Skip to Main content Skip to Navigation
Journal articles

The $Ectocarpus$ genome and the independent evolution of multicellularity in brown algae

J. Mark Cock 1 Lieven Sterck 2 Pierre Rouzé 2 Delphine Scornet 1 Andrew E. Allen 3 Grigoris Amoutzias 2 Véronique Anthouard 4 François Artiguenave 4 Jean-Marc Aury 4 Jonathan H Badger 3 Bank Beszteri 5 Kenny Billiau 2 Eric Bonnet 2 John H. Bothwell 6 Chris Bowler 7 Catherine Boyen 1 Colin Brownlee 6 Carl J Carrano 8 Bénédicte Charrier 1 Ga Youn Cho 1 Susana M Coelho 1 Jonas Collén 1 Erwan Corre 9 Corinne da Silva 4 Ludovic Delage 1 Nicolas Delaroque 10 Simon M. Dittami 1 Sylvie Doulbeau 11 Marek Elias 12 Garry Farnham 6 Claire M. M. Gachon 13 Bernhard Gschloessl 1 Svenja Heesch 1 Kamel Jabbari 4, 7 Claire Jubin 4 Hiroshi Kawai 14 Kei Kimura 15 Bernard Kloareg 1 Frithjof C. Küpper 13 Daniel Lang 16 Aude Le Bail 1 Catherine Leblanc 1, 17 Patrice Lerouge 18 Martin Lohr 19 Pascal J Lopez 20 Cindy Martens 2 Florian Maumus 21 Gurvan Michel 1 Diego Miranda-Saavedra 22 Julia Morales 23 Hervé Moreau 24 Taizo Motomura 15 Chikako Nagasato 15 Carolyn A Napoli 25 David R Nelson 26 Pi Nyvall-Collén 1 Akira F Peters 1 Cyril Pommier 27 Philippe Potin 1 Julie Poulain 4 Hadi Quesneville 27 Betsy Read 28 Stefan A. Rensing 16 Andrés Ritter 1, 29 Sylvie Rousvoal 1 Manoj Samanta 30 Gaelle Samson 4 Declan C Schroeder 6 Béatrice Ségurens 4 Martina Strittmatter 13 Thierry Tonon 1 James W Tregear 11 Klaus Valentin 5 Peter von Dassow 17 Takahiro Yamagishi 14 Yves van de Peer 2 Patrick Wincker 4
Abstract : Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related(1). These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae(2-5), closely related to the kelps(6,7) (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic(2) approaches to explore these and other(4,5) aspects of brown algal biology further.
Document type :
Journal articles
Complete list of metadatas

Cited literature [27 references]  Display  Hide  Download

https://hal-cea.archives-ouvertes.fr/cea-00906990
Contributor : Bruno Savelli <>
Submitted on : Tuesday, October 15, 2019 - 1:18:08 PM
Last modification on : Tuesday, September 22, 2020 - 3:51:41 AM
Long-term archiving on: : Friday, January 17, 2020 - 10:24:31 AM

File

Coc.pdf
Publisher files allowed on an open archive

Licence


Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International License

Identifiers

Citation

J. Mark Cock, Lieven Sterck, Pierre Rouzé, Delphine Scornet, Andrew E. Allen, et al.. The $Ectocarpus$ genome and the independent evolution of multicellularity in brown algae. Nature, Nature Publishing Group, 2010, 465 (7298), pp.617-621. ⟨10.1038/nature09016⟩. ⟨cea-00906990⟩

Share

Metrics

Record views

2418

Files downloads

914