timescales. It is of course easier to follow
numerically the evolution of strongly buoyant flux ropes than
weakly buoyant ones (as the diffusive coefficients cannot be
lowered arbitrarily), and our model presents no exception to
this general rule.

For completeness, below we show the scaling relations
between ΔS, B, Δρ/ρ, and sin ψt , which follow from
Equations (16)–(18):

ΔS

(
Δρ

ρ
,B

)
= −cp ln

[
1 − Δρ

ρ

]
+

cp

γ
ln

[
1 − B2

8πP

]
(19)

Δρ

ρ
(B,ψt ) = sin2 ψt

[
a

HP

4πP

B2

]−1

(20)

ΔS (B,ψt ) = − cp ln

[
1 − sin2 ψt

(
a

HP

4πP

B2

)]

+
cp

γ
ln

[
1 − B2

8πP

]
. (21)

Figure 6 was built assuming invariant a = 2.87 × 10−2 R� and
Rt = 0.75 R�, which are the ones we chose to use in our simula-
tions. The values of P, HP, and cp are then implicitly defined by
the former parameters (the flux-rope’s initial position) and the
convective background, and are therefore also invariant. Chang-
ing these would affect the exact slopes and positions of the Δρ/ρ
and sin ψt contour lines, slightly deforming the diagram but still
maintaining its main properties.

2.4. Scope and Limits of Our Model

Let us better clarify the scope and limits of our methods
before moving on to the more detailed discussion of our
work. We use a global three-dimensional numerical model of a
convective spherical shell that solves a set of MHD equations
in the frame of the anelastic approximation (discussed in detail
in Bannon 1996; Lantz & Fan 1999). The maximum numerical
resolution we use (giving a spatial resolution of 1.5–2 Mm
horizontally and 0.01–1 Mm vertically) restricts our studies to

laminar or weakly turbulent flows and large cross-sectional area
flux ropes. The effective viscosity and resistivity are necessarily
much higher than those in the real Sun, and our magnetic
structures are resolved with about 64 points in radius and 25
points in latitude. Note that previous local studies have required
at least 200 points in each direction (Fan 2008; Dorch 2007)
and that some authors (e.g., Hughes & Falle 1998) argue that
resolution and the local Reynolds numbers are critical to an
accurate portrayal of the rise of a structure. The necessity
of making the magnetic structure large in conjunction with
high diffusivities leads to length scales and timescales of
the convective flows and background magnetic fields that are
comparable to those of the magnetic structure. The magnetic
structures occupy approximately one-fourth of the convection
zone by radius and evolve on a timescale of about 25 days,
which may be compared with the convective turnover time of
35 days and the magnetic diffusion time of 80 days. Therefore,
due to our choice of a global geometry and the constraints it
places on numerical resolution, we are necessarily restricted
to studying the brief rise of a large magnetic structure in a
large-scale weakly turbulent magnetoconvective background
where diffusive processes clearly play a significant role. This
means that what we study is clearly not the solar problem,
wherein a magnetic structure that is much larger than the
typical length scales of both the highly turbulent velocity and
magnetic fields rises quickly on a timescale that is far shorter
than any diffusive timescale. Furthermore, the similarity of all
our length scales demands that numerous realizations of the
simulations be performed to create accurate statistics, but such
a task is unfortunately too expensive to perform in our global
geometry. Our magnetic background is also somewhat arbitrary.
In our simulations, idealized twisted magnetic flux ropes are
added to a magnetoconvective setup—a dynamo—which we
let evolve 400 days beforehand. The ME spectrum reaches
a fully developed profile after about 150 days, with the later
evolution (between 150 and 400 days) translating simply into
an increase of amplitude of the whole spectrum. We chose to
stop the dynamo run when the ME reached about 2% of the KE.
This deliberate but completely arbitrary choice ensures that the
background flows retain the same global properties (meridional
circulation and prograde differential rotation) and hence lets
us establish a more clear comparison with the progenitor
hydrodynamic case (Jouve & Brun 2009). Different background
dynamo setups could perhaps lead to different results, and such
effects should be addressed in the future. Furthermore, it should
be noted that the top of the numerical domain (the “surface”)
is placed at 0.97 R�, thereby omitting a very dynamic layer of
the actual solar surface. Thus, our conclusions concerning “flux
emergence” are strictly related to emergence from the weakly
stratified interior of the calculation into the highly stratified
surface convective layers above. Significant modification of any
characteristics detected in our simulations should be expected,
and therefore any predictions must be considered very carefully
before any relation to the solar context is implied (as in Abbett
et al. 2001, for example). However, due to the first point above,
these simulations should in no way be considered as solar
anyway.

3. BUOYANT RISE IN A DYNAMO FIELD

Let us now describe the evolution of the twisted magnetic flux
ropes introduced near the bottom boundary of the background
model described above (Section 2).
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Figure 7. Sequence of snapshots of the flux rope in the standard case (polar slices at φ = 90◦) at three different moments in its temporal evolution (t ≈ 1, 10, and
20 days). The color scale shows vr in the top row and Δρ in the bottom row. The axis coordinates are in units of R�, with the origin at the center of the Sun. The black
continuous lines are contours of Bφ . The dotted line represents the initial position of the tube.

(A color version of this figure is available in the online journal.)

3.1. Buoyant Rise Properties

Figure 7 shows three snapshots of the evolution of a flux rope
as it rises through the convection zone, namely at t ≈ 1, 10,
and 20 days. The top row shows the radial velocity vr , while
the second row shows the density deficit Δρ in the flux rope.
The black lines are contours of the toroidal magnetic field Bφ .
For simplicity, only the standard case is represented in the
figure (strong-field highly buoyant case). All other cases in
which flux ropes manage to emerge share the same qualitative
properties; the differences will be discussed later on in the text.
The flux rope expands as it rises mostly due to the background
pressure stratification and partially due to magnetic diffusion.
We emphasize that the flux-rope’s diffusive timescale a2/η is
80 days, which is longer than the typical buoyant rise time
(∼10 days, except for the very weakly buoyant cases). The flux-
rope section is perfectly circular at t = 0, but its periphery
suffers small and intermittent deformations. At about t = 1 day,
the buoyant force has provided enough upward momentum for
the flux rope to start rising coherently. The top left panel in
Figure 7 shows that the whole core of the flux rope has a positive
vr at this moment, while its periphery still shows a different (yet
transient) behavior. The first panel in the second row in the figure
depicts how the density deficit Δρ (which the buoyant force is
proportional to) is stronger at the core than at the periphery,
partly explaining the aforementioned different behaviors (see
also the definitions in Equations (11)–(17)). Also, the magnetic
tension responsible for keeping the flux rope together against the
work done by the external flows is weaker at its periphery, as the
magnetic field strength is weaker there and field-line curvature
radii are larger. The magnetic tension force in the poloidal plane
scales as FT ∝ B2

p/Rc for a flux-rope layer with a circular

cross-section, where Rc is the curvature radius and Bp is the
poloidal magnetic field amplitude. The second panels in both
rows of Figure 7 show the same flux rope close to mid-height
in the convection zone. At this time (t ≈ 10 days), the flux-
rope’s rise speed is close to its maximum value (∼115 m s−1;
see Figure 9). The core of the flux rope maintains its circular
cross-section, which has expanded to a larger radius, and the
density deficit Δρ as decreased accordingly. It is worth noting
that while the flux-rope’s periphery is continuously dragged
with the surrounding flows, the well-known double-tailed profile
is not clearly identified in the dynamo runs as it is in the
case with a hydrodynamic background (cf., e.g., Emonet &
Moreno-Insertis 1998; Hughes & Falle 1998; Jouve & Brun
2009, particularly the first panel in Figure 19 of the latter, for
the case with Pm = 4). In fact, a wake continuously forms
behind the rising flux ropes, but it is promptly assimilated by
the magnetic background field. (The magnetic field in the former
and the latter are of the same magnitude.) The peripheral layers
of the flux ropes show a rather erratic pattern in all runs with a
dynamo background, suggesting magnetic flux is continuously
exchanged with the magnetized surroundings. The third panel
of Figure 7 shows the flux rope after it has reached the top
boundary of the domain and stopped rising buoyantly. At the
moment represented (t ≈ 20 days), the system has gone past a
flux-emergence episode (see Section 4). The flux rope maintains
its spatial coherence for a period of time much longer than the
buoyant rise time, though. The flux rope remains in the highest
layers of the CZ while being slowly advected poleward by the
mean meridional flows and sheared by the horizontal surface
flows (see Section 4.2 for details on the poleward drift and
surface shearing). At the same time, a part of its magnetic flux
progressively reconnects and mixes with the ambient magnetic
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Figure 8. Sequence of snapshots (polar slices at φ = 90◦) at the same moments in temporal evolution as in Figure 7 (t ≈ 1, 10, and 20 days) and in the same
sub-domain. The color scale represents the amplitude of Bφ , thus tracing the flux-rope’s position. The white lines are streamlines of the poloidal mass flux ρv (i.e.,
contours of its stream function); the continuous lines represent CW flows; and the dashed lines represent CCW flows.

(A color version of this figure is available in the online journal.)

Figure 9. Height (radius) and rising velocity of the center of the magnetic flux rope. The axis of the flux rope is defined here as the position of the maximum of Bφ in
the meridional plane. Each curve corresponds to one of the runs listed in Table 2 (cf. the inset key for reference).

(A color version of this figure is available in the online journal.)

field. Section 5.1 describes in greater detail the later evolution
phases. The flux rope generates a dipolar flow around itself as
it rises buoyantly through the CZ, as shown in Figure 8. The
color scale represents the toroidal field Bφ , and the white lines
are streamlines of the azimuthally averaged poloidal mass flux
ρ̄〈vp〉φ . Dashed and continuous lines represent, respectively,
counterclockwise (CCW) and clockwise (CW) circulations. The
instants represented are the same as in Figure 7. This circulation
flow has the following characteristics: a strong radially oriented
upflow above the flux rope, a shallower upflow in the wake of the
flux rope, and a return flow that encircles the flux rope. This flow
pattern appears as soon as the flux rope starts rising buoyantly
as a whole, as can be seen in the first panel (t ≈ 1 day). At this
stage, the dipolar flow encompasses a small area with a radius
roughly twice as big as that of the flux rope. The spatial extent
of this pattern increases with time, as the flux-rope rise speed
increases (and the flux-rope magnetic field is strong enough
for it to keep its coherence). This is clear in the second panel

(t ≈ 10 days), when the flux rope is close to its maximal rise
speed. The dipolar flow is destroyed as the rope slows down
when it reaches the surface (third panel, t ≈ 20 days).

3.2. Buoyant Rise Speed

Figure 9 shows the height of the flux-rope’s axis as a function
of time (top panel) and its rising velocity as a function of
radius (bottom panel) for the standard case (strong magnetic
field), the case with a hydrodynamic background and a standard
flux rope, the case with a left-handed flux rope, and the cases
with intermediate and weak field and low buoyancy. We also
considered low-latitude and high-latitude cases, corresponding
to flux ropes similar to those in the standard case, but his
time placed initially at 15◦N and 45◦N, respectively. Among
the standard latitude cases, the flux rope evolving in a purely
hydrodynamical background has the highest buoyant rise speed
(continuous gray line in Figure 9), slightly higher than the
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standard case’s speed (continuous black line in Figure 9).
Both curves are qualitatively similar, but the former has a
maximum value of about ∼125 m s−1, while the later peaks
at ∼115 m s−1, which is a ∼9% deviation. The left-handed
flux rope (having the same B0, δS, and Δρ/ρ as the standard
case, dashed black line in the figure) attains a maximum rise
velocity of ∼110 m s−1, ∼5% less than the standard case. More
importantly though, the rise speed profile as a function of height
is skewed toward higher radii relative to the standard case.
The left-handed flux-rope’s speed is initially lower (in the first
half of the domain), but it becomes higher afterward. The case
with negative polarity (negative B0) follows the standard case
very closely and was left out of the plot for simplicity. The
cases with weaker B0 and Δρ/ρ (red lines in the figure) attain
lower buoyant rise speeds, as expected. The weakest of them
(dotted red line) does not manage to attain the top of the domain
because it is disrupted roughly at mid-height in the CZ. In the
first days of the simulation, this flux rope actually acquires
a slightly negative speed, hardly managing to counterbalance
the convective downflows. This case led us to re-evaluate the
threshold for the flux-rope buoyancy. We ran a few extra cases,
at different density deficits, to better constrain this threshold.
The re-evaluated threshold is represented in Figure 6 with a red
dashed line.

Overall, the background magnetic field seems to exert an
enhanced drag over the flux ropes. Furthermore, this effective
drag depends on the relative orientation of the background and
the flux-rope magnetic fields (i.e., on the way the flux rope
connects with the external magnetic field).

The bottom panel of Figure 9 further shows that the flux rope
traversing a hydrodynamic convection zone evolves smoothly,
while the dynamo cases show a more irregular behavior. The
amplitude of these variations is small in comparison to the
average rise speeds, and it is hardly discernible in the figure.
We interpret this feature as the signature of a flux rope opening
its way upward by consecutive episodes of reconnection with the
background field (cf. Dorch 2007, albeit in a simpler scenario). It
is likely that these small deviations to the flux-tube trajectories
become larger if higher turbulence levels are attained, as, for
example, in Hughes & Falle (1998).

Variations in the initial flux-rope latitude produce a very wide
range of buoyant rise speeds, independently of the other flux-
rope geometrical parameters. This behavior was already found
by Jouve & Brun (2009) both in their convective and isentropic
cases with hydrodynamic backgrounds. Similar flux ropes (with
the same density deficit, magnetic strength, and twist) will
experience different effective buoyancy forces as a function
of the background rotation rate, which is non-uniform across
the meridional plane (see Figure 1, middle panel). The buoyant
force applied to the flux ropes is, per unit mass, proportional
to g − r sin2 θΩ2 (r, θ ). Low-latitude flux ropes cross zones
with rotation rates necessarily higher than flux ropes at higher
latitudes. This effect is particularly expressive in the cases
shown in Figure 9, initially placed at 15◦N and 45◦N. The high-
latitude case crosses a region of the CZ with roughly uniform
Ω, while the low-latitude case crosses layers with increasing
Ω as it rises through. This makes the difference in flux-rope
vertical acceleration actually increase during the buoyant rise,
further accentuating the differences. The instantaneous flows
each flux rope encounters during the buoyant rise further
contributes to increasing this spread in rise speed. In fact,
the trajectory of the flux rope placed at 45◦N crosses zones
where the background convective flows with 〈vr〉φ,t > 0, while

Figure 10. Magnetic field strength at the center of the twisted flux ropes Bc as
a function of the total central density ρ (log–log plot) during the whole runs
(buoyant rise, emergence, and later phases). During the buoyant rise, most curves
are well fitted by a power law Bc ∝ ρα

c with an index α � 1; the exceptions are
the weak-field cases, which are severely distorted by the convective flows and
lose their spatial coherence. The dashed gray guidelines indicate the slopes for
α = 1, 2/3, and 1/2.

(A color version of this figure is available in the online journal.)

its low-latitude counterpart crosses through a more balanced
distribution of upflows and downflows both in longitude and in
time. This is somewhat specific to the instant chosen to be the
initial time t0 in our model. But, since our simulation had at that
instant already achieved a statistically mature state in regards to
its convective flows, the flow properties encountered by the flux
ropes in our runs are on average representative of any moment.

3.3. Flux-rope Expansion, Magnetic Flux, and Density

The magnetic flux ropes expand as they rise buoyantly
through the CZ. The flux-rope’s magnetic field strength and
density are then expected to vary as a result of this expansion.
It has been suggested that the evolution of these two quantities
is well described by the simple power law

Bc ∝ ρα
c , (22)

where Bc is the flux-rope toroidal magnetic field strength and
ρc is the total density inside the flux ropes. Cheung et al.
(2010), in particular, have verified that an α-index between
one-half and two-thirds allows for a correct assessment of the
combined variations of magnetic field strength and density in
their simulations of the later phases of the emergence of a
horizontal flux rope. Their study was based on a numerical
model that covers a small Cartesian domain spanning roughly
90 Mm × 50 Mm horizontally and 10 Mm vertically across the
photosphere in which a horizontal magnetic flux rope was
introduced. We assess now if this result still holds for self-
connected toroidal flux ropes, such as those in our setup, and
whether it is extensible to the whole of the buoyant rise (from
the bottom to the top of the CZ).

Figure 10 shows a log–log plot of the magnetic field strength
Bc as a function of the flux-rope’s total density ρc (both measured
at the axis of the flux rope) for some of the runs we performed
(the legend identifies each of the cases represented). The axis of
the flux rope was defined as the position in the poloidal plane
where

∣∣Bφ

∣∣ is at its maximum. The gray dashed lines indicate the
slopes corresponding to α = 1/2, 2/3, and 1. It is readily visible
that Bc scales as ρα

c , with α only slightly smaller than 1. Each
one of the curves in Figure 10 was fitted to the aforementioned
power law. We restricted the fitting procedure to the moments
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when the flux-rope height is in the interval between 0.8 R� and
0.92 R� in order to avoid spurious effects due to the proximity
of the numerical boundaries. This excludes (for all runs) the
initial acceleration at the bottom of the CZ and the braking at
the top. The strong- field and more buoyant cases are best fitted
with an index α = 0.998 ± 0.001 (black continuous and dotted
lines in Figure 10). The case with a hydrodynamical background
(no dynamo) shows a similar behavior, but with a smoother
profile and smaller fitting error. These cases are those for which
the toroidal symmetry and coherence are better maintained
during their whole evolution. Cases with a lower magnetic field
strength and lower buoyancy show a slightly steeper power-law
index (slightly higher α; red curve in Figure 10), but, perhaps
more importantly, also show a considerably higher fitting error.
Cases with weak fields but strong buoyancy (not represented
in Figure 10 for simplicity) remain on average very close to
their strong-field counterparts, though with stronger variations.
(Their profile is less smooth.) As a side note, we also observed
that the evolution of ρc (r) shows very few differences among
the different cases, while the dispersion in the Bc (r) curves is
noticeably higher; the evolution of the density at the axis of the
flux ropes seems to be defined by the background stratification
almost on its own.

Let us now discuss the physical significance of the Bc ∝ ρα
c

scaling law that we found. We will, for simplicity, consider
the magnetic flux tube to be perfectly axisymmetric toroidal
structures of circular cross-section. Let us define a as the minor
radius and R as the major radius of the toroidal tube (the
distance between the center of the torus to the center of the
tube). The position of the center of the tube is given by r
and θ , with the usual meaning in spherical coordinates. The
cross-section surface of the tube is A = πa2 and its length is
L = 2πR = 2πr sin θ . The volume of the toroidal flux tube
is V = A × L = 2π2a2r sin θ . The mass and magnetic flux
contained in the flux tube are at all times

M = ρA × L = ρc2π2a2r sin θ

Φ = BcA = Bcπa2. (23)

These two quantities are conserved during the buoyant rise
as long as the mass and magnetic flux exchanges with the
environment are negligible, and so the ratio Φ/M is

Φ
M

L = Bc

ρc

= ρα−1
c , (24)

with the last equality implying that the power law in
Equation (22) holds. Equivalently,

Bc

ρc

∝ L = 2πr sin θ. (25)

That is, both Bc and ρc depend on the variations in flux-tube
cross-section a (poloidal expansion), but only ρc is sensitive
to variations in the tube’s length L = 2πr sin θ (toroidal
expansion). The contribution of the poloidal flux-tube expansion
vanishes in Equation (25), as both M and Φ are proportional to
A = πa2 (see Equation (23)). If the flux rope varied its cross-
section a while keeping its length L constant, then the index
α would be exactly equal to 1. Conversely, if the flux rope
underwent a purely toroidal expansion (constant a, growing L),
then 0 < α < 1. In our simulations, the total flux-rope expansion
is a combination of both the toroidal and poloidal components.
The torus length L ∝ r increases during the buoyant rise, and

Figure 11. Top panel: relative variation of the magnetic flux contained in the
twisted flux ropes as a function of the position of the flux-rope’s axis. Bottom
panel: index α as obtained from Equation (24), using the ratio of magnetic flux
to mass in the buoyant flux ropes.

(A color version of this figure is available in the online journal.)

so does the flux-rope’s cross-section (due to the background
pressure radial profile). As stated above, α � 1 in all our runs,
meaning the poloidal component of the flux-rope expansion
dominates over the toroidal component.

Of course, these arguments rely on the assumption of con-
servation of mass and magnetic flux inside the buoyant flux
rope (and more specifically, on the conservation of the ratio
Φ/M). We need to verify if this assumption fails, or at least
how much the leakage of mass and magnetic flux affects the
results. As stated before (Section 3.1), a fraction of the periph-
eral magnetic flux is continuously dragged within the wake,
which forms behind the flux rope as it rises buoyantly. It is also
likely that reconnection occurring around the flux ropes and
any other diffusive process altogether lead to a flux exchange
with the surroundings. The top panel in Figure 11 shows the
evolution of the magnetic flux Φ contained within the twisted
flux ropes as a function of height, as the ropes rise through the
CZ. The curves indicate that the losses (to the surroundings) are
substantial, especially in the later phases of the buoyant rise.
The stronger inflection of the black continuous and dotted lines
in the upper part of the domain is due to the flux-emergence
episode; the curves represent the interval t = 0 to t ∼ 15 days,
with the emergence episode starting roughly at t = 12 days.
Weaker-field flux ropes suffer stronger losses, and the flux rope
evolving in a hydrodynamic background better verifies flux con-
servation. The evolution of the mass contained in the flux ropes
correlates very well with that of the magnetic flux (i.e., mag-
netic flux exchange is dominated by processes also implying
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mass exchange). The bottom panel in Figure 11 summarizes the
combined effect of the variations of Φ and M on α. The index
α is obtained by re-arranging Equation (24) as

α = log (ΦL/M)

log ρc

+ 1. (26)

This confirms the α � 1 value found above. This result holds
for all cases studied, including for different flux-rope buoyancy
forces and initial latitudes.

3.4. Magnetic Energy Balance

The evolution of the total ME is described by the equation

d

dt

∫
V

B2

8π
dV = −

∫
V

J 2

σ
dV − 1

c

∫
V

(J × B) ·vdV −
∮

S

SdS ,

(27)
where the terms on the right-hand side represent, respectively,
the ohmic diffusion rate, the rate of work done by the Lorentz
force, and the energy loss rate transported by the Poynting flux
across the domain’s top and bottom boundaries. The ohmic
diffusion term is always an energy sink, while the other two
terms on the right-hand side of Equation (27) can act as
either energy sources or sinks. The magnetic work rate term
− 1

c

∫
V

(J × B) · vdV is, for example, positive when magnetic
structures induce flows in the system and negative when the
flows shear the magnetic structures with little or no feedback on
the former. The Poynting vector (in the Poynting flux term) is
defined as

S = c

4π
E × B, (28)

with E being the electric field vector, and quantifies the electro-
magnetic energy transfer rate across a surface, which is, in other
words, the total electromagnetic energy that leaks into or out
of the system. Considering a finite conductivity σ = c2/ (4πη)
and Ohm’s law J/σ = E + v × B, this vector becomes

S = η

c
J × B +

c

4π
[B2v − (v · B)B]. (29)

The second and third terms in the right-hand side of
Equation (29) describe, respectively, the advective transport of
the ME density and the propagative energy transport supported
by the magnetic tension (e.g., Alfvén waves excited by trans-
verse motions). The first term on the right-hand side is most
often neglected in ideal MHD studies, and we always observe
it to be much smaller than the other terms in our simulations in
spite of the finite diffusivity. The radial component of this vector
(i.e., the component orthogonal to our domain’s boundaries) is,
in CGS units,

Sr = η

c
[JθBφ − JφBθ ]

+
c

4π

[
vr

(
B2

φ + B2
θ

) − Br (vφBφ + vθBθ )
]
. (30)

Analyzing the Poynting fluxes obtained from numerical simu-
lations requires some special precautions. These are most often
computed at the numerical boundaries of the computational do-
mains, and therefore the specific choice of boundary conditions
certainly influences the Poynting flux amplitudes. Equation (30)
separates the effects of the conditions imposed on components
of the velocity parallel and those perpendicular to the boundary
(in our setup vθ and vφ are parallel, while vr is perpendicular). It

also shows how the Poynting flux strongly depends on the par-
allel components of the magnetic field; for example, matching
the boundary magnetic field to an external radial field imposes
a null Poynting flux there (cf. Brun et al. 2004). In our setup,
the magnetic field is matched to an external potential field, thus
allowing for ME leakage through the boundaries. The parallel
components of the velocity are also allowed to vary in time at
the boundaries. The advective component of the Poynting flux
is neglected (due to the boundary condition imposed for vr ), but
this term is probably smaller in comparison to the third term
on the right-hand side of Equation (30) at the top of the CZ in
the real Sun. We tested the consistency of the ME balance in
our models in two ways. First, we computed the radial Poynting
fluxes at all points (in the radius) of our model’s domain and
verified that there were no noticeable boundary layer effects.
Second, we directly compared the left-hand side and the right-
hand side of Equation (27) and verified that the equality holds
with numerical precision at all times, meaning that leakage and
diffusion are consistently accounted for in the simulations.

Figure 12 shows the temporal evolution of the total ME (top-
left panel), together with its source/sink terms, for some of the
runs in Table 2 during a time interval of up to 60 days after
the introduction of the magnetic flux ropes. The background
dynamo run (with no flux rope introduced) is superimposed for
comparison. The flux ropes introduced in the system correspond
to very strong concentrations of magnetic field, and so the
total ME is much higher than that of the background dynamo
at the moment of introduction (t = 0 in Figure 12, top left
panel). This is true even for the weaker magnetic cases we ran
(red and blue lines). This initial perturbation in the ME is, of
course, a consequence of our method and it would not take
place if such flux ropes were generated self-consistently by the
magnetoconvective flows in the CZ, as is the case in Nelson
et al. (2011, 2013) for fast rotating solar-like stars. However,
this issue is beyond the scope of this paper and requires future
investigation.

The ME decays quickly during the buoyant rise of the flux
ropes (the first 12 days for the standard flux rope). During this
phase, the energy losses are initially dominated by the ohmic
diffusion (top right panel), but the work done by the Lorentz
force grows as the flux rope gains momentum due to the buoyant
force. Let us explain this effect. The bottom left panel shows
that the magnetic work term is indeed negative during the whole
buoyant rise phase for all cases represented, peaking at about the
moment when the buoyant rise speed is maximal. That happens
because the rising flux rope induces a flow around itself in the
CZ, as shown in Section 3.1. This translates into work done
by the Lorentz force, which transforms ME into KE. Note that
the sign of this term changes afterward, as the buoyant rise
ends. In the later phases, well after the flux-emergence episode
(which happens at about t = 12 days for the standard case),
the ME curve inflects and starts varying almost in parallel
with the unperturbed dynamo case. At this point, the dynamo
processes have taken over the perturbations forced by the
buoyant flux ropes in the background flows, and the magnetic
work term is consistently positive.

The bottom-right panel of Figure 12 shows the total Poynt-
ing flux S = Stop − Sbottom. The initial spike visible in all
the Poynting flux curves corresponds to the contribution of
the flux crossing the lower boundary of the domain Sbottom,
which is only important in the beginning of the simulations
(during the first 4 days) and has a positive contribution to the
system’s ME. The Poynting flux curves peak again during the
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Figure 12. Evolution of the total magnetic energy in the whole numerical domain for different cases presented here (standard case, medium B-field cases, and standard
case in a hydrodynamical convection zone). The first panel (top, left) shows the total magnetic energy as a function of time, while the other panels show the source/sink
terms in the equation for ∂t

∫
B/8πdV , namely the rates of ohmic diffusion, the rate of work done by the Lorentz force, and the Poynting flux. The abscissas represent

time in days with t = 0 at the moment when the flux rope was introduced. The long-term evolution of the total magnetic energy in the background dynamo model is
also shown (long dashed line).

(A color version of this figure is available in the online journal.)

flux-emergence episode (t = 10–22 days for the standard case)
and this time are dominated by the flux crossing the upper
boundary Stop. This peak has a negative sign, meaning ME
is being transferred outward to the corona. The amplitude of
the Poynting flux depends both on the flux-rope magnetic field
strength and buoyant rise speed. This is understandable in view
of Equations (29) and (30) and the fact that the amplitude of
the surface flows induced by the flux-rope rise and emergence
depends directly on the buoyant rise speed.

The black and blue lines in the plot correspond to flux ropes
with the same buoyancy but different B0; the former have a
stronger magnetic field (standard case) than the latter. The
weaker flux rope produces a Poynting flux that is smaller than
the standard case by a factor of two, even if the initial B0 is only
smaller by a factor of 1.25, which is consistent with S ∝ B2 (the
surface flow velocities being the same). Note that the match is
not perfect; we are comparing initial state parameters with later
diagnostics, and each of the flux ropes suffer from different
environmental effects in their evolution from the bottom to the
top of the CZ. The blue and red lines correspond to cases with
the same initial magnetic field strength, but with the former
being more buoyant than the latter. Both the time delay of about

10 days and the difference in amplitude relate directly to the
different buoyant rise speeds across the CZ.

The total ME evolution depends weakly on the flux-rope’s
polarity and handedness, even though these properties lead to
important differences in the surface signatures of flux emergence
(as we will see later on). The flux-rope’s magnetic field does
interact with the surrounding dynamo field; differences in
amplitude, polarity, and handedness induce changes in the
evolution of the flux ropes themselves but translate into a small
effect in the evolution of the ME of the whole system.

Figure 12 also shows a few other interesting points. The ME in
the case with a purely hydrodynamical convective background
decays faster than all the others, as in the latter the energy
decay due to the flux-rope rise and expansion accounts for
only a fraction of the total ME. But, later in its evolution (for
t � 40 days), the ME starts growing at a temporal rate close to
that of the dynamo run. At this stage, the flux rope is already well
past the emergence episode and the associated magnetic fields
have already been strongly disrupted by the shearing flows at
the upper layers of the CZ (see Section 5.1). The flux-rope’s
magnetic flux that did not emerge is now seeding a (local)
dynamo.
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The cases where weaker magnetic flux ropes were added to
the dynamo background show a somewhat surprising behavior.
Their associated ME decays more slowly than that in the strong
field cases, even if they are less robust in the face of disruption
by the background convective flows (smaller magnetic stresses
to counterbalance deformations imposed by the flows) and the
dynamo field (reconnection events should take away a higher
fraction of the flux-rope’s own field). The most important
parameter here seems to be the buoyant rise speed. Lower rising
speeds mean that cross-section A of the flux ropes will expand
more slowly in time (as the flux ropes take longer to attain the
less dense layers of the CZ), and therefore, the nominal magnetic
field B0 will also decrease more slowly (because B ∝ A−1,
the total magnetic flux in the flux ropes being approximately
conserved). The flux-rope’s contribution to the total magnetic
field scales as B2

0 , so this effect becomes important. Note how
flux ropes with the same initial magnetic field strengths but
different buoyancy forces assume different decay rates (the red/
blue pairs of lines, with the blue representing cases with the
same magnetic field strength but higher buoyancy).

The buoyant rise speeds for each case can be inferred from the
Δρ/ρ values in the diagram in Figure 6 and verified in Figure 9.
The blue and red lines bifurcate in Figure 12, such that the blue
lines (more strongly buoyant) start decaying faster—at a rate
close to that of the “strong-field” cases, which have the same
initial Δρ/ρ (black lines in the plot).

4. POST-BUOYANT RISE PHASES

In this section, we focus on the manifestations of the arrival
of the buoyant magnetic flux ropes at the top of the domain
after they crossed the convection zone. For simplicity, we will
hereafter use the term “surface” to refer to the top of the
numerical domain and define flux emergence as strong and
localized enhancements of the magnetic field at the top of the
domain caused by the arrival of rising flux ropes. We also define
a magnetic flux-emergence episode as the time interval from
the first signs of flux-rope-related variation of the magnetic flux
crossing the surface up to the peak in surface magnetic flux and
energy. These moments correspond, respectively, to t = 10 days
and t = 22 days for the standard case in our simulations (note
that these timings could be different in real solar events).

4.1. Emergence Precursors

We will focus here on identifying features that consistently
precede the actual flux-emergence episode in our simulations.
Figure 13 shows the temporal evolution of the radial velocity
vr , the unsigned magnetic field |Br |, the current density squared
J2, and the magnetic helicity A · B evaluated at the surface
and within the latitudinal interval where flux emergence occurs
as a function of time. The earliest tracer of flux-rope rise and
emergence is the radial velocity vr , which also correlates well
in time with the surface density fluctuations ρ. The latter has a
very weak signal though and is not represented in Figure 13 for
simplicity. These tracers gradually increase during the whole
flux-rope buoyant rise and peak at the moment when the flux-
emergence episode starts (that is, when the surface magnetic flux
and energy start increasing). This occurs about 12 days before
magnetic flux and energy due to the flux-rope emergence reach
their maximum value in the standard case. The same time delay
is observed for the cases with weaker flux-rope magnetic fields
but the same buoyancy. The vr signal has the same amplitude
as the standard case but the surface magnetic fields naturally

peaks at a lower value. Lower buoyancy flux ropes generate
much weaker vr signals; the red line in the top left panel in the
figure represents a flux rope with an initial B0 that is 0.75 times
that of the standard case (black continuous line). The magnetic
field signal keeps an amplitude close to that of all other flux
ropes with the same initial B0 but different buoyancies. The
delay between vr and |Br | is higher in this case—on the order
of 15 days. The surface vr (and also ρ, albeit with a very weak
signal) are, therefore, observable precursors to the formation
of solar active zones. The physical cause for this behavior lies
on the dipolar flow self-consistently generated by the flux rope
itself as it rises through the CZ (see Section 3 and Figures 7
and 8). Namely, the radial upflow that forms above the flux rope
extends radially up to the surface. A transient overdense patch
forms there as the upflow is stronger closer to the flux rope than
farther away from it, meaning plasma accumulates just below
the surface increasingly faster than it manages to be evacuated
horizontally. This phenomenon ends as soon as the flux rope
starts slowing down at the upper part of the CZ (the buoyancy
is reduced there). The amplitude of the surface vr and ρ signals
is directly related to the flux-rope’s buoyant rise speed (that
is, to Δρ/ρ), with more buoyant flux ropes producing stronger
signals.

An additional interesting feature is the temporal evolution of
J2, as it starts growing roughly at the same time as the other
magnetic quantities (that is, when the flux-emergence episode
starts) but then grows much faster. Its peak value occurs at about
2 days after vr and ρ peak, and 10 days before the magnetic
flux and energy do in the standard case. These time delays are
similar in the case with a hydrodynamical background (gray line
in the plots). Also, the amplitudes of the J2 signals are naturally
stronger for the cases with stronger field flux ropes. In fact,
J2 is a good tracer of the boundary of the flux rope, as that is
where the magnetic gradients are the strongest. The time lags (of
∼10 days in the standard case) between the peaks of J2 and |Br |
are consistent with the flux-rope rising speeds and the physical
distance between its axis and its periphery. The magnetic helicity
A · B signal, contrary to the previous diagnostics, also depends
on the handedness of the emerging flux rope. Right-handed
and left-handed flux ropes produce quasi-symmetric signatures
during the emergence episode. In the post-emergence phases,
this symmetry is broken though, as both the left- and right-
handed magnetic flux ropes are sheared in the same direction
by the convective surface flows. The last panel in Figure 13
clearly shows the initially symmetric evolution for the right-
and left-handed flux ropes (t = 10–12 days) and the inflexion
happening thereafter. The two lower panels in Figure 13 also
show the magnetic field amplitude and helicity for the high-
and low-latitude cases, as they exhibit remarkably different
behaviors. The high-latitude case produces a perturbation in
|Br | similar to that of the standard case, while the low-latitude
case shows a weaker and more delayed perturbation. The low-
latitude flux rope effectively rises more slowly (see Figure 9)
and is distorted to a greater extent by the convective flows. The
magnetic helicity evolution perturbations have initially opposite
signs, even though both the flux ropes (high and low latitude)
have the same polarity and handedness. The difference lies in
the specific surface shearing motions (the differential rotation)
encountered at the latitude of emergence.

The results presented in this section offer a viewpoint com-
plementary to that proposed by local helioseismology stud-
ies (Ilonidis et al. 2011; Kosovichev 2012; Hanasoge et al.
2012), which have been producing increasingly more detailed
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Figure 13. Surface variations (relative to the background state) of the radial velocity, unsigned magnetic field strength, current density squared, and magnetic helicity
before and during the flux-emergence episode averaged over the latitude interval where magnetic flux emerges. Note how the maximum of the quantities vr and J2

precede that of the other ones. The amplitude of the vr signal is mostly determined by the flux-rope’s rise speed. There is also a signal in surface density (not shown
here) that correlates very well with vr but has a small amplitude. Surface magnetic field strength and current density are determined by the flux-rope’s strength; the
magnetic helicity further depends on the handedness of the emerging rope.

(A color version of this figure is available in the online journal.)

constraints about the sub-surface flows in the first few
megameters below the solar surface and about the possible early
detection of rising flux ropes. As such, these new methods may
provide in the near future the means to verify our findings.
The upper boundary of our numerical domain lies just below,
at r = 0.97 R�. Furthermore, the quantitative details of the
temporal profiles in Figure 13 are probably influenced by the
boundary conditions imposed there. Despite these reasons, we
believe that the qualitative properties of the results discussed
in this section may be generalized, to some extent, to the so-
lar surface. Note that here we do not aim to produce reliable
quantitative predictions of such surface flux-emergence precur-
sors. This problem is currently being addressed using models
whose numerical boundary lies above the photosphere and that
account for the radiative losses taking place there (see Pinto
& Brun 2011). Preliminary results suggest that the qualitative
properties of the flux-emergence precursors described here are
correct (in the sense that they are not a direct consequence of
the domain truncation and upper-boundary conditions). Please
note that while the exact time delays and amplitudes we found
may not transpose directly to the Sun, the temporal ordering
between the different diagnostics should remain the same.

4.2. Surface Fields

We now turn our attention to understanding how the surface
magnetic field and flows react to the emergence of a twisted
magnetic flux rope. Figure 14 shows three time series of
synthetic magnetograms (that is, surface maps of Br) for the
standard case (top row), the case with a flux rope with negative
B0 (second row), and the case with a left-handed flux rope
(third row). The instants represented are, from left to right,
t = 12, 15, 25, and 45 days. The panels only show a sub-domain
of the magnetic active lane generated by the emergence of the
flux ropes.

The flux ropes were initially placed near the bottom of the
CZ at 30◦N and then rose almost radially, deflecting northward
by a small amount. The activity lane then first appears at the
surface between latitudes 30◦N and 40◦N. The slow poleward
drift continues after the flux rope reaches the surface and stops
buoyantly rising. The flux rope is then advected by the sub-
surface poleward meridional circulation (see Section 3 and
Figures 7 and 8, in particular the CCW circulation crossing the
flux rope in the last panel). About 10–15 days after the beginning
of the emergence episode, the active lane occupies the latitudinal
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Figure 14. Close-up view of the surface radial magnetic field Br during the flux-emergence episode at different instants (from left to right, t = 12, 15, 25, and 45 days).
The first row represents the standard case; the second row represents the negative polarity case; and the third row represents the left-handed case. The color scale is
saturated at ±5 kG.

interval 40◦N to 50◦N. Besides the poleward drift, the active lane
also broadens in latitude as the rope’s emerged magnetic flux
is sheared and advected by the convective flows, and undergoes
resistive diffusion.

The flux-emergence episode starts with a series of discon-
tinuous patches of magnetic field appearing at the surface
(t = 12 days, first column in Figure 14), even though the flux
ropes are initially perfectly axisymmetric. This is due to the in-
fluence of the convective motions encountered by the flux ropes
during their buoyant rise. The fractions of the flux rope that cross
strong downflow plumes are delayed relative to the rest, while
those encountering rising convective blobs are pushed forward.
The maximum delay between the first and the last emerging
parts is about 5 days. The distortion will be more accentuated
for flux ropes with weaker magnetic field strength. The least
buoyant ropes in our set of simulations do not fully emerge,
as some sections do not manage to overcome the local convec-
tive downflows they encounter. A few days after the beginning
of the flux-emergence episode, the bulk of the flux rope has
stopped its buoyant rise, and a larger fraction of its magnetic
flux has reached or crossed the surface, making the azimuthal
non-uniformities stated above fade away (second column in
Figure 14, t = 15 days). The orientation of the magnetic po-
larity is mainly north–south at this moment. In other words,
the polarity inversion line (PIL) is essentially aligned with the
φ direction, and there is a well defined and uniform tilt angle
of ±90◦ (the sign depending on the flux-rope’s polarity and/or
handedness). The surface magnetic flux continues growing un-
til t = 23 days (cf. bottom left panel in Figure 13). During this
last phase of the flux-rope emergence, the magnetograms seem
to indicate that the emergence regions are rotating. This effect

is particularly noticeable in the northern and southern edges of
the emerged structure. Furthermore, the sense of rotation de-
pends on the handedness of the flux rope; right-handed flux
ropes exhibit a CCW rotation while left-handed flux ropes turn
CW. The rotation patterns do not match the surface flows’ ve-
locities. The observed rotation patterns are only apparent and a
signature of the flux-rope’s own magnetic field as it crosses the
surface. For this reason, the flux-rope’s handedness determines
the sense of the apparent rotation of the emerging magnetic
field.

As the simulation proceeds, the surface convection gradually
overcomes the perturbation introduced by the flux-rope emer-
gence. The emerged upper fraction of the flux rope is gradually
twisted by CCW-rotating vortexes. The PIL gets sheared ac-
cordingly, but it keeps a global continuous structure for a long
period of time (third column in Figure 14, t = 25 days). At about
t = 30–40 days, all traces of the emerged flux rope start to dis-
appear. At t = 45 days, all the flux-rope’s emerged magnetic
flux has been pushed into the network between the convection
cells (fourth column in Figure 14). As discussed in Section 3.4,
the flux-rope’s remaining magnetic field (i.e., the part that has
not emerged) has now been assimilated by the solar dynamo.

The emergence of a magnetic flux rope is preceded by a local
increase in radial velocity and current density, as described in
Section 4.1. In the first two rows of Figure 15, one can see
the temporal evolution of the radial velocity vr and the current
density squared J2 for the standard case (compare with first row
of Figure 14). The current density squared is displayed in a
log–scale plot to make its spatial distribution more visible, as
the contrast between the background current density and that of
the emerging region can be very large. The instants represented
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Figure 15. Close-up view of the radial velocity vr (first row), the square of the current density log
(
J 2

)
(second row, in a log–scale plot to make its spatial distribution

more visible), and the temperature fluctuations T (third row) for the standard case. The sub-domain and instants represented are the same as in Figure 14.

(A color version of this figure is available in the online journal.)

are the same as in Figure 14: from left to right, t = 12, 15, 25,
and 25 days. The surface sub-domain represented is also the
same.

The delays between the maximum of vr , J2, and ‖Br‖ are quite
visible in the figure. The first two peak near t = 12 days (first
column), while the last only peaks at t = 23 days (that is, close
to the instant represented on the third column). It is interesting
to note how the amplitude of the vr signal fades away quickly
but some traces of it remain until later on. The current density
at the surface evolves with a spatial and temporal pattern close
to that of ‖Br‖, but its amplitude is at its maximum earlier
in the flux-emergence episode. The temperature fluctuations T
(relative to T̄ ) for the standard case are also represented in the
third row. Hot spots (or bands) appear all along the emerging
region. Its spatial distribution correlates well with vr ; the hotter
zones correspond to the strongest upflows, while the cold spots
correspond to the top of the convective downflow plumes that
form at the intersection of the convective cell boundaries. The
contribution of the current density (or rather the ohmic diffusion
ηJ 2) does not suffice to explain the temperature variations
found.

The case with a flux rope placed at a higher latitude shows
behavior very similar to that of the standard case. In the low-
latitude case, on the other hand, the emerged field organizes into
a much more discontinuous pattern, and the emergence episode
lasts longer (almost 20 days). This is a consequence of the flux-
rope’s slower buoyant rise and of it being more distorted by
convective flows during that period. The total emerged magnetic
flux is, nevertheless, equally high (mostly due to the larger
circumference of a low-latitude flux rope).

4.3. Induced Zonal Flows and Surface Shear

The rise of the magnetic flux rope also perturbs the global
background state by inducing a zonal (azimuthal) flow inside
the flux rope itself. Initially, the rotation rate of the flux rope
perfectly matches the background rotation state. The flux rope
then rises as a coherent and self-connected magnetic structure.
The plasma inside the flux rope thus needs to decrease its
azimuthal velocity with respect to the background in order to
conserve angular momentum. Figure 16 shows a conical cut
taken at 30◦N latitude (a {r, φ} map for a given constant θ ).
The color scale represents the azimuthal velocity vφ (relative
to the rotating frame, with Ω = Ω0; see Section 2.1) at an
intermediate phase of the flux-rope trajectory. Contours of Bφ

are superimposed to trace the position of the flux rope. Note
that the relative amplitude of these “backward” flows is high
(200 m s−1 in the figure, but becoming as high as 300 m s−1

in some cases) and that they remain strong when the flux
ropes reach the surface. At the surface, the vφ signal shows
an initial sharp increase, reaching its peak surface value in ∼1
day after the emergence episode starts, and then fades away
more smoothly (the signal disappears in ∼5 days). Figure 17
shows surface maps of vφ similar to those in Figure 14. It is
clear from this figure how a strong azimuthal shear is imposed
at the surface during the flux-emergence episode. This strong
shearing is nevertheless transient. Its amplitude decays and fades
away quickly; the signal is almost indiscernible 5 days after
the beginning of the emergence episode. Also, the surface vφ

perturbation is centered around the PIL, as it is carried upward
within the emerging flux rope. The latitudinal width of the
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Figure 16. Zonal (azimuthal) flow generated inside the flux rope at t = 7.5 days
for the standard case. The figure shows a conical slice taken at the latitude of
introduction of the flux rope. The color scale represents the azimuthal velocity
Vφ (between ±200 m s−1) in the rotation reference frame. The white lines are
contours of Bφ .

(A color version of this figure is available in the online journal.)

perturbation is close to that of Br and vr in Figures 14 and 15.
The maximum surface shearing amplitude (∝ ∂θvφ) caused by
the zonal flow therefore takes place near the boundaries of the
emerging flux rope.

We note that the retrograde zonal flows inside the flux ropes
are always predominantly azimuthal, showing little toroidal
vorticity. The magnetic field inside the flux rope remains twisted
and rotates azimuthally as a whole, rather than enforcing a
noticeable inner helical zonal flow.

Figure 18 shows the evolution of these retrograde zonal flows
for different runs. For the strong B0 cases, the one evolving
in a hydrodynamical background develops the strongest zonal
flow. The positive polarity cases in a dynamo background then
follow, and the negative polarity case produces the weakest
zonal flow. Comparison with Figure 18 shows that the flux ropes
attaining a higher buoyant rise velocity also produce stronger
retrograde flows. Despite its variations during the buoyant
rise, the amplitude of the induced zonal flow always seems to
converge to the same surface value right after the flux-emergence
episode, at least for the same flux-rope’s buoyancy (same Δρ/ρ).
We also note that the later (post-emergence) evolution seems to
depend strongly on the flux-rope’s polarity (cf. Section 5.1).

We now test whether angular momentum conservation can be
the sole (or the dominant) cause for the zonal flow generation. If
this is the case, the amplitude of the retrograde flow must only
depend on position, and not on the actual buoyant rise velocity,
for any given run. The middle panel in Figure 18 shows the
zonal velocity amplitude as a function of radius. It is clear how
all runs follow a very close path in this plot, at least in the first
half of the convection zone. The flux ropes break down in a sub-
surface of small radial extent in the upper part of the convection
zone. Some of the runs show a clear departure from the main
track in this breaking region. This is especially true for the run
with a negative magnetic polarity flux rope, meaning the other
physical processes involved have to be related to the magnetic
topology and the way the flux rope connects with the dynamo
field. The bottom panel in Figure 18 more precisely shows that
the retrograde zonal flow amplitudes inside the flux ropes are

Figure 17. Azimuthal surface flows at t = 13.5 days due to the zonal flow
generated inside the flux rope during the buoyant rise in the standard case. The
color scale is saturated at ±300 m s−1.

mostly a consequence of angular momentum conservation. We
define the cylindrical radius

R = r sin θ (31)

as the distance of a point to the rotation axis of the Sun. The
azimuthal velocity in the inertial reference frame is

vinertial
φ = vφ + Ω0R. (32)

Conservation of angular momentum then implies simply

vinertial
φ ∝ R−1. (33)

The bottom panel in Figure 18 shows vinertial
φ as a function

of the cylindrical radius R in a log–log plot for all runs. The
dotted gray line is a guideline indicating the slope of an R−1

curve. The sections of the plotted lines parallel to this guideline
therefore correspond to parts of the flux-rope’s trajectories
where the angular momentum inside them is strictly conserved.
We note that this holds for most of the buoyant rise, at least
until the flux rope starts braking near the top of the convection
zone and angular momentum is necessarily exchanged with
the external medium. This moment corresponds to the flux-
emergence episodes discussed previously and to the inflexion
point present for all the curves plotted in the bottom panel
Figure 18. Past this episode, the flux rope still maintains its
spatial coherence for some time and starts being advected
poleward by the sub-surface meridional flow (hence the decrease
in cylindrical radius, but not in height). This phase corresponds
to the upper branch (past the inflexion point) in the same plot.
It is interesting to note that the zonal flow inside the flux ropes
remains close to angular momentum conservation in these later
phases. The departure to a conservative path is carried out mostly
by intermittent exchanges of momentum, plasma, and magnetic
flux with the environment.

5. GLOBAL MAGNETIC FIELD CONFIGURATION

Let us now see in more detail how the global magnetic field is
affected by the emergence of the flux ropes, and how it evolves
past the flux-emergence episode (as defined in Section 4).
We will focus on the surface distribution of the magnetic
field as a function of time and estimate its consequences for
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Figure 18. Evolution of the zonal (azimuthal) flow generated inside the flux rope as a function of time (top panel) and cylindrical radius (bottom panel) for different
runs. The velocity is measured at the axis of the flux rope, which is defined here as the position of the maximum of Bφ on the meridional plane. The dotted gray line
indicates the slope of a path corresponding to a zonal flow verifying exact angular momentum conservation (inside the flux ropes).

(A color version of this figure is available in the online journal.)

the external field evolution during the emergence episode by
means of potential field extrapolations. We will assume in
what follows that the extrapolated magnetic field provides a
reasonable qualitative indication of the potential component of
the coronal field (hence not of the total magnetic field).

5.1. Surface Magnetic Field Distribution

We will consider primarily the latitudinal distributions of
magnetic field at the surface. Figure 19 shows the temporal
evolution of the azimuthally averaged radial and azimuthal
magnetic field at the surface of the Sun for different runs
as a function of latitude and time. The panel in the figure
represents, respectively from the top to bottom rows, the
standard case, the case with inverted handedness, the case with
inverted handedness and polarity, and the standard flux rope in
a hydrodynamical background and the background dynamo run
(without flux ropes). The emergence episode initially produces a
positive/negative magnetic polarity pair (Br, on the left column)
and a one-signed signature in Bφ (on the right column). Its
initial latitudinal extension grows quickly, up to about 20◦
between t = 12 days (beginning of the emergence episode) and
t = 15 days. At this stage, the northernmost limit of the emerged
region expands at a rate of about 2◦.6 day−1 ≈ 365 m s−1 (which
is the slope of the blue line in Figure 19). In the standard case,
the positive polarity occupies the northern half of the emerging
region and Bφ is positive, as expected for the emergence of a
right-handed twisted flux rope (see, e.g., Pevtsov et al. 2003;
Zhang 2006; Zhang et al. 2012). The remaining cases display
symmetric Br pairs and/or Bφ , according their polarity and
handedness. The time–latitude diagrams show that the emerged
magnetic flux is transported poleward globally (and not only
in the longitude interval shown in Figure 14), and also that
its latitudinal extent keeps growing in time. Furthermore, the
northern half spreads more strongly than the southern half (the

asymmetry being slightly more pronounced for the right-handed
flux ropes). In the case with a hydrodynamical background,
this magnetic polarity pattern evolves more smoothly than in
the cases with a dynamo background. In all cases, the bipolar
pattern is progressively distorted by the surface flows and ends
up being disrupted between t = 30 and t = 40 days (compare
with the last two columns in Figure 14, showing the surface
distribution of Br). The emerged azimuthal magnetic field also
displays the same latitudinal spread and disruption patterns.
More surprisingly, a strong negative Bφ signal appears at the
surface at t ∼ 20 days in the standard dynamo case and outlives
the original Bφ signal (with a positive sign). This feature is not
introduced by the background dynamo, as it does not appear
in the background dynamo run (without flux rope; see bottom
row in Figure 19). Moreover, the hydrodynamic (no dynamo)
counterpart of the standard case shows the same behavior.
The key parameter is the flux-rope’s handedness: all right-
handed cases display this behavior, while left-handed flux ropes
do not.

The northernmost edge of the emerged region drifts at this
moment northward (poleward) at a nearly uniform rate of
∼0◦.22 day−1 ≈ 30 m s−1 for all cases (yellow line in Figure 19).

5.2. Consequences for the External Field

The flux-emergence episodes produce, in our simulations, a
strong impact in the global magnetic field topology. In order
to make this more evident, in Figure 20 we show two three-
dimensional renderings of the magnetic field in the CZ and of
the extrapolated field for the standard case and for the case with a
right-handed flux rope. The extrapolations were computed from
the surface magnetic field (i.e., from the data shown in the first
column of Figure 19). The magnetic field lines are represented
as continuous lines colored in blue where Br < 0 and in orange
where Br > 0. The instant represented is t = 25 days, close
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Figure 19. “Butterfly” diagrams showing the latitudinal distribution of radial and azimuthal magnetic fields for, respectively from top to bottom, the standard case, the
case with inverted handedness, the case with inverted handedness and polarity, the standard flux rope in a hydrodynamical background, and the background dynamo
run (without flux ropes). The blue and yellow lines in the upper-left panel indicate, respectively, the poleward drift rates 2◦.6 and 0◦.22 day−1.

(A color version of this figure is available in the online journal.)

to the peak in emerged magnetic flux. We clearly see how the
overall polarity near the north pole, being strongly influenced
by the emerged flux polarity, is different in both the cases. In
the low-latitude case, trans-equatorial loops develop and the

impact of the emergence extends over both the hemispheres
(not shown in Figure 20; see Figure 22). In all cases, the PILs
do not always remain aligned with the azimuthal direction and
cover a latitudinal interval of more than 15 deg.
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Figure 20. Three-dimensional renderings of the magnetic field in the convection
zone and the extrapolated magnetic field in the convection zone for the
standard case (top) and the case with a right-handed flux rope (bottom), both at
t = 25 days. The lines represent magnetic field lines. The surfaces are spherical
cuts in the CZ. The colors blue and orange represent, respectively, negative and
positive values of Br .

(A color version of this figure is available in the online journal.)

Figure 21 shows the geometry of the poloidal axisymmetric
component of the coronal field as obtained by potential field
extrapolation of the φ-averaged surface magnetic field at differ-
ent instants. The figure shows three time series (one per row)
spanning the interval t = 5–55 days. The top row shows the dy-
namo run, without a magnetic flux rope. The middle row shows
the standard case, and the bottom row shows the case with
a flux rope with negative polarity. The color scale represents
the radial magnetic field polarity, with Br > 0 in orange and
Br < 0 in blue. The continuous and dashed lines are magnetic
field lines, the former corresponding to CW-oriented magnetic
loops and the latter to CCW-oriented loops. Although the coro-
nal magnetic field is not expected to be potential, potential field
extrapolations, such as those in Figures 20–22, are known to
give a reasonable indication of its global topology, showing the
location of the strong/weak flux concentrations and the coro-
nal magnetic connectivity (Wang & Sheeley 2003; Schrijver &
DeRosa 2003). The study of the dynamical evolution of the
corona requires a different type of approach, based on MHD
descriptions or at least on non-potential approximations (e.g.,
Yeates et al. 2010). Nevertheless, it has been shown that the
slowly varying global-scale coronal magnetic field structure is
still well reproduced by potential field extrapolations, and that
these produce estimates close to those from full MHD models
(Riley et al. 2006; Hu et al. 2008). Potential field extrapolations
are, therefore, useful tools to elaborate hypotheses on such dy-
namics and can ultimately be used to initialize time-dependent
MHD simulations (e.g., Lionello et al. 2005).

The background dynamo undergoes on its own a short global
polarity reversal, taking place between t = 20 days and t =
30 days (see Figure 23 for a more precise depiction). The global
external magnetic field is strongly perturbed by the emergence
of the flux rope, which can reinforce or completely inhibit this
polarity reversal (depending on the flux-rope’s polarity). This
is visible in the fourth column of Figure 21 for t = 25 days.
The final states for both the cases with flux ropes clearly
display inverse polarities in the northern hemisphere, meaning
that the emerged flux is indeed substantial compared to the
background external field (generated by the dynamo). More
precisely, in the standard case the emerged flux contributes
to an increase in the global magnetic flux and reinforces the
underlying dynamo polarity reversal. The magnetic topology in
the northern hemisphere then becomes much simpler than the
one due solely to the dynamo field. A strong dipolar feature
clearly dominates over the smaller scale higher-order magnetic
structures that are visible in the low corona at the initial state. In
the southern hemisphere, the influence of the emerged magnetic
flux is less dominant. Some topological features resulting from
the distribution of surface smaller-scale mixed polarity pairs
prevail, such as the pseudo-streamer structure visible at a latitude
of ∼45◦ S. In the case with a negative polarity flux rope, the
emerged flux completely inhibits the system to undergo a global
magnetic polarity reversal. The latitude of emergence plays an
important role in the perturbations of the external magnetic field
in different ways. Magnetic flux ropes placed at lower latitudes
will rise more slowly than high-latitude ones (see Section 3.2 and
Figure 9) and hence emerge at different instants. The emerged
magnetic field then interacts with different states of the time-
dependent background dynamo global field. More specifically,
the low-latitude case studied here (15◦N) emerges before the
background dynamo reverses its global polarity, while the high-
latitude case (45◦N) emerges afterward. Figure 22 shows a
snapshot of the poloidal magnetic field (CZ and extrapolated
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Figure 21. Time series of the azimuthally averaged poloidal magnetic field in the CZ and the extrapolated potential field in the corona for the dynamo run without
flux rope (top row), for the dynamo row with a standard flux rope (middle row), and for the dynamo run with a flux rope with the inverse polarity (bottom row). The
figures show the convective zone (with the light gray curve representing the upper boundary of the numerical domain) and the extrapolated field up to 2 R�. Black
lines represent magnetic field lines, with continuous and dashed lines representing magnetic loops with opposite chirality (continuous lines correspond to CW-oriented
magnetic loops and dashed lines to CCW-oriented loops). Orange and blue tones represent the regions where the radial magnetic field is, respectively, positive and
negative.

(A color version of this figure is available in the online journal.)
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Figure 22. Snapshots of the high-latitude and low-latitude cases at the instants
t = 12 days and t = 25 days (respectively). These instants correspond roughly
to the stage in the evolution of the emergence episode represented in the second
column in Figure 21 for the cases at standard latitude.

(A color version of this figure is available in the online journal.)

field) both for the high- and the low-latitude cases. The instants
represented were chosen to correspond roughly to the same
stage in the evolution of the emergence episode (taking into
account the different buoyant rise speeds). The low-latitude flux
rope introduces a strong topological perturbation to the external
field, spreading well across the equator and into the opposite

hemisphere. The influence of the high-latitude case is more
restrained to the hemisphere of emergence. This is not only due
to the different distances between the emergence site and the
equator. In fact, the total amount of flux-rope-related magnetic
flux which crosses the upper boundary depends on the latitude
of emergence. Similar flux ropes, with the same cross-section
and toroidal magnetic flux, will reach the top of the domain
with different azimuthal extents, depending on the latitude of
emergence. Hence, the amount of magnetic flux available to
cross the surface scales as sin (θ ) (ignoring other effects).

It is worth noting that these effects are long lasting; the
external magnetic field geometry roughly maintains its newly
acquired topology during the post-emergence phases, even
though the signs of the emerged flux at the surface are already
disappearing (cf. the last column in Figure 14). This supports
the idea that much of the magnetic flux involved in the actual
process of polarity reversal in the Sun may be carried outward
by the emerging AR flux ropes.

Figure 23 shows the signed magnetic flux integrated at the
surface over the northern hemisphere as a function of time,
which approximates the amplitude of the global solar dipole.
The top panel then compares the global dipole polarity of the
dynamo run without introduction of a flux rope (long dashed
line) and for the strong-field cases with different handedness
and polarities (continuous, dotted, and dashed black lines). The
bottom panel shows the same curves with the dynamo back-
ground run subtracted off. The case with a hydrodynamical
background (continuous gray line) is also represented here for
comparison. As discussed in the previous paragraph, the back-
ground dynamo undergoes, by itself, a short polarity reversal
between t = 20 and 30 days. This figure lets us see more quan-
titatively how in the runs with magnetic flux ropes the emerged
flux is sufficient to either reinforce or completely inhibit the po-
larity inversion. This effect depends only on the flux-rope’s own

Figure 23. Signed magnetic flux
∫ π/2

0 Br · dS at the surface as a function of time (over the northern hemisphere only). The top panel shows the total magnetic flux,
while the bottom panel shows the deviations relative to the run with background dynamo field but no flux rope. The runs represented are the standard case, the cases
with opposite polarity and handedness, the hydro case (standard flux rope without dynamo field), and the dynamo run without flux rope. The hydro case is only shown
in the second panel. The figure shows that the global polarity of the magnetic field is strongly dominated by the emerged flux in the strong field cases. This is not so
much the case for the weaker field cases. The difference between the hydro and standard cases (gray and black continuous lines, respectively) shows that the flux-rope’s
field interacts with the background dynamo field.
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poloidal magnetic polarity; the flux-rope’s handedness is irrel-
evant. The dotted and dashed curves—which follow each other
closely—represent runs setup with the same polarities but oppo-
site handedness. The case featuring a standard flux rope evolv-
ing in a hydrodynamical background shows a strikingly simpler
behavior associated with a very uniform growth in surface mag-
netic flux. The background dynamo magnetic flux amplitude
reaches a maximum of 1023 Mx during the time interval we
are considering, with a time-averaged amplitude (rms) of about
4 × 1022 Mx. The maximum contribution of the emerging flux
ropes themselves amounts to up to 1023 Mx. The total magnetic
flux amplitude depends on how both the components (dynamo
and emerging flux rope) combine in time. In our simulations, we
found a maximum flux amplitude of about 1.6 × 1023 Mx. If the
flux rope were to emerge at a different time, we could expect a
slightly higher value, closer to 2×1023 Mx. These values are on
the upper side (but within range) of the observed distributions
given by Schrijver & Harvey (1994) and Rempel (2006). Note
that our simulations produce an azimuthal activity band rather
than individual ARs. The net magnetic flux is then necessarily
high, with contributions from a few simultaneous ARs. Also
keep in mind that Figure 23 represents only the cases with the
strongest B0 and that the magnetic fluxes reported above cor-
respond to those strong-field cases. The simulation fluxes were
computed at r = 0.97 R�; the actual photospheric fluxes are
likely to be smaller.

As discussed in Section 3.4, Figure 12 (bottom-right panel)
shows the total Poynting flux crossing the upper spherical
boundary of the domain as a function of time. Note that the sign
of Poynting flux is defined such that an outward energy flux is
negative in the figure. That is, a negative Poynting flux means
electromagnetic energy is being transferred from the CZ to the
outside, while a positive flux means the opposite. The figure
shows that the whole flux-emergence episode (t = 12–20 days
for the standard case) is indeed associated with a strong
increase in Poynting flux (into the corona). After the emergence
episode, the Poynting flux actually reverses for some time. This
time interval corresponds to the third and fourth columns in
Figures 14 and 21. The emerged magnetic field is losing its
spatial coherence and slowly decaying at this moment.

The maximum amplitude depends strongly on the flux-rope’s
strength (scaling roughly as B2). The emerging flux-rope’s
handedness also plays a role here. In our runs, left- and right-
handed cases show amplitude differences of a factor of 0.1. The
polarity of the flux rope (the sign of Bφ), though, is unimportant.
The presence of a background dynamo field also conditions the
results. The gray curve in Figure 12 represents the evolution
of the hydrodynamical background case, for which there are
some quantitative differences (specially in the later phases of
the emergence episode).

6. DISCUSSION AND CONCLUSIONS

The results discussed in the previous sections are based on
a series of global-scale numerical simulations using the ASH
code to model flux emergence in a spherical convective shell si-
multaneously possessing differential rotation, meridional flows,
and a dynamo-generated magnetic field. We have investigated
how buoyant magnetic flux ropes are influenced by a three-
dimensional background nonlinear dynamo during their rise
through the convection zone and how they contribute to the
global magnetic flux budget. Initial position, flux-rope twist,
and radius were chosen following the conclusions in Jouve &
Brun (2009), who studied the buoyant rise of such magnetic

structures in a fully developed but hydrodynamical CZ. We fo-
cused on parameters that relate more directly to the interactions
between the flux-rope’s magnetic field and the background dy-
namo, namely the flux-rope strength, polarity and handedness,
and the flux-rope’s initial latitude. This study is, to our knowl-
edge, the first one addressing this problem systematically. Dorch
(2007) performed a first step on this direction, but they limited
their simulations to Cartesian setups where the background field
was fixed and uniform.

Our main results can be summarized as follows:

1. The effects of the interaction between the flux rope and
the background magnetic field are negligible in the ini-
tial phases of the buoyant rise, but they become progres-
sively more important as the flux ropes evolve. The overall
buoyant rise speeds are marginally lower for flux ropes
interacting with a background magnetic field than for flux
ropes evolving in a purely hydrodynamical convective back-
ground. Specific orientations of the flux-rope’s magnetic
field lines with respect to the background field can produce
large rise velocity disparities. For a given flux-rope config-
uration, the largest source of buoyant rise speed disparities
is the flux-rope initial latitude.

2. The fraction of the flux-rope’s magnetic flux that emerges is
large enough to strongly perturb the global topology of the
external field. The emerged field is predominantly dipolar
and may contribute to enhancing the global dynamo polarity
reversal or prevent it from happening. The global magnetic
topology remains affected by the emerged flux for a long
time—well beyond the period of time during which the
surface tracers of flux emergence are visible.

3. The amplitude of the flux-rope’s magnetic field Bc and
density ρc were observed to scale as Bc ∝ ρα

c with α � 1
during the buoyant rise phase. This differs from the results
of local-scale simulations of flux emergence in the upper
layers of the CZ only (Cheung et al. 2010).

4. The flux rope transports a retrograde zonal (azimuthal) flow,
which shows a strong signature at the surface levels. This
zonal flow manifests itself as a localized surface shearing
whose actual amplitude depends on the latitude at which the
flux-rope emerges (due to the difference between the mean
differential rotation and the flux-rope’s azimuthal velocity).
The shearing amplitude is maximum for low-latitude flux
ropes (up to a few hundreds of m s−1), albeit with a limited
duration.

5. A set of discontinuous north–south aligned magnetic bipo-
lar patches appear as the buoyant flux ropes reach the top
of the domain. These are then sheared and twisted by the
surface flows, and the emerged magnetic flux is pushed
into the convective cell boundaries. The bipolar patches
have an intrinsic magnetic helicity which depends directly
on the flux-rope’s polarity and handedness. The helicity’s
amplitude and signal changes afterward as a result of the
underlying horizontal surface motions, specifically the lati-
tudinal shearing of the mean azimuthal velocity (differential
rotation) and vertical vorticity at the latitude of emergence.

6. The bipolar patches first expand quickly as the buoyant
flux ropes slow down and come to a complete stop. From
then on, this magnetic flux is slowly advected poleward
by the underlying meridional flows. The nature of the
distribution of the surface magnetic patches varies with
the latitude of emergence—the low-latitude cases being
particularly patchy (as they rise more slowly and hence are
more affected by the interaction with the convective flows).
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7. Magnetic flux emergence is preceded by a strong and
localized enhancement in vr (accompanied by a weaker
density increase) at the place where the flux rope will
emerge. A sharp current density increase is also observed
immediately before the actual flux-emergence episode.
Thus, we suggest the following temporal sequence: (1)
increase in vr and ρ, (2) sharp increase in J2, and (3)
increase in magnetic flux amplitude. The exact temporal
delays between these diagnostics depend on the specific
properties of the emerging flux-rope model, but the ordering
seems to be general.

8. The typical double-tailed cross-section for the flux rope is
not so clearly found (as in simulations using a hydrody-
namical background), because the peripheral magnetic flux
is interchanged continuously with the magnetoconvective
environment.

All of the points listed above (except points 7 and 8) describe
global-scale consequences of the buoyant rise and emergence of
magnetic flux ropes, or effects that are affected by the underlying
global-scale flow properties. Please note that the top of the
numerical domain (the “surface”) is placed at 0.97 R�, and flux-
emergence episodes are hence defined here as enhancements of
the “surface” magnetic flux related to the arrival of a buoyant
flux rope. For these reasons, our estimations concerning surface
emergence diagnostics are meant to provide insight into the
sub-surface dynamics and flux-emergence processes rather than
to produce directly observable features. Also note that we
introduced buoyant twisted magnetic flux ropes in pressure
equilibrium directly at the base of the CZ with various tunable
parameters (twist, location, and amplitude), as the physical
mechanisms at the origin of such buoyant magnetic structures
are out of the scope of our study (see Nelson et al. 2013).
The dynamical evolution of these flux ropes can be described
in terms of their buoyant rise speed, trajectory, and interaction
with the surroundings alone. The interaction with the multi-
scale dynamo magnetic field is at first weak but becomes more
and more important as the flux rope rises from the deep layer
of the convective envelope to the top of the domain. The added
ME is reprocessed by the dynamo, yielding a higher ME than,
but similar growth rate to, the reference flux rope free dynamo
run.

We performed potential field extrapolations of the surface
magnetic fields during the flux-rope buoyant rise, emergence,
and post-emergence phases in order to have an idea on how the
emerged flux perturbs the external magnetic field. Due to the
caveats expressed in Section 2.4, such extrapolations should not
be compared with diagnostics of the solar atmosphere.

The emergence episode (that is, from t = 12 to t = 20 days
for our standard case) is characterized by the growth of a strongly
dipolar magnetic arcade system that disrupts the background
multipolar dynamo field. Interestingly, a strong (yet transient)
azimuthal flow appears at the surface as the flux-emergence
episode proceeds, and this is a source of latitudinal surface
shearing. The azimuthal flow is centered right in the middle of
the emerging arcades, as it corresponds to a zonal flow carried
within the flux ropes. As a result, the shearing is strongest near
the boundaries of the emerging region; it is not clear if there is
net shearing between opposite footpoints of the arcades.

In the simulation presented in this work, the diffusive coeffi-
cients were kept fixed for all runs. An effort should be made in
future work to allow these coefficients to be lowered (increas-
ing the turbulence levels in the domain) and to explore different
magnetic Prandtl numbers. It would be extremely interesting

to be able to reproduce the flux-rope formation mechanism of
Nelson et al. (2011) in simulations like ours. This is to our
knowledge still unattainable by the current global convection
models rotating at the solar rotation rate, but work is being
done to reach that goal, nevertheless. Achieving much lower
diffusivities is one of the key aspects of the problem.

Future work will also consider a better description of the
photospheric layers (Pinto & Brun 2011) and the presence of
multiple buoyant flux ropes in both hemispheres.
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1623 project). We would like to thank L. Jouve for useful dis-
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