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Abstract We present a detailed comparison of the motion of a classical and
of a quantum particle in the presence of trapping sites, within the framework
of continuous-time classical and quantum random walk. The main emphasis
is on the qualitative differences in the temporal behavior of the survival prob-
abilities of both kinds of particles. As a general rule, static traps are far less
efficient to absorb quantum particles than classical ones. Several lattice ge-
ometries are successively considered: an infinite chain with a single trap, a
finite ring with a single trap, a finite ring with several traps, and an infinite
chain and a higher-dimensional lattice with a random distribution of traps
with a given density. For the latter disordered systems, the classical and the
quantum survival probabilities obey a stretched exponential asymptotic decay,
albeit with different exponents. These results confirm earlier predictions, and
the corresponding amplitudes are evaluated. In the one-dimensional geometry
of the infinite chain, we obtain a full analytical prediction for the amplitude
of the quantum problem, including its dependence on the trap density and
strength.
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1 Introduction

A highly important quantity in the theory of random walk is the number of
distinct sites visited by the walk in a given time [1]. The distribution of this
number of sites governs the behavior of many physical processes. The trapping
of diffusing particles is the most famous example [2–4]. It has been shown by
Donsker and Varadhan [3,4] that the survival probability P (t) of a classical
particle diffusing in an environment containing randomly placed static traps
can be expressed in terms of the distribution of distinct sites visited by the
walk in the absence of traps. Classical trapping models of this kind have been
explored thoroughly [5–10]. They have received many applications, including
chemical transport, electron-hole recombination, exciton trapping and anni-
hilation (see [11–13] for reviews). The long-time asymptotics of the survival
probability of a classical walker in the presence of a random distribution of
traps has been established by Balagurov and Vaks [2], and more rigorously by
Donsker and Varadhan [3,4]. In dimension d it displays a stretched exponential
behavior of the form

P (t) ∼ exp
(
−Ad t

d/(d+2)
)
, (1.1)

where the amplitude Ad is known exactly (see (6.15), (7.10)). The above result
can indeed be related to the form of the Lifshitz tail of the density of states
of the appropriate random operator [14–16]. The slower-than-exponential de-
cay of the survival probability is caused by the existence of arbitrarily large
trap-free regions, where the particle can survive for an anomalously large time.
At short times, the survival probability however decreases exponentially, ac-
cording to the Rosenstock formula, which is the result of a mean-field anal-
ysis [17]. Although the survival probability has been studied in great detail
for a whole breadth of trapping models, some problems still remain open.
In particular, the crossover between the small-time (Rosenstock) and large-
time (Lifshitz) regimes is not fully understood. The scaling properties in the
crossover region have been investigated in detail by means of Monte-Carlo
simulations [18]. On the theoretical side, a precise calculation of the survival
probability throughout the Lifshitz regime is only possible in one dimension.
In higher dimensions, going beyond the leading term given in (1.1) requires
sophisticated field-theoretical techniques involving instantons [19–25].

At low temperatures, quantum effects eventually become relevant, over-
shadowing the diffusive nature of transport. In the presence of traps, the
asymptotic form (1.1) of the survival probability is accordingly expected to
be modified in a quantum-mechanical setup. The long-time behavior of the
survival of a quantum particle in the presence of traps was first studied in a
series of works by Parris [26–29]. The motivation for these investigations was to
understand the low-temperature reaction dynamics and exciton quenching by
isolated impurities in the coherent regime. The effective dynamics for the re-
duced density matrix of the exciton was shown to be given by a non-Hermitian
tight-binding model, with an imaginary optical potential representing scat-
tering, dephasing and absorption by the impurities [30–33]. The long-time
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asymptotics of the survival probability Π(t) of a quantum exciton hopping in
a medium with a finite density of traps was found to be

Π(t) ∼ exp
(
−Bd t

d/(d+3)
)
. (1.2)

In contrast with the result (1.1) pertaining to the classical case, the dependence
of the amplitude Bd on the density of traps and other parameters could only
be worked out within approximations [26–29]. One of the main motivations
for undertaking the present work was to obtain a better understanding of the
amplitude Bd (see the results (6.49), (7.21)).

In more modern language, the motion of the exciton can be interpreted as a
quantum walk. Quantum analogs of classical random walks have been defined
in two pioneering papers [34,35] as a useful concept to implement original
algorithms in quantum information theory. Due to interference effects, the
properties of quantum walks can drastically differ from their classical counter-
parts. Clever implementations of quantum algorithms can thus lead to much
faster computations [36–38] (see [39,40] for reviews). As far as experimen-
tal realizations of quantum walks are concerned, it is worth mentioning the
promising area of photon propagation in waveguide lattices [41,42]. On the
theoretical side, two distinct classes of quantum walks have been studied. In
discrete-time quantum walks [34,43–45], in addition to its position, the par-
ticle has a discrete internal quantum degree of freedom (a ‘quantum coin’),
which experiences unitary evolution at each step. In continuous-time quantum
walks [35,46,47], no internal state is involved, and the role of the quantum
Hamiltonian is played by some hopping matrix, such as the adjacency matrix
on the underlying lattice or graph [48]. These two classes of models can be
reconciled by means of a precise limiting procedure [49], which turns out to be
more subtle than its classical counterpart, namely the emergence of diffusion
as the continuum limit of discrete random walks (see [50] for a review).

Last but not least, there has been considerable progress lately in manipulat-
ing quantum-mechanical systems. The effect of decoherence in low-dimensional
quantum systems can thus be investigated experimentally [51]. A paradigm for
the loss of coherence in quantum transport is provided by quantum walks in
the presence of traps. The recent years have witnessed an upsurge of interest
in this kind of models [52–60].

The goal of the present work is to present a systematic comparison of the
motion of a classical and of a quantum particle in the presence of traps, within
the framework of the continuous-time classical and quantum random walk.
The main emphasis will be put on the temporal behavior of the corresponding
survival probabilities P (t) and Π(t). A common feature of all the situations to
be considered in this work is that quantum particles are able to benefit from
interference effects in order to efficiently avoid the traps. As a consequence,
static traps are far less efficient to absorb quantum particles than classical
ones. This qualitative difference will manifest itself in various settings.

The outline of this article is as follows. In section 2 we review the ba-
sic features of the classical and quantum motion of a free particle on the
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one-dimensional chain, emphasizing the most salient differences between both
types of dynamics. Section 3 is devoted to the situation of an infinite chain
with a single trap. Whereas classical random walk is recurrent, with a survival
property decaying as P (t) ∼ t−1/2, the quantum particle has a non-vanishing
probability to escape ballistically to infinity, and thus to survive forever. The
asymptotic survival probability Π∞ is calculated for different initial condi-
tions. It is shown to display generically a non-monotonic behavior with re-
spect to the trapping strength. The geometry of a finite ring of N sites with
a single trap is studied in Section 4. The classical survival probability decays
exponentially, with the associated characteristic time scaling diffusively, i.e.,
as N2. The dynamics of the quantum particle demonstrates two main differ-
ences with respect to the classical case. The survival probability tends to a
non-zero asymptotic value, which is generically Π∞ = 1/2 in this geometry.
The relaxation time characterizing the convergence toward that value grows
asymptotically as N3 [26]. This characteristic time is calculated in various
regimes and is shown to exhibit again a non-monotonic dependence on the
trapping strength. If several traps are present on a ring, the determination of
the avoiding modes which are responsible for the non-vanishing of the asymp-
totic survival probability Π∞, leads to an elegant problem of combinatorics,
which we solve in Section 5. The case of the chain with a fixed density of
traps is studied in Section 6. In the classical situation, we review the predic-
tions of the theory of Lifshitz tails. We thus introduce tools from the theory
of one-dimensional disordered systems [61,62], which are also pertinent to the
analysis of the quantum situation. In the latter case, for a large but finite sys-
tem, the decay rate of the survival probability is a fluctuating quantity, whose
distribution is investigated. We are thus able to determine exactly the ampli-
tude B1 of the stretched exponential (1.2), including its dependence on the
density c of traps and on the trapping strength γ (see (6.49)). The problem of
a classical and of a quantum particle diffusing on a higher-dimensional lattice
with traps is considered in Section 7. Here, an exact calculation of the decay
rate seems to be out of reach. We are led to make an Ansatz for its scaling be-
havior, and draw conclusions on the behavior of the survival probability Π(t)
(see (7.21)). The last section is devoted to concluding remarks.

2 A warming up: classical and quantum diffusion on the chain

In this section we recall the basic differences between a classical and a quantum
particle diffusing on the infinite chain.

2.1 A classical particle

Consider a classical particle performing continuous-time random walk on the
chain. Here and throughout the following, we use dimensionless variables, as-
suming that the lattice spacing and the hopping frequency are set equal to
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unity. The probability pn(t) for the particle to be at site n at time t obeys the
differential equation

dpn(t)

dt
= pn+1(t) + pn−1(t)− 2pn(t). (2.1)

Let us assume that the particle is launched at the origin at time t = 0. Intro-
ducing the momentum q conjugate to n, we readily obtain

p̂(q, t) =
∑

n

pn(t) e
−inq = e−2(1−cos q)t. (2.2)

The probabilities pn(t) therefore read

pn(t) = e−2tIn(2t), (2.3)

where the In are the modified Bessel functions. The bulk of the probability
profile has a Gaussian form

pn(t) ≈
e−n2/(4t)

√
4πt

, (2.4)

characteristic of a diffusive motion. In particular, the return probability

p0(t) = e−2tI0(2t) ≈
1√
4πt

(2.5)

decays monotonically to zero.

2.2 A quantum particle

Consider now a quantum particle propagating coherently along the chain. We
again use dimensionless variables, assuming that Planck’s constant, the lat-
tice spacing and the hopping amplitude are set equal to unity. Within this
framework, the wavefunction ψn(t) of the particle at site n at time t obeys the
time-dependent reduced tight-binding equation

i
dψn(t)

dt
= ψn+1(t) + ψn−1(t). (2.6)

Let us again assume that the particle is launched at the origin at time t = 0.
The dispersion law between energy ε and momentum q reads

ε = 2 cos q. (2.7)

The group velocity is therefore v = dε/dq = −2 sin q. We have

ψ̂(q, t) = e−2i cos qt, ψn(t) = i−n Jn(2t), (2.8)

and so the quantum probabilities read

|ψn(t)|2 = (Jn(2t))
2, (2.9)
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where the Jn are the Bessel functions. These probabilities take appreciable
values in the range −2t < n < 2t, which spreads ballistically with the maximal
velocity vmax = 2. The probability profile exhibits sharp ballistic fronts near
n = ±2t, whose width scales as t1/3 [46], and it decays exponentially beyond
these fronts. The return probability decays as

|ψ0(t)|2 = (J0(2t))
2 ≈ cos2(2t− π/4)

πt
. (2.10)

Figures 2.1 and 2.2 illustrate the most prominent differences between classi-
cal and quantum diffusion. Figure 2.1 shows a plot of both probability profiles
for t = 50. The classical profile pn(t) is rather narrow and approximately

Gaussian, whereas the quantum profile |ψn(t)|2 is much broader and irregular.
The arrows show the nominal positions of the ballistic fronts (n = ±100).
Figure 2.2 shows the return probabilities against time t. The classical prob-
ability p0(t) falls off monotonically and rather slowly, whereas the quantum

one, |ψ0(t)|2, falls off faster on average and shows infinitely many oscillations.
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p n(
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n(
t)
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Fig. 2.1 Probability profiles pn(t) (see (2.3)) and |ψn(t)|
2 (see (2.9)) of a classical and a

quantum particle launched at the origin against the particle’s position n, for t = 50. Arrows:
nominal positions of the ballistic fronts in the quantum case (n = ±100) (Color online).

3 The infinite chain with a single trap

We now study the effect of a single trap on the motion of a classical and a
quantum particle on the infinite chain.

3.1 A classical particle

Consider a classical particle diffusing on the infinite chain, with a single trap
at the origin. The strength γ of a classical trap is defined as its absorption
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Fig. 2.2 Return probabilities p0(t) (monotonic, see (2.5)) and |ψ0(t)|
2 (oscillating,

see (2.10)) of a classical and a quantum particle, against time t (Color online).

rate per unit time. The differential equation (2.1) becomes

dpn(t)

dt
= pn+1(t) + pn−1(t)− 2pn(t)− γδn0 p0(t). (3.1)

Let us assume that the particle is launched at site a ≥ 0 at time t = 0.
We are mostly interested in the survival probability of the particle up to

time t:

P (t) =
∑

n

pn(t) = 1− γ

∫ t

0

p0(t
′) dt′. (3.2)

Introducing a Laplace variable s conjugate to t and a Fourier variable (mo-
mentum) q conjugate to n, we obtain

p̂(q, s) =
e−iqa − γ p̂0(s)

s+ 2(1− cos q)
. (3.3)

The quantity p̂0(s) obeys the self-consistency condition

p̂0(s) =

∫ 2π

0

dq

2π
p̂(q, s) =

za1 − γ p̂0(s)

z2 − z1
, (3.4)

where z1 and z2 are the zeros of the denominator of (3.3) in the variable
z = e−iq such that |z1| < 1 < |z2|, i.e.,

z1,2 =
s+ 2∓

√
s(s+ 4)

2
. (3.5)

Hence

p̂0(s) =
za1

γ + z2 − z1
. (3.6)
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The survival probability therefore reads in Laplace space

P̂ (s) = p̂(0, s) =
1

s

(
1− γ za1

γ + z2 − z1

)
. (3.7)

The short-time behavior of the survival probability is governed by the behavior
of (3.7) as s→ ∞. We have

P̂ (s) =
1

s

(
1− γ

sa+1
+ · · ·

)
, (3.8)

and so

P (t) = 1− γ ta+1

(a+ 1)!
+ · · · (3.9)

The departure of the survival probability from unity is slower when the initial
distance a between the particle and the trap is larger, as could be expected.

More interesting is the asymptotic decay of the survival probability at late
times, which is governed by the behavior of (3.7) as s→ 0. We have

P̂ (s) ≈ b√
s
, (3.10)

and so

P (t) ≈ b√
πt
, (3.11)

with

b = a+
2

γ
. (3.12)

The survival probability P (t) exhibits the universal decay in 1/
√
t of the per-

sistence probability that a one-dimensional random walker has not returned
to its starting point up to time t. The amplitude b can be interpreted as an
effective distance between the trap and the site where the particle is launched,
which is just a in the limit of a perfect trap (γ → ∞), but gets renormalized
to a larger value whenever the trap is imperfect (γ finite).

3.2 A quantum particle

Consider now a quantum particle propagating on the chain in the presence of
a single trap at the origin. The strength γ of the trap is now the amplitude
of an imaginary optical potential describing the absorbing power of the trap.
The tight-binding equation (2.6) thus becomes non-Hermitian:

i
dψn(t)

dt
= ψn+1(t) + ψn−1(t)− iγδn0 ψ0(t). (3.13)

Complex optical potentials were introduced long ago in quantum mechanics
in order to describe the inelastic scattering or the absorption of particles, in
analogy with complex refraction indices in optics. In the present framework,



9

the effective description of the trap by an optical potential can be derived
by first representing the trap as a zero-temperature phonon bath and then
tracing out the degrees of freedom of the bath [27,30–33]. A more formal
approach is based on deriving a Lindblad dynamics for the particle coupled to
the bath [63–65].

We again assume that the particle is launched at site a ≥ 0 at time t = 0.
We are again interested in the survival probability of the quantum particle up
to time t. This quantity reads

Π(t) =
∑

n

|ψn(t)|2 = 1− 2γ

∫ t

0

|ψ0(t
′)|2 dt′. (3.14)

The differential equation (3.13) can be solved in the very same way as its
classical analogue (3.1). We thus obtain

ψ̂(q, s) =
i(e−iqa − γ ψ̂0(s))

is− 2 cos q
(3.15)

and

ψ̂0(s) =
1

γ +
√
s2 + 4

(√
s2 + 4− s

2i

)a

. (3.16)

There is a noticeable qualitative difference between the quantum case un-
der study and its classical counterpart. In the present situation, the survival
probability tends to a non-zero asymptotic value Π∞ in the limit of infinitely
large times:

Π∞ = 1− 2γI, I =

∫ ∞

0

|ψ0(t)|2 dt, (3.17)

whose dependence on the trapping strength γ and on the initial distance a
will now be worked out explicitly. The integral I can be evaluated directly in
Laplace space, by means of the following formula:

∫ ∞

0

f(t)g(t) e−εt dt =

∫
ds

2πi
f̂(s)ĝ(ε− s) (0 < Re s < ε). (3.18)

The above identity is a regularized form of the Parseval-Plancherel identity
for Fourier transforms, with ε > 0 acting as a regulator. It holds as soon as
the Laplace transforms f̂(s) and ĝ(s) are analytic in the half plane Re s > 0.
Setting f(t) = ψ0(t) and g(t) = ψ0(t) and taking the ε → 0 limit, so that
s = iy + 0 lies to the immediate right of the imaginary axis, we obtain

I = I1 + I2(a), (3.19)

with

I1 =
1

π

∫ 2

0

dy

(γ +
√
4− y2)2

,

I2(a) =
1

π

∫ ∞

2

dy

γ2 + y2 − 4

(
y −

√
y2 − 4

2

)2a

. (3.20)
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In the limit where the initial distance gets large (a → ∞), I2(a) tends to
zero, and so I → I1.

The explicit expressions of the above integrals depend on the position of γ
with respect to 2.
• γ < 2. Setting w =

√
4− γ2, we obtain

πI1 =− 2

w2
+

2

w3
ln

2 + w

2− w
,

πI2(0) =
1

2w
ln

2 + w

2− w
,

πI2(1) =−1 +
πγ

4
+

(
− 1

2w
+
w

4

)
ln

2 + w

2− w
,

πI2(2) =
8

3
− w2 −

(
1

2
− w2

4

)
πγ +

(
1

2w
− w +

w3

4

)
ln

2 + w

2− w
,

πI2(3) =−21

5
+

14w2

3
− w4 +

(
3

4
− w2 +

w4

4

)
πγ

+

(
− 1

2w
+

9w

4
− 3w3

2
+
w5

4

)
ln

2 + w

2− w
, (3.21)

and so on.
In the weak-trapping regime (γ → 0), the asymptotic survival probability

departs from unity as

Π∞ ≈ 1− 2γ |ln γ|
π

(3.22)

for any finite initial distance a (including a = 0), whereas the limiting result
for a = ∞, i.e., I = I1, yields a halved amplitude, i.e.,

Π∞ ≈ 1− γ |ln γ|
π

(a = ∞). (3.23)

In other words, the limits a→ ∞ and γ → 0 do not commute.
• γ > 2. Setting u =

√
γ2 − 4, we now have

πI1 =
2

u2
− 4

u3
arctan

u

2
,

πI2(0) =
1

u
arctan

u

2
,

πI2(1) =−1 +
πγ

4
−
(
1

u
+
u

2

)
arctan

u

2
,

πI2(2) =
8

3
+ u2 −

(
1

2
+
u2

4

)
πγ +

(
1

u
+ 2u+

u3

2

)
arctan

u

2
,

πI2(3) =−21

5
− 14u2

3
− u4 +

(
3

4
+ u2 +

u4

4

)
πγ

−
(
1

u
+

9u

2
+ 3u3 +

u5

2

)
arctan

u

2
, (3.24)
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and so on. These expressions are the analytic continuations of (3.21) as w →
±iu, as it should be.

In the strong-trapping regime (γ → ∞), the behavior of the asymptotic
survival probability depends in a crucial way on the initial distance a. If the
particle is launched on the trap itself, the survival probability decays to zero as

Π∞ ≈ 1

2γ2
(a = 0). (3.25)

If the particle is launched at any other site, the survival probability goes to
unity as

Π∞ ≈ 1− 16a2

π(4a2 − 1)γ
(a > 0). (3.26)

We have in particular

Π∞ ≈ 1− 4

πγ
(3.27)

in the limit of an infinitely large initial distance.
Figure 3.1 shows a plot of Π∞ against the trapping strength γ, for several

values of the initial distance a between the particle and the trap. This fig-
ure illustrates the most salient features of the asymptotic survival probability.
When the quantum particle is launched on the trap itself (a = 0), Π∞ de-
creases monotonically from unity (see (3.22)) to zero (see (3.25)). As soon as
the particle is launched at a different site (a 6= 0), Π∞ has a non-monotonic de-
pendence on the trapping strength. It starts decreasing from unity for small γ
(see (3.22)), reaches a non-trivial minimum Π∞,min for some finite trapping
strength γmin, before it slowly returns to unity in the strong-trapping regime
(see (3.26)).

0 1 2 3
γ

0

0.2

0.4

0.6

0.8

1

Π
∞

a = 0
a = 1
a = 2
a = 3
a = ∞

Fig. 3.1 Asymptotic survival probability Π∞ of the quantum particle against trapping
strength γ, for several values of the initial distance a between the particle and the trap.
Bottom to top: a = 0, 1, 2, 3, and ∞ (Color online).
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The values of the asymptotic survival probability Π∞ in the borderline
situation where γ = 2 can be reached by letting either w → 0 in (3.21) or
u → 0 in (3.24). The numbers thus obtained are listed in Table 3.1 for initial
distances a = 0, 1, 2, 3, and ∞, as well as the coordinates γmin and Π∞,min

of the minimum of the curve Π∞(γ). The quantities Π∞(γ = 2) and Π∞,min

show a fast convergence in 1/a2 toward their values in the a = ∞ limit. For
a = 2, γmin = 1 exactly, while Π∞,min = 1/2 + 2/π − 5 ln(2 +

√
3)/(3π

√
3).

a Π∞(γ = 2) γmin Π∞,min

0 1− 8/(3π) = 0.15117 ∞ 0
1 16/(3π) − 1 = 0.69765 1.06254 0.67338
2 5− 40/(3π) = 0.75586 1 0.73324
3 272/(15π) − 5 = 0.77201 1.04211 0.75369
∞ 1− 2/(3π) = 0.78779 1.22574 0.77720

Table 3.1 Values of the asymptotic survival probability Π∞ of the quantum particle in
the borderline situation γ = 2 (Column 2), and coordinates γmin and Π∞,min (Columns 3
and 4) of the minimum of the curve Π∞(γ), for several initial distances a = 0, 1, 2, 3, and
∞ between the particle and the trap.

The most striking feature of the above results is the non-monotonic depen-
dence of the asymptotic survival probability Π∞ on the trapping strength γ,
which eventually returns to unity in the strong-trapping regime (γ → ∞).
The paradoxical inefficiency of a quantum trap in the nominal strong-trapping
regime can be understood in the following terms. For large γ and a > 0, the
wavefunction ψ0(t) on the trap can be expected to be proportional to 1/γ, and
so the integrand in (3.14), (3.17) is proportional to 1/γ2, and the differences
1−Π(t) and 1−Π∞ are proportional to 1/γ.

In the present situation, it can be checked explicitly that the above line of
reasoning is correct. To leading order as γ → ∞, (3.16) indeed reads

γ ψ̂0(s) ≈
(√

s2 + 4− s

2i

)a

, (3.28)

and yields

γ ψ0(t) ≈ a i−a Ja(2t)

t
, (3.29)

where Ja is again the Bessel function. Inserting the above estimate into (3.17),
and using the integral [66, (6.574.2), p. 692]

∫ ∞

0

(
Ja(x)

x

)2

dx =
4

π(4a2 − 1)
, (3.30)

we recover (3.26).
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4 A finite ring with a single trap

In this section we investigate the motion of a classical and a quantum particle
on a finite ring with a single trap.

4.1 A classical particle

Consider a classical particle diffusing on a ring of N sites (n = 0, . . . , N − 1),
with periodic boundary conditions (N ≡ 0). In the presence of a single trap at
the origin, the probability pn(t) for the particle to be at site n at time t still
obeys (3.1). It will be sufficient for our purpose to look for solutions decaying
as exp(−Et), i.e., for the eigenmodes of the stationary equation

−E pn = pn+1 + pn−1 − 2pn − γδn0 p0, (4.1)

with periodic boundary conditions. Setting

E = 2(1− cos q), (4.2)

the general solution of (4.1) reads

pn = A einq +B e−inq (4.3)

for n = 0, . . . , N with N ≡ 0. Boundary conditions yield

A+B = A eiNq +B e−iNq,

γ(A+B) = A e−iq(eiNq − 1) +B eiq(e−iNq − 1). (4.4)

Eigenmodes have a definite parity, i.e., they are either even (+) or odd (−)
in the exchange n↔ N − n.
• In the even sector, we have pN−n = pn, i.e., B = A eiNq. The amplitude
p0 = A + B on the trap is non-vanishing. The second line of (4.4) yields the
quantization condition

eiNq =
2 sin q + iγ

2 sin q − iγ
, i.e., γ = 2 sin q tan

Nq

2
. (4.5)

• In the odd sector, we have pN−n = −pn, i.e., B = −A eiNq. The amplitude
on the trap vanishes. This yields the quantization condition

eiNq = 1, (4.6)

irrespective of γ. We thus obtain the explicit momenta q
(−)
k = 2πk/N , i.e.,

E
(−)
k = 2

(
1− cos

2πk

N

)
. (4.7)

All eigenvalues are positive, and the even and odd spectra are intertwining:
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• If N is odd, say N = 2M + 1, there are M odd and M + 1 even modes:

0 < E
(+)
1 < E

(−)
1 < · · · < E

(+)
M < E

(−)
M < 4 < E

(+)
M+1. (4.8)

• If N is even, say N = 2M + 2, there are M odd and M + 2 even modes:

0 < E
(+)
1 < E

(−)
1 < · · · < E

(+)
M < E

(−)
M < E

(+)
M+1 < 4 < E

(+)
M+2. (4.9)

In both cases the largest eigenvalue in the even sector is larger than the band
edge (Emax = 4). It therefore corresponds to a purely imaginary momentum.

For a generic initial condition, the survival probability decays exponentially
fast, as

P (t) ∼ e−λt, λ = E
(+)
1 . (4.10)

When the ring size N is large, we have q
(+)
1 ≈ π/N , and so the decay rate λ

scales as

λ ≈ π2

N2
, (4.11)

irrespective of γ.

The decay rate however exhibits a non-trivial scaling in the regime whereN
is large, while the trapping strength γ is small, so that the product

X = Nγ (4.12)

is fixed. In this regime, we have q
(+)
1 ≈ θ/N , and so the decay rate obeys the

scaling law

λ ≈ θ2

N2
, (4.13)

where θ is an implicit function of X given by (see (4.5))

2θ tan
θ

2
= X. (4.14)

• For X ≪ 1, we have θ2 = X −X2/12 + · · ·, and so

λ ≈ γ

N

(
1− Nγ

12
+ · · ·

)
(Nγ ≪ 1). (4.15)

• For X ≫ 1, we have θ = π − 4π/X + · · ·, and so

λ ≈ π2

N2

(
1− 8

Nγ
+ · · ·

)
(Nγ ≫ 1), (4.16)

in agreement with (4.11) to leading order. The scaling function θ(X) will be
plotted in Figure 4.2, together with its quantum analogue (see (4.25)).
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4.2 A quantum particle

Consider now a quantum particle on a finite ring of N sites, in the presence of
a single trap at the origin. This problem has already been tackled in several
earlier works [30,55,58].

For the present purpose, it will be sufficient to look for harmonic solutions
to (3.13), proportional to exp(−iεt), i.e., for the eigenmodes of the stationary
equation

ε ψn = ψn+1 + ψn−1 − iγδn0 ψ0, (4.17)

with periodic boundary conditions. The general solution of (4.17) is still given
by (4.3), albeit with the dispersion law (2.7).
• In the even sector, the quantization condition now reads

eiNq =
2 sin q − γ

2 sin q + γ
, i.e., γ = −2i sin q tan

Nq

2
. (4.18)

• In the odd sector, the quantization (4.6) still holds, irrespective of the
trapping strength γ. We thus obtain the real energy eigenvalues

ε
(−)
k = 2 cos

2πk

N
. (4.19)

The main qualitative difference between the quantum case and its classical
counterpart is that the energy eigenvalues in the even sector are now complex
numbers with negative imaginary parts, while those in the odd sector remain
real. Figure 4.1 shows a plot of the energy spectrum for a ring of N = 14 sites
with γ = 1.

−2 −1 0 1 2
Re ε

−0.2

−0.1

0

0.1

Im
 ε

Fig. 4.1 Energy spectrum of a ring of N = 14 sites with γ = 1 in the complex ε-plane. The
scale on the imaginary axis is expanded 5 times. Empty black symbols: 6 real eigenvalues of
the odd sector. Full red symbols: 8 complex eigenvalues of the even sector (Color online).

Consider an arbitrary initial condition, defined by the normalized wave-
function ψn(0) = φn, and introduce the projections

φ(±)
n =

1

2
(φn ± φN−n) (4.20)

of the initial wavefunction onto the even and odd sectors.



16

The projection φ
(−)
n undergoes a unitary evolution, i.e., it is the superpo-

sition of harmonic components in exp(−iε
(−)
k t), where the energy eigenvalues

ε
(−)
k are real. The projection φ

(+)
n undergoes a non-unitary evolution, i.e., it is

the superposition of decaying components in exp(−iε
(−)
k t), where the energy

eigenvalues ε
(−)
k are complex numbers with negative imaginary parts. The

survival probability Π(t) therefore tends to a non-zero asymptotic value Π∞,
which is nothing but the probability for the particle to be initially in the odd
sector:

Π∞ =

N−1∑

n=1

∣∣∣φ(−)
n

∣∣∣
2

. (4.21)

In order to make the connection with the infinite chain (see Section 3), let
us assume that the particle is launched at some site a on the ring. We have
then generically

Π∞ =
1

2
. (4.22)

There are two exceptions to this rule. If a = 0 (the particle is launched on

the trap itself), φ
(−)
n vanishes and we have Π∞ = 0. More surprisingly, if N

is even and a = N/2 (the particle is launched exactly at the antipode of the

trap), φ
(−)
n also vanishes and we again haveΠ∞ = 0. This is a mere interference

phenomenon in a discrete quantum system. It is also worth noticing that (4.22)
is smaller than the corresponding result on the infinite chain (see Table 3.1),
where the minimum Π∞,min depends on the distance a, but is always larger
than 1/2. This difference can be attributed to the fact that the particle may
escape to infinity on the infinite chain, whereas it is bound to make repeated
returns to the trap in the ring geometry.

The excess survival probability Π(t)−Π∞ decays exponentially fast, as

Π(t)−Π∞ ∼ e−λt, (4.23)

where the decay rate λ is dictated by the eigenvalue in the even sector whose
imaginary part is the smallest, i.e.,

λ = −2 Im ε
(+)
1 . (4.24)

The decay rate λ again exhibits a non-trivial scaling if the ring size N is
large, while the trapping strength γ is small, so that their product X is kept

constant (see (4.12)). We have q
(+)
1 ≈ ζ/N , and so the decay rate obeys the

scaling law

λ ≈ 2 Im ζ2

N2
. (4.25)

Using (4.18), one finds that ζ is an implicit complex function of X given by

2ζ tan
ζ

2
= iX. (4.26)
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• For X ≪ 1, we have ζ2 = iX +X2/12− iX3/180 + · · ·, and so

λ ≈ 2γ

N

(
1− (Nγ)2

180
+ · · ·

)
(Nγ ≪ 1). (4.27)

• For X ≫ 1, we have ζ = π(1 + 4i/X − 16/X2 − 16(12− π2)i/(3X3) + · · ·),
and so

λ ≈ 16π2

N3γ

(
1− 4(24− π2)

3(Nγ)2
+ · · ·

)
(Nγ ≫ 1). (4.28)

The decay rate λ thus shows a non-monotonic dependence on the trapping
strength. It starts increasing linearly as γ/N for small γ, reaches a maximum
for Xmax = Nγmax = 9.2235, where N2λmax = 11.0846, and then falls off as
1/(N3γ). The power-law decay

λ ≈ 16π2

N3γ
(4.29)

holds more generally for N large and any finite value of γ.
Figure 4.2 shows a comparison between the scaling forms of the decay

rate λ in the classical case (see (4.13)) and in the quantum one (see (4.25)).

0 10 20 30 40 50
X = Nγ

0

2

4

6

8

10

12

N
2 λ

classical
quantum

Fig. 4.2 Rescaled decay rate N2λ against rescaled trapping strength X = Nγ for a classical
and a quantum particle on a ring with a single trap. The corresponding scaling functions
are θ2 for the classical case (monotonic, see (4.13)) and 2 Im ζ2 for the quantum one (non-
monotonic, see (4.25)). Dashed line: asymptote at π2 for the classical case (Color online).

5 A finite ring with several traps

We have seen in Section 4.2 that a quantum particle on a ring with a single trap
survives forever with a non-zero probability Π∞. This is due to the existence
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of avoiding modes which are insensitive to the presence of the trap, because
their amplitude on the trap vanishes. Stated otherwise, avoiding modes are so-
lutions of the stationary equation (4.17) whose energy eigenvalue ε is real. This
phenomenon has no classical analogue: on a finite sample, a single trap always
causes the survival probability of a classical walker to decay exponentially fast
to zero.

For a single trap, avoiding modes are easy to characterize: these are the
modes pertaining to the odd sector. Remarkably enough, avoiding modes can
exist in the presence of more than one trap. Consider the example of a ring
of N sites, in the case where N = 2M is even, with two traps at the antipodal
positions n = 0 and n = M . All the modes pertaining to the odd sector are
still avoiding modes in the presence of these two traps.

In general, the asymptotic survival probabilityΠ∞ of the quantum particle
is given by the square norm of the projection of its initial state |φ〉 onto the
linear subspace of avoiding modes. In other words, the result (4.21) general-
izes to

Π∞ =
∑

|e〉

|〈e|φ〉|2 , (5.1)

where |e〉 runs over a basis of avoiding modes.
The existence of avoiding modes in the presence of several traps on a ring

has already been demonstrated on examples [30,55]. Our goal is to treat the
combinatorics of these modes in a systematic way. Consider the 2N trap config-
urations on the ring. Each configuration is encoded in a sequence of occupation
numbers ηn ∈ {0, 1}, with ηn = 1 meaning there is a trap at site n and ηn = 0
there is no trap at site n. We assume all traps have the same strength γ. For
each trap configuration, we consider the stationary tight-binding equation

ε ψn = ψn+1 + ψn−1 − iγηn ψn, (5.2)

with periodic boundary conditions (N ≡ 0), and we address the following
question: Does (5.2) have avoiding modes?

If there is no trap, all the N eigenmodes of (5.2) are avoiding. Let us
henceforth assume there is at least one trap, and proceed in two steps:
• At the local level, consider a cluster of consecutive sites without traps. Define
the cluster length L ≥ 2 as the number of those sites plus one, and renumber
the sites as n = 1, . . . , L− 1. This cluster supports avoiding modes of the form

ψn = sin qn, (5.3)

with q = kπ/L with k = 1, . . . , L− 1.
• At the global level, for a given trap configuration, define ℓ as the greatest
common divisor (GCD) of all the cluster lengths L1, L2, . . . The condition for
the configuration to support at least one avoiding mode simply reads ℓ ≥ 2.
In the marginal situation where ℓ = 2, one must impose the extra condition
that N is a multiple of 4.

For a ring of N sites, we are thus led to define the following combinatorial
numbers:
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• The number m(N, ℓ) of non-empty trap configurations such that ℓ is the
GCD of all the cluster lengths.
• The number M(N) of trap configurations supporting avoiding modes.

These numbers can be calculated recursively as follows. First, m(N, ℓ) is
non-zero only if ℓ is a divisor of N , and we have

m(N, ℓ) = ℓ ν(N/ℓ), (5.4)

where ν(N) is a short-hand for m(N, 1). Then, any non-empty configuration
corresponds a unique ℓ, hence the sum rule1

2N = 1 +
∑

ℓ|N

m(N, ℓ). (5.5)

Singling out the term with ℓ = 1, we obtain the following recursion relation:

ν(N) = 2N − 1−
∑

ℓ|N

′
ℓ ν(N/ℓ), (5.6)

where the sum runs over all the divisors ℓ of N , except ℓ = 1. The above
relation determines all the ν(N) from the initial value ν(1) = 1.

The number of configurations supporting avoiding modes is

M(N) = 1 +
∑

ℓ|N

′
ℓ ν(N/ℓ), (5.7)

where the sum runs over the divisors ℓ of N except ℓ = 1, and ℓ = 2 if N is
not a multiple of 4. The above expression simplifies to

M(N) =

{
2N − ν(N)− 2ν(N/2) (N even and N/2 odd),
2N − ν(N) (else).

(5.8)

The erratic dependence ofM(N) on the ring size N , illustrated in Table 5.1
and Figure 5.1, is reminiscent of the behavior of the classical number-theoretic
functions. In particular:

N M(N) N M(N) N M(N) N M(N)
1 1 6 10 11 12 16 511
2 1 7 8 12 154 17 18
3 4 8 31 13 14 18 190
4 7 9 22 14 22 19 20
5 6 10 16 15 114 20 2092

Table 5.1 Numbers M(N) of trap configurations supporting avoiding modes for rings with
up to N = 20 sites.

1 The notation ℓ | N means that ℓ is a divisor of N , i.e., that N is a multiple of ℓ.
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Fig. 5.1 Logarithmic plot of the number M(N) of trap configurations supporting avoiding
modes on a ring of N sites, against N . Symbols: exact numbers (see (5.8)). Lower blue curve:
minimal values (see (5.9)), reached when N is a prime number. Upper red line: maximal
values (see (5.10)), reached exactly when N is a power of 2, and approximately whenever N
is a multiple of 4 (Color online).

• If N is an odd prime number, only the empty configuration and the N
configurations with a single trap (ℓ = N) support avoiding modes. We thus
obtain the linear behavior

M(N) = N + 1. (5.9)

• If N is a power of 2 (albeit not 2 itself), we have the exponential behavior

M(N) = 21+N/2 − 1. (5.10)

This number of configurations grows as the square root of the total num-
ber 2N of trap configurations. The above growth law is approximately valid
whenever N is a multiple of 4.

6 The infinite chain with a fixed density of traps

We now consider the physically more realistic situation of a classical or a
quantum particle propagating on the infinite chain, with a random distribution
of traps with given density. The higher-dimensional situation will be dealt with
in Section 7.

6.1 A classical particle

We start with a reminder on the case of a classical particle. We assume that
all traps have the same strength γ, so that we are facing a dilution disorder,
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characterized by the trap density c, and encoded in the random occupation
numbers:

ηn =

{
1 with prob. c,
0 with prob. 1− c,

(6.1)

with ηn = 1 meaning there is a trap at site n, and ηn = 0 there is no trap at
site n. We are led to consider the stationary equation

−E pn = pn+1 + pn−1 − 2pn − γηn pn. (6.2)

On any finite sample, the survival probability decays exponentially fast, as

P (t) ∼ e−λt, λ = E1, (6.3)

where E1 is the smallest eigenvalue of (6.2).
It is known from the theory of Lifshitz tails [14–16] that the smallest eigen-

value E1 corresponds to the lowest mode on the largest Lifshitz region, i.e.,
the largest interval which is free of traps. Let us focus on such a region of
N + 1 consecutive sites, and renumber them as n = 0, . . . , N . We have there-
fore ηn = 0 for n = 0, . . . , N , whereas the configuration on the rest of the
sample is left unspecified. The solution of (6.2) on the Lifshitz region reads
(see (4.3))

pn = A einq +B e−inq (n = 0, . . . , N), (6.4)

where the wavevector q is related to E by (see (4.2))

E = 2(1− cos q). (6.5)

Along the lines of [61], let us parametrize the boundary conditions imposed
by the rest of the sample as

p−1 = YLp0, pN+1 = YRpN . (6.6)

We thus obtain the quantization condition

sin(N + 2)q − (YL + YR) sin(N + 1)q + YLYR sinNq = 0. (6.7)

The wavevector corresponding to the lowest mode therefore reads

q1 =
π

N

(
1 +

α

N
+ · · ·

)
, (6.8)

with

α =
1

YL − 1
+

1

YR − 1
. (6.9)

To leading order as the size N of the Lifshitz region is large, we therefore have
the estimate

λ ≈ π2

N2
. (6.10)

This result is formally identical to (4.11), which applies to a ring with a sin-
gle trap. It holds irrespectively of the rest of the sample, which only enters
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the amplitude α of the correction term through the left and right boundary
parameters YL and YR.

In the limit of an infinite system, the behavior of the integrated density of
states

H(E) =

∫ E

0

ρ(E′) dE′ (6.11)

at low energy (E → 0) can be estimated a follows: the lowest energy level E1

is given by (6.10) with an exponentially small probability of order (1 − c)N

per unit length. We thus obtain the well-known Lifshitz tail [14–16]

H(E) ∼ exp

(
− π |ln(1− c)|√

E

)
. (6.12)

Despite the rather heuristic nature of the above reasoning, the asymptotic
result (6.12) is fully correct. Indeed it only misses an oscillatory prefactor of
order unity. This prefactor has been shown to be a periodic function of π/

√
E

with unit period, which reflects the discrete nature of the underlying chain,
and can be expressed in terms of the distribution of the boundary parameters
YL and YR at E = 0 [61].

The asymptotic decay of the survival probability P (t) can be estimated by
superposing the contributions of Lifshitz regions of all sizes N , weighted by
their respective probabilities (1−c)N . Working with exponential accuracy and
going to a continuum approximation, we get

P (t) ∼
∫ ∞

0

exp

(
− π2t

N2
− |ln(1− c)|N

)
dN. (6.13)

Finally, evaluating the integral by the saddle-point method, we obtain

P (t) ∼ exp

(
− 3

2

(
2π2 |ln(1 − c)|2 t

)1/3)
. (6.14)

This is precisely the stretched exponential law of the survival probability an-
nounced in (1.1) for d = 1, with

A1 =
3

2
(2π2)1/3 |ln(1− c)|2/3 . (6.15)

6.2 A quantum particle

Turning to the case of a quantum particle, we consider the stationary non-
Hermitian tight-binding equation

ε ψn = ψn+1 + ψn−1 − iγηn ψn, (6.16)

where the disordered configuration of traps is given by the binary distribu-
tion (6.1).
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Consider for a while a very long but finite sample. The probability that it
supports avoiding modes decays exponentially with the sample length. Neglect-
ing these very improbable events, the survival probability decays exponentially
fast, as

Π(t) ∼ e−λt, (6.17)

where the decay rate λ is dictated by the eigenvalue whose imaginary part is
the smallest, i.e.,

λ = −2 Im ε1. (6.18)

Furthermore, ε1 is again expected to correspond to the lowest mode on the
largest Lifshitz region.

Let us therefore consider, along the lines of Section 6.1, a trap-free Lifshitz
region of size N (i.e., made of N + 1 consecutive sites). The wavevector q1
corresponding to the lowest mode on that region is still given by (6.8), (6.9)
in terms of the left and right boundary parameters YL and YR. We therefore
obtain the estimate

λ ≈ 2 Im q21 ≈ 4π2

N3
Imα, (6.19)

with (see (6.9))

α =
1

YL − 1
+

1

YR − 1
. (6.20)

The result (6.19) has two qualitative differences with respect to its clas-
sical counterpart (6.10). First, the decay rate scales as 1/N2 in the classical
situation, and as 1/N3 in the quantum one. These scaling laws already hold
for a ring with a single trap (see (4.11) and (4.29)). Second, the quantum
decay rate (6.19) is now a fluctuating quantity. Indeed it depends to leading
order on the rest of the sample through the left and right boundary param-
eters YL and YR. In order to proceed, it is therefore necessary to determine
the distribution of these boundary parameters. This can be done as follows,
along the lines of [61]. In the theory of one-dimensional disordered systems
(see e.g. [62]), it is customary to introduce Riccati variables, defined as ratios
of the wavefunction amplitudes at two consecutive sites:

Yn =
ψn

ψn+1
. (6.21)

Right at the band edge (q = 0, i.e., ε = 2), these variables obey the recursion

Yn =
1

2 + iγηn − Yn−1
=





1

2 + iγ − Yn−1
with prob. c,

1

2− Yn−1
with prob. 1− c.

(6.22)

The Riccati variable Yn is therefore a function of the initial value Y0 and
of the random occupation numbers η1, . . . , ηn. In the n → ∞ limit, Yn has
a non-trivial limit distribution in the complex Y -plane, which is invariant
under the random transformation (6.22). Invariant distributions with complex
support have already been met in the realm of one-dimensional disordered
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systems (see e.g. [67]). In the present situation of a binary dilution disorder,
the invariant distribution has a fractal support which only depends on the
trapping strength γ, and not on the trap density c. This fractal set is shown
in Figure 6.1 for a typical trapping strength (γ = 1/2).
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Fig. 6.1 Fractal support of the invariant distribution of the Riccati variables Yn in the
complex Y -plane for γ = 1/2 (Color online).

For the time being, let us keep considering a Lifshitz region of fixed (large)
size N . If this region is embedded into an infinitely large disordered system,
the left and right boundary parameters YL and YR are independent of each
other, and each of them is distributed according to the above invariant distri-
bution in the complex Y -plane. The distribution of the complex parameter α
defined in (6.20) is thus determined, at least in principle. The smallest possible
value λmin of the decay rate is therefore given by the exact formula

λmin ≈ 8π2f

N3γ
, (6.23)

where the factor f reads

f = min ReF, (6.24)

while the complex variables Fn are related to the Riccati variables Yn through

Fn =
iγ

1− Yn
, (6.25)

and min ReF has to be understood as being the minimum of the real part of
the support of the invariant distribution of the variables Fn. This support, to
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be shown in Figure 6.2 below, is nothing but the image in the complex F -plane
of the fractal set shown in Figure 6.1.

The expression (6.23) has the same leading scaling in 1/(N3γ) as the re-
sult (4.29) for a ring with a single trap. The factor f only depends on the
trapping strength γ, and it is normalized so that it goes to unity in the γ → ∞
limit. In particular, f is independent of the trap density c.

In order to evaluate the factor f explicitly, let us recast the recursion (6.22)
in terms of the variables Fn themselves:

Fn = iγ +
Fn−1

1 + ηnFn−1
=

{
iγ +

Fn−1

1 + Fn−1
with prob. c,

iγ + Fn−1 with prob. 1− c.
(6.26)

The second line of the transformation (6.26) is a translation by the constant
imaginary quantity iγ. As a consequence, the fractal support of the invariant
distribution of the Fn extends up to infinity in the imaginary direction of
the complex F -plane, and it consists on an infinite periodic array of identical
components. Figure 6.2 shows the lower part of this fractal support in the
F -plane, featuring the first component of the above mentioned periodic array,
for γ = 1/2.
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Fig. 6.2 Lower part of the fractal support of the invariant distribution of the variables Fn

in the complex F -plane for γ = 1/2. Blue symbols connected by a line: sequence of extremal
points Fk (k = 1, 2, . . .). Square: fixed point F⋆ (Color online).

The factor f , equal to the minimum of the real part of the fractal support,
can be determined by means of the following construction. The lower right
endpoint of the support is F1 = 1 + iγ. This point is obtained by acting on



26

the point at infinity with the first line of (6.26). More generally, we are led
to consider a discrete sequence of extremal points Fk (k = 1, 2, . . .), shown in
Figure 6.2 as blue symbols connected by a line, defined by iterating the first
line of (6.26), i.e.,

Fk = iγ +
Fk−1

1 + Fk−1
, (6.27)

with F0 = ∞. We thus obtain

F1 = 1 + iγ, F2 =
γ2 + 2 + iγ(γ2 + 5)

γ2 + 4
,

F3 =
γ4 + 8γ2 + 3 + iγ(γ4 + 11γ2 + 14)

(γ2 + 1)(γ2 + 9)
, (6.28)

and so on. These points spiral around the stable fixed point

F⋆ =
i

2

(
γ +

√
γ(γ − 4i)

)
, (6.29)

shown as a square in Figure 6.2, whose real part reads

f⋆ =

√
2γ

γ +
√
γ2 + 16

. (6.30)

Let us give for further use the following explicit parametrization of the
extremal points. Introducing the complex variable z through

√
iγ = 2 sinh z (0 < Im z < π/2), (6.31)

we have

Fk =
2 sinh z cosh(2k + 1)z

sinh 2kz
, (6.32)

and especially
F⋆ = e2z − 1. (6.33)

It should now be clear from the construction shown in Figure 6.2 that the
factor f is the smallest of the real parts of the extremal points Fk. In other
words, we have

f = ReFk(γ), (6.34)

where the index k(γ) of the point with smallest real part depends on the
trapping strength γ.
• γ > 1. In this first region, F2 has the smallest real part, i.e., k(γ) = 2. We
have therefore

f = ReF2 =
γ2 + 2

γ2 + 4
(γ > 1). (6.35)

For large γ, this quantity departs from unity as

f = 1− 2

γ2
+

8

γ4
+ · · · , (6.36)



27

while the real part of the stable fixed point departs from unity as

f⋆ = 1− 2

γ2
+

14

γ4
+ · · · (6.37)

• 1/
√
5 < γ < 1. In this second region, F3 has the smallest real part, i.e.,

k(γ) = 3. We have therefore

f = ReF3 =
γ4 + 8γ2 + 3

(γ2 + 1)(γ2 + 9)
, (6.38)

and so on.
• γ → 0. In this regime of a weak trapping strength, the extremal points come
close to each other, so that it is legitimate to use a continuum approach. The
variable z becomes small in this regime, scaling as

z ≈
√
iγ

2
, (6.39)

so that we have

F⋆ ≈ 2z ≈
√
iγ ≈ (1 + i)f⋆, f⋆ ≈

√
γ

2
. (6.40)

As a consequence of (6.32), the extremal points are given by the scaling formula

Fk ≈ Φ(x) f⋆, (6.41)

with

x = k

√
γ

2
= kf⋆, (6.42)

while the complex function Φ(x) = U(x) + iV (x) reads

U(x) =
sinh 2x+ sin 2x

cosh 2x− cos 2x
, V (x) =

sinh 2x− sin 2x

cosh 2x− cos 2x
. (6.43)

The function Φ(x) describes the spiral formed by the extremal points in the
continuum limit. We have U(∞) = V (∞) = 1, and so Φ(∞) = 1 + i.

The function U(x), describing the real parts of the extremal points, reaches
its smallest minimum for x = π/2. We thus obtain the following predictions
in the regime of a weak trapping strength: the index k(γ) diverges as

k(γ) ≈ π√
2γ
, (6.44)

while the factor f scales as

f ≈ τ

√
γ

2
≈ τf⋆, (6.45)

with
τ = U

(π
2

)
= tanh

π

2
≈ 0.917152. (6.46)



28

Figure 6.3 shows a plot of f and f⋆ against γ. Both quantities are close to
each other, with f being slightly smaller than f⋆. They exhibit the same overall
monotonous dependence on γ, starting as

√
γ (see (6.40) and (6.45)), and

converging to unity with 1/γ2 corrections (see (6.36) and (6.37)). Figure 6.4
shows a plot of the ratio f/f⋆ against γ. This ratio is slightly smaller than
unity, and it varies between its γ → 0 and γ → ∞ limits, i.e., respectively,
τ = 0.917152 and unity. The cusps, corresponding to the points where the
integer k(γ) jumps by one unit, are more clearly visible than in Figure 6.3.
The first few regions where the integer k(γ) is constant are labelled by the
corresponding values of this integer.
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f
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Fig. 6.3 Plot of the factor f (see (6.24)) (lower blue curve) and of the real part f⋆ of the
stable fixed point F⋆ (see (6.30)) (upper red curve), against γ (Color online).

In the limit of an infinite system, the asymptotic decay of the survival
probability Π(t) of the quantum particle can be estimated by superposing the
contributions of Lifshitz regions of all sizes. For a given (large) size N , the
lowest decay rate λmin is given by (6.23). Working with exponential accuracy
and going to a continuum approximation, we get

Π(t) ∼
∫ ∞

0

exp

(
− 8π2ft

N3γ
− |ln(1− c)|N

)
dN. (6.47)

Finally, evaluating the integral by the saddle-point method, we obtain

Π(t) ∼ exp

(
− 4

3

(
24π2ft

γ

)1/4

|ln(1− c)|3/4
)
. (6.48)

We have thus derived the stretched exponential law of the survival probability
announced in (1.2) for d = 1, with

B1 =
4

3

(
24π2f

γ

)1/4

|ln(1− c)|3/4 . (6.49)
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Fig. 6.4 Plot of the ratio f/f⋆ against γ. Numbers: values of the integer k(γ) labeling the
first few regions where this integer is constant (Color online).

This exact result involves the non-trivial factor f , defined in (6.24) and plotted
in Figure 6.3, which only depends on the trapping strength γ.

7 Higher-dimensional disordered systems

This section is devoted to an extension of the results of Section 6 to higher-
dimensional disordered systems.

7.1 A classical particle

We start with a reminder on a classical particle diffusing on a d-dimensional
lattice, chosen to be hypercubic for simplicity, in the presence of a random
distribution of traps with density c. We again assume that all traps have the
same strength γ. We are thus led to consider the stationary equation

−E pn =
∑

m(n)

(pm − pn)− γηn pn, (7.1)

where m(n) are the 2d neighbors of site n.
In analogy with the one-dimensional situation, investigated in Section 6.1,

the smallest eigenvalues of (7.1) correspond to the lowest modes living in
Lifshitz spheres,2 i.e., large and almost spherical regions of the lattice which
are free of traps. Consider such a sphere of radius R ≫ 1, and translate the

2 We keep with the long tradition in mathematical physics [15,16] of using the word sphere,
even though the word ball would be more appropriate to describe the volume delimited by
a sphere.
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co-ordinate system so that the sphere is centered at the origin. The probability
of occurrence of such a large trap-free sphere per unit volume scales as

P (R) ∼ (1− c)ωdR
d

, (7.2)

where

ωd =
πd/2

Γ
(
d+2
2

) (7.3)

is the volume of the unit d-dimensional sphere.
As we are only interested in the lowest mode of the discrete difference

equation (7.1), it is legitimate to replace it by its continuum approximation,

−Ep = ∆p, (7.4)

where ∆ is the Laplace operator inside the sphere, with Dirichlet boundary
conditions. The lowest mode of the above equation is spherically symmetric
and reads

p(r) = Ld(qr), (7.5)

where q =
√
E is the wavevector, while the scaling function Ld, normalized to

be unity at the center, reads

Ld(x) = Γ

(
d+ 2

2

)(
2

x

)(d−2)/2

J(d−2)/2(x), (7.6)

where J(d−2)/2 is a Bessel function. The boundary condition p(R) = 0 yields

q =
jd
R
, (7.7)

where jd is the first zero of J(d−2)/2. Table 7.1 gives the value of ωd, Ld and jd
in one, two, and three dimensions.

d ωd Ld(x) jd
1 2 cos x π/2
2 π J0(x) 2.404825
3 4π/3 (sinx)/x π

Table 7.1 Values of various characteristics of Lifshitz spheres in one, two, and three dimen-
sions: ωd is the volume of the unit sphere, Ld(x) is the scaling function of the lowest mode
of the Laplace-Dirichlet equation in the sphere, jd is the first zero of the latter function.

The asymptotic decay of the survival probability P (t) can again be esti-
mated by superposing the contributions of Lifshitz spheres of all sizes. Working
with exponential accuracy and going to a continuum approximation, we get

P (t) ∼
∫ ∞

0

exp

(
− j2d t

R2
− ωd |ln(1− c)|Rd

)
Rd−1dR. (7.8)
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Evaluating the integral by the saddle-point method, we obtain

P (t) ∼ exp
(
−Cd |ln(1− c)|2/(d+2)

td/(d+2)
)
. (7.9)

This is the stretched exponential law of the survival probability announced
in (1.1), with

Ad = Cd |ln(1 − c)|2/(d+2)
, (7.10)

where the exact prefactor reads

Cd =
d+ 2

d

(
dωd j

d
d

2

)2/(d+2)

. (7.11)

7.2 A quantum particle

Let us now consider a quantum particle on a d-dimensional lattice, in the
presence of a random distribution of traps with strength γ and density c. We
are thus led to study the stationary tight-binding equation

ε pn =
∑

m(n)

pm − iγηn pn. (7.12)

On a very large but finite sample, the survival probability decays exponen-
tially fast, as

Π(t) ∼ e−λt, (7.13)

where the decay rate λ is dictated by the eigenvalue of (7.12) whose imaginary
part is the smallest, i.e.,

λ = −2 Im ε1. (7.14)

It is to be expected that ε1 is close to the band edge (i.e., εmax = 2d on
the hypercubic lattice). This legitimates the use of a continuum description,
and therefore the analysis in terms of Lifshitz spheres, recalled in Section 7.1
within the classical framework. More precisely, setting

ε = 2d− q2, (7.15)

the lowest mode in a sphere of large radius (R ≫ 1) is still given by (7.5), and
so the real part of the wavevector q is still given by (7.7). We thus obtain

Re ε ≈ 2d− j2d
R2

. (7.16)

The decay rate λ is given by the imaginary part of ε (see (7.14)), which
is typically much smaller than 1/R2, and whose determination is accordingly
more delicate. In the one-dimensional situation, the Riccati formalism allowed
us to derive the quantitative result (6.23), including the exact expression (6.24)
for the factor f . In the present higher-dimensional situation, no such quanti-
tative approach is available.
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An approximation which can be dealt with by analytical means consists
in considering a trap-free spherical cavity of radius R embedded in an infinite
space with a uniform optical potential iW , with W = cγ [28]. For a large
enough cavity, and with the present notations, this model yields the prediction

λcavity ≈ 2j2dΛ

R3
≈ 4j2d
R3

√
2cγ

, (7.17)

where Λ =
√

2/W is the penetration depth of a particle with very long wave-
length (q → 0) into the medium endowed with the optical potential. The
proportionality of the penetration depth (and hence of the decay rate) to
1/

√
γ is an artifact of the continuum description of the trapping medium. A

1/γ behavior is indeed expected to universally hold in the presence of discrete
traps, in accord with all the results obtained so far. We are thus led to make
the following Ansatz for the lowest decay rate λmin associated with a large
Lifshitz sphere of fixed radius R:

λmin ≈ φ

R3γ
. (7.18)

The above Ansatz is meant to capture the leading dependence of the decay rate
on R and γ in the regime where these parameters are large. The numerator φ
is a higher-dimensional analogue of the factor f which enters the exact one-
dimensional result (6.23). It is assumed to be of order unity, and possibly
depends on the trap density c.

The asymptotic decay of the survival probability can now be estimated as

Π(t) ∼
∫ ∞

0

exp

(
− φt

R3γ
− ωd |ln(1 − c)|Rd

)
Rd−1dR. (7.19)

Evaluating the integral by the saddle-point method, we obtain

Π(t) ∼ exp

(
−Qd |ln(1 − c)|3/(d+3)

(
φt

γ

)d/(d+3)
)
. (7.20)

This is the stretched exponential law announced in (1.2), with

Bd = Qd

(
φ

γ

)d/(d+3)

|ln(1− c)|3/(d+3)
, (7.21)

where the prefactor reads

Qd =
d+ 3

d

(
dωd

3

)3/(d+3)

. (7.22)

The only part of the result (7.21) which is not known analytically is the fac-
tor φ, which has been introduced in the Ansatz (7.18).
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8 Concluding remarks

In this work we have investigated the survival probabilities of a classical and
of a quantum particle in the presence of traps in a whole range of finite or
infinite geometries. Our main goal was to present a thorough comparison of
the temporal behavior of the classical and quantum survival probabilities,
in order to better grasp the qualitative differences between both situations.
This systematic kind of approach had not been adopted so far, in spite of the
appreciable number of published works on the trapping of continuous-time
quantum walks [26–29,31–33,52–60].

It is worth recalling the leitmotiv of the present study: static traps are far
less efficient to absorb quantum particles than classical ones. Free quantum
particles indeed benefit from interference effects in order to efficiently avoid
any particular site, much more easily than diffusing classical particles. This
qualitative difference manifests itself in all the geometries that we have con-
sidered in this work. On the chain with a single trap, a classical walker is
eventually absorbed with certainty, while a quantum one may escape forever
with a rather high probability Π∞. This asymptotic probability bears a non-
monotonic dependence on the trapping strength, and goes paradoxically to
unity in the nominal strong-trapping regime. On a finite ring of N sites with a
single trap, we have the extra feature that characteristic times scale differently.
In the classical case the relevant time scale is the diffusive one, scaling as N2,
whereas the much longer quantum absorption time grows as N3γ. Further-
more, for some configurations of several traps on a ring, the quantum particle
may have a non-zero asymptotic survival probability, owing to the existence of
avoiding modes. In higher dimensions, virtually all questions concerning these
avoiding modes are entirely open: What is the number of these modes, their
nature, their relevance to quantum percolation? We plan to return to these
matters in future work.

In the presence of a random distribution of traps with fixed density, both
the classical and the quantum survival probabilities were known to obey a
stretched exponential asymptotic decay, albeit with different exponents, i.e.,
respectively d/(d+2) and d/(d+3) (see (1.1), (1.2)). One of our main goals was
to determine the amplitude Bd of the quantum survival probability, and chiefly
its dependence on the trap density c and on the trapping strength γ. This task
is far more involved than the evaluation of the classical amplitude Ad. Indeed,
at variance with the classical case, the decay rate of the quantum particle
depends to leading order on the whole environment.

In the one-dimensional situation, the strong contrast between the classical
and the quantum situations can be illustrated explicitly. In the classical case,
in order to evaluate the amplitude A1 (see (6.15)), one has to perform a single
averaging over the size N of the Lifshitz region. In the quantum case, however,
in order to evaluate the amplitude B1 (see (6.49)), one is naturally led to
perform a double averaging, first on the environment at fixedN , obtaining thus
the non-trivial factor f exactly, and then over the size N . In higher dimension,
however, the first averaging cannot be performed exactly. We have replaced
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it by a motivated but heuristic Ansatz. It seems plausible that evaluating the
amplitude Bd by analytical means is just as difficult as evaluating the survival
probability of the classical situation throughout the Lifshitz regime, beyond
its leading term [19–25].
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