Revisiting knowledge-based Semantic Role Labeling
Abstract
Semantic role labeling has seen tremendous progress in the last years, both for supervised and unsupervised approaches. The knowledge-based approaches have been neglected while they have shown to bring the best results to the related word sense disambiguation task. We contribute a simple knowledge-based system with an easy to reproduce specification. We also present a novel approach to handle the passive voice in the context of semantic role labeling that reduces the error rate in F1 by 15.7%, showing that significant improvements can be brought while retaining the key advantages of the approach: a simple approach which facilitates analysis of individual errors, does not need any hand-annotated corpora and which is not domain-specific.
Domains
Document and Text Processing
Origin : Files produced by the author(s)
Loading...