Power-to-gas process with high temperature electrolysis and CO2 methanation
Myriam de Saint Jean, Pierre Baurens, Chakib Bouallou

To cite this version:

HAL Id: cea-00958864
https://hal-cea.archives-ouvertes.fr/cea-00958864
Submitted on 13 Mar 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
POWER-TO-GAS PROCESS WITH HIGH TEMPERATURE ELECTROLYSIS AND CO₂ METHANATION

IRES 2013 – Session E1
Myriam De Saint Jean 1,2
Pierre Baurens 1
Chakib Bouallou 2

1 LTH LITEN CEA & 2 MINES ParisTech

Contact: myriam.desaintjean@cea.fr

NOVEMBER 19th 2013
1. Energy background
2. Power-to-Substitute Natural Gas process with high temperature steam electrolysis and CO$_2$ methanation
 1. Power-to-SNG : architecture studied
 2. High temperature steam electrolysis
 • Presentation
 • Modelling
 3. CO$_2$ methanation
 • Presentation
 • Modelling
 4. Full power-to-SNG process
3. Results and conclusion
 1. Parametric study results
 2. Conclusion
ENERGY BACKGROUND
Renewable resource development: 3 issues for transportation and distribution electrical networks

- High consumption periods
- Excess electric production
- Transportation of energy from production areas to consumption areas

Source: Spetch et al. 2011
A LINK BETWEEN TWO NETWORKS

Electric network
- Use of existing natural gas network
- Mid or long term storage
- Transportation
- Production of electricity
- Connection of the 2 networks

Power-to-SNG

Gas network
- Gas-to-heat
- Gas-to-mobility
- Gas-to-power
- Gas-to-chemistry

Irregular production
- Unstorable
- Irregular production
- Network congestion

Final user

Avantages PtSNG and GtP

Myriam De Saint Jean
IRES 2013
Power-to-SNG process with HTSE and methanation
POWER-TO-SNG PROCESS
WITH HIGH TEMPERATURE STEAM ELECTROLYSIS AND CO$_2$ METHANATION
STUDIED POWER-TO-SNG PROCESS ARCHITECTURE

STORING

Methanation

Recycling CO₂, H₂O and H₂

Thermal integration

HTSE

Power-to-SNG : HSTE + CO₂ methanation

Specification setting

Wobbe index

W = \frac{HHV}{\sqrt{\rho}}

NG type H NG type L

HHV (kWh/Nm³)
10,7 – 12,8
9,5 – 10,5

W (kWh/Nm³)
13,4 – 15,7
11,8 – 13

Composition (%vol)

CO < 2, CO₂ < 3, H₂ < 6

H₂O < 55

Steam reforming

Purification

Thermal integration

HT Fuel Cell

Power-to-SNG : HSTE + CO₂ methanation

RECOVERY

Myriam De Saint Jean
IRES 2013

Power-to-SNG process with HTSE and methanation
HIGH TEMPERATURE STEAM ELECTROLYSIS

HTSE avantages
• High temperature : ΔH decrease
• Irreversibility decrease
• High efficiency
• Reversible (SOEC / SOFC techno)
• Thermal behaviours :
 - Exo, auto et endothermal
• Reactants : H_2O and / or CO_2 : co-electrolysis

HTSE current limitations
• R&D
• Cost
• Long-term degradation of performances

Myriam De Saint Jean
IRES 2013
Power-to-SNG process with HTSE and methanation
To determine P_{elec} and N_{cell} for an incoming flow:

- SOEC technology
- $U_{op} = U_{tn}$ and SC: fixed values
- Molar and energy balances: P_{elec}
- Electrochemical modelling: exp. law
- Determination of N_{cell} (and j)
- Correction with pressure and stack effects

Experimental and phenomenological laws:

\[\dot{n}_{cath, cell} = -0.829 \text{ SC} + 83.2 \quad \text{with air sweep} \]
\[\dot{n}_{cath, cell} = -0.727 \text{ SC} + 81.8 \quad \text{with O}_2 \text{ sweep} \]

\[R_{eq} = \frac{(U_{op} - U_{Nernst})}{j} \quad \text{Ω.cm}^2 \]

Pressure effect and stack effect

\[R_{eq} = R_{eq, P} P^{-0.09} \quad \text{for } P [1;10 \text{ bar}] \]
\[R_{eq, Stack} = (R_{eq, cell} + 0.034) N_{cell} \]

Experimental data

\[n_{cath, cell} (\text{NmL/min.cm}^2) \]

- O_2 reg
- Air reg
- C 941 air
- C 944 air
- E 15 O2
- E 18 O2
- D 261 O2

Experimental data and interpolated law linking $\dot{n}_{cath, cell}$ and SC for $T = 1073 K$, $P = 1 \text{ bar}$, $U_{op} = U_{tn}$, $H_2 / H_2O = 10 / 90$, on cells referenced C 941, C 944, D 261, E 15 et E 16.

HTSE modelling

Modelling: Calculation of j and N_{cell} with errors up to 40% → cell dispersion effect.
CO₂ METHANATION

Sabatier reaction \[\text{CO}_2 + 4 \text{H}_2 \rightleftharpoons \text{CH}_4 + 2 \text{H}_2\text{O} \]

RWGS reaction \[\text{CO}_2 + \text{H}_2 \rightleftharpoons \text{H}_2\text{O} + \text{CO} \]

CO methanation \[\text{CO} + 3 \text{H}_2 \rightleftharpoons \text{CH}_4 + \text{H}_2\text{O} \]

Carbon craking \[\text{CO}_2 + 2 \text{H}_2 \rightleftharpoons \text{C}(s) + 2 \text{H}_2\text{O} \]

- Catalysed reaction
- Favorable operating conditions for \(\text{CH}_4 \) production: \(P \uparrow \) et \(T \downarrow \)

Avantages of CO₂ methanation
- No CO at moderate T
- High \(\text{CH}_4 \) selectivity
- Exothermal reaction
- High conversion yield
- Existing catalysts

Current limitations of CO₂ methanation
- Poor literature on kinetic laws
- Not a lot of experimental data published, preference given to syngas (CO + H₂) methanation

Equilibrium at \(P = 15 \) bar for \(\text{H}_2/\text{CO}_2 = 4 \)
SIMULATION : METHANATION MODELLING

![Diagram of a plug-flow reactor with fixed-bed catalyst and boundary conditions.](image)

Methanation modelling

\[ext{CO}_2 + 4 \text{H}_2 \leftrightarrow \text{CH}_4 + 2 \text{H}_2\text{O} \]

- 1D plug-flow reactor modelling
- Kinetic law (cat Ru)
- Pressure ≈ 16 bar
- Adiabatic behaviour
- Inlet temperature = 573 K
- Outlet temperature < 973 K

\[
\begin{align*}
 r \left[\text{mol.s}^{-1}.\text{m}^{-3} \right] &= 2691.7 \times 10^3 e^{-\frac{64121}{RT}} \left(\frac{P_n^{\text{CO}_2} P_4^{\text{H}_2}}{K_{eq}(T)^n} - \frac{P_2^{\text{H}_2\text{O}} P_1^{\text{CH}_4}}{K_{eq}(T)^n} \right) \\
 K_{eq}(T) &= \exp \left(\frac{28183}{T^2} + \frac{17430}{T} - 8.254 \ln T + 2.87 \times 10^{-3} T + 33.17 \right)
\end{align*}
\]

<table>
<thead>
<tr>
<th>Pressure (bar)</th>
<th>1</th>
<th>2</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>0.225</td>
<td>0.5</td>
<td>1</td>
</tr>
</tbody>
</table>

Kinetic law from literature (Cat Ru) [Lunde 1974, Ohya 1997]

Simulation and experimentation agreement for \(n = 0.5 \) (P = 2 bar) for \(P_{\text{exp}} \in [3.4 ; 7] \)

Higher P, lower gap between simulation and experimentation, \(\forall n \) used
SIMULATION : PERIMETER AND HYPOTHESES

AC Electricity:
- HTSE, mechanical work, cold unit, electric heaters

<table>
<thead>
<tr>
<th>Material</th>
<th>Pressure</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>1 bar, 293 K</td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>100 bar, 293 K</td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td>1 bar, 303 K</td>
<td></td>
</tr>
<tr>
<td>Natural gas</td>
<td>4 bar, 293 K</td>
<td></td>
</tr>
<tr>
<td>O₂</td>
<td>18 bar, 293 K</td>
<td></td>
</tr>
<tr>
<td>Natural gas</td>
<td>4 bar, 293 K</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>1 bar, 293 K</td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>40 bar, 293 K</td>
<td></td>
</tr>
</tbody>
</table>

Pinch analysis module
Process thermal integration

- Cold Utility
 - Cold unit (273 K)
 - EER_{elec} = 1.73

- Hot Utility
 - Electric heaters
 - η = 0.90

- η_{AC/DC} = 0.92
- ΔP_{hexch} = 0.2 bar
- ΔT_{hexch} = 100-150 K

- H₂/H₂O_{HTSE} = 1/9
- H₂/CO₂_{meth} = 1/4
Myriam De Saint Jean IRES 2013
Power-to-SNG process with HTSE and methanation

\[\eta = \frac{\dot{\eta}_{SNG \text{ HHV}_{SNG}}}{P_{\text{elec, HTSE}}} + \frac{P_{\text{elec, mech}}}{P_{\text{elec, hot}}} + \frac{P_{\text{elec, hot}}}{P_{\text{elec, cold}}} \]

\[\eta_{\text{SNG HHV}_{SNG}} = 0.89 \]
SIMULATION RESULTS & CONCLUSION
Injection on H or L gas network: no influence on energy efficiency η

Kind of network (transportation or distribution): high influence on η

CO_2 origine (separation or storage): high influence on η

P_{HTSE}: very high influence on η: loss of 7.4 pts (9.6%) regarding ref. case

Electricity consumption

Electricity consumption except HTSE

$U_{op} = U_{tn}$, $SC = 75\%$, $H_2/CO_2 = 4$, $P_{meth} = 16$ bar, $T_{HTSE} = 1073$ K

Reference case: $P_{CO_2} = 100$ bar $P_{SNG} = 4$ bar $P_{HTSE} = 17$ bar H gas

Sensitivity: $P_{CO_2} = 5$ bar $P_{SNG} = 16$ and 80 bar $P_{HTSE} = 2.5$ bar B gas

Ref

$P_{CO_2} = 5$ bar $P_{SNG} = 16$ and 80 bar $P_{HTSE} = 2.5$ bar B gas

Results and conclusion

Parametric study results

*Myriam De Saint Jean
IRES 2013
Power-to-SNG process with HTSE and methanation*
CONCLUSION

- HTSE modelling for sizing with experimental law
- Adequation between modelling results and experimental data
- Kinetic law and modelling of methanation
- Adequation between simulation results and observed performances
- Scale-up of methanation stage
- Purification of produced SNG
- Production of SNG matching with the specifications
- Two gas qualities (H and L) are achievable
- Higher efficiency if CO₂ from industrial storage is used
- The process is operated at high pressure

Myriam De Saint Jean
IRES 2013
Power-to-SNG process with HTSE and methanation
Thank you for your attention

POWER-TO-GAS PROCESS WITH HIGH TEMPERATURE ELECTROLYSIS AND METHANATION

IRES 2013 | myriam.desaintjean@cea.fr