Brainomics - A management system for exploring and merging heterogeneous brain mapping data

V. Michel1, Y. Schwartz2,4, P. Pinel3, O. Cayrol1, A. Moreno3, JB. Poline4, V. Frouin4, D. Papadopoulos Orfanos4

1Logilab, Paris, France, 2INRIA Saclay Parietal Team, Paris, France, 3Unicog, INSERM-CEA, Neurospin, Gif-sur-Yvette, France, 4CEA, Neurospin, Gif-sur-Yvette, France

Introduction

- Number of large datasets for brain mapping have been released \cite{1,2}.
- Neuroimaging datasets more routinely include clinical data or genetics data.
- Exploitation requires
 - An efficient organization to integrate all the measures
 - An easy access to the relevant information.
- Neuroimaging \cite{3} and genomics \cite{4} databases are dedicated to their own field of research.

Data model

- Described in Python, using reusable modules called “cubes”.
- Modelisation of Scans, Questionnaires, Genomics results, Behavioral results, Subjects and Studies information.
- Data model optimized for large volumes (> 2000 subjects).
- Tested with several publicly available datasets \cite{1,2}.

Conclusion

- Open source solution to manage brain imaging datasets and associated meta data.
- Powerful querying and reporting tool, customized for emerging imaging-genetics field.

This work was supported by grants from the French National Research Agency (ANR GENIM; ANR-10-BLAN-0128) and (ANR IA BRAINOMICS; ANR-10-BINF-04).

Contact: brainomics@logilab.fr

Introduction

- Number of large datasets for brain mapping have been released \cite{1,2}.
- Neuroimaging datasets more routinely include clinical data or genetics data.
- Exploitation requires
 - An efficient organization to integrate all the measures
 - An easy access to the relevant information.
- Neuroimaging \cite{3} and genomics \cite{4} databases are dedicated to their own field of research.

Data model

- Described in Python, using reusable modules called “cubes”.
- Modelisation of Scans, Questionnaires, Genomics results, Behavioral results, Subjects and Studies information.
- Data model optimized for large volumes (> 2000 subjects).
- Tested with several publicly available datasets \cite{1,2}.

Conclusion

- Open source solution to manage brain imaging datasets and associated meta data.
- Powerful querying and reporting tool, customized for emerging imaging-genetics field.

This work was supported by grants from the French National Research Agency (ANR GENIM; ANR-10-BLAN-0128) and (ANR IA BRAINOMICS; ANR-10-BINF-04).

Contact: brainomics@logilab.fr

http://www.brainomics.net/demo/

- Brings together brain imaging and genetics data.
- Relies on a high-level query language (RQL).
- Solution based on CubicWeb, a semantic framework.
- Visualizing / exporting data in several formats.

CubicWeb

- Data management framework, 10 years of industrial uses (e.g. \cite{5}).
- Well established core technologies: SQL, Python, HTML5, Javascript.
- Licensed under LGPL since 2008.
- Used in production environments since 2005.
- Fine-grained security system coupled to the data model definition.
- Migration mechanisms controls model version / ensures data integrity.

Query using RQL

- Similar to the W3C’s SPARQL \cite{6}.
- Supports the basic operations (selection, insertion, etc.).
- Subquerying, ordering, counting, ...

Query all the female subjects of the database, with an age greater than 30:

\begin{verbatim}
Any S WHERE S is Subject, S age > 30, S gender "female"
\end{verbatim}

Query all the Cmap scans of subjects with an age greater than 25, and that have a score greater than 4.0 for the “algebre” question:

\begin{verbatim}
Any SA WHERE S is Subject, S age > 25, X is QuestionnaireRun, X concerns S, A is Answer, A questionnaire_run X, A question Q, Q text "algebre", A value > 4, SA is Scan, SA concerns S, SA type "c map"
\end{verbatim}

Views

- Each query result can be seen using different views.
- HTML pages, ZIP files, spreadsheets, XCEDE XML, ...
- May include processing (stat. maps computed on the fly).