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Relativistic jets are streams of plasma moving at appreciable fractions of the

speed of light. They have been observed from stellar mass black holes (∼3−20

solar masses, M⊙) as well as supermassive black holes (∼106−109 M⊙) found

in the centres of most galaxies. Jets should also be producedby intermedi-
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ate mass black holes (∼102−105 M⊙), although evidence for this third class

of black hole has until recently been weak. We report the detection of tran-

sient radio emission at the location of the intermediate mass black hole candi-

date ESO 243-49 HLX-1, which is consistent with a discrete jet ejection event.

These observations also allow us to refine the mass estimate of the black hole

to be between∼9 ×103 M⊙ and∼9 ×104 M⊙.

It has been proposed that the kinetic power output of any black hole is only related to the

mass accreted (in Eddington units (1)) on to it and does not depend on the mass of the black hole

itself (2). If this is true, jet emission, which is most frequently detected through radio emission,

is not only to be expected from stellar mass black holes and supermassive black holes, but black

holes of all masses. This includes ultra-luminous X-ray sources (ULXs), which are non-nuclear

extra-galactic X-ray point sources that exceed the Eddington luminosity (where the radiation

force is balanced by the gravitational force) for a stellar mass black hole. These could be either

stellar mass black holes undergoing hyper accretion (3, 4) and/or beaming (5, 6). Alternatively

they could contain black holes of a slightly higher mass, between 30 and 90 solar masses (7) or

be the missing class of intermediate mass black holes (8). To date, no variable radio emission

associated with jets has been detected from ultra-luminousX-ray sources, despite numerous

observing campaigns (9,10). On the contrary, non-varying nebula-like extended radioemission,

which is likely to be powered by the central black hole, has been detected around some ULXs

(11–13). ESO 243-49 HLX-1 (hereafter just referred to as HLX-1) is not only a ULX, but

currently the best intermediate mass black hole candidate.If HLX-1 harbours an intermediate

mass black hole, it accretes at comparable fractions of the Eddington luminosity, as stellar mass

black holes in binaries. Hence one expects HLX-1 to display similarities with the latter class of

objects. In that respect spectral state transitions reminiscent of black hole binaries have already

been reported (14, 15). It is therefore the ideal object in which to search for jet emission, in
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order to verify the scale-invariance of jets from black holes.

HLX-1 was detected serendipitously using XMM-Newton on 23 November 2004 in the

outskirts of the edge-on spiral galaxy ESO 243-49, 8” from the nucleus (16). The distance to

HLX-1 measured from its Hα emission line confirms that ESO 243-49 is the host galaxy (17).

HLX-1 therefore has a maximum unabsorbed X-ray luminosity,assuming isotropic emission,

of 1.1× 1042 ergs s−1 (16). The non-nuclear situation of this point source and the fact that it

exceeds the Eddington luminosity for a stellar mass black hole by three orders of magnitude,

qualify it as a ULX. From the X-ray luminosity and the conservative assumption that this value

exceeds the Eddington limit by at most a factor of 10 (3), a lower limit of 500 M⊙ was derived

for the mass of the black hole (16). The maximum mass, however, is not constrained. The X-ray

to optical flux ratio (16, 18) is far greater than expected from an AGN, but without an estimate

of this maximum mass, it could be argued that HLX-1 is a non-nuclear supermassive black hole

e.g. (19).

We observed HLX-1 with the Australia Telescope Compact Array (ATCA) in the 750 m

configuration on 13 September 2010 (supporting material (20)), when regular X-ray monitoring

of HLX-1 with the Swift satellite (21) showed that HLX-1 had just undergone a transition

from the low/hard X-ray state to the high/soft X-ray state. The transition occurs for HLX-1

when the count rate increases by more than a factor 10 in just afew days (Fig 1) (15, 22).

Galactic black hole binaries are known to regularly emit radio flares around the transition from

the low/hard to the high/soft state, e.g. (23, 24). These are associated with ejection events,

where, for example, the jet is expelled which can lead to radio flaring when the higher velocity

ejecta may collide with the lower-velocity material produced by the steady jet. As well as

detecting radio emission from the nucleus of the galaxy, we detected a radio point source at

Right Ascension (RA) = 01h10m28.28s and declination (dec.) = -46◦04’22.3”, coincident with

the Chandra X-ray position of HLX-1 (25). Combining the 5 GHz and 9 GHz data gives a
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detection of 50µJy/beam, and a 1σ noise level of 11µJy, thus a 4.5σ detection at the position

of HLX-1, at a time when such emission can be expected (Fig 2, left) (Table 1).

The radio flares in Galactic black hole binaries are typically a factor 10-100 (and even more)

brighter than the non-flaring radio emission (9) and generally last one to several days, e.g. XTE

J1859+226 (26). Once the high/soft state has been achieved, the core jet issuppressed, e.g. (23).

To determine whether the radio emission that we detected wastransient and thus associated

with a radio flare, we made another observation with the ATCA in the 6 km configuration on

3 December 2010, when HLX-1 was declining from the high/softstate and when no flaring is

expected. This observation again showed emission from the nucleus of the galaxy, consistent

with that of the previous radio observation, but revealed nosource at the position of HLX-1.

The 3σ non-detection for the combined 5 GHz and 9 GHz data is 36µJy/beam (Fig 2, right)

(Table 1). These observations suggest that the source is variable.

To confirm the variability, we re-observed HLX-1 when it had just undergone another tran-

sition from the low/hard X-ray state to the high/soft X-ray state in August 2011 (Fig 1). All five

of the 2011 observations (Table 1) were made in a similar configuration to the December 2010

observation. We observed three non-contiguous detections(≥ 4 σ) and two non-contiguous

non-detections of the source (Table 1). This indicates thattwo flares were detected during this

period.

To determine if the source was indeed variable, we fitted eachobservation using a point

source, using the point spread function. We used the position of HLX-1 when the source was

not detected. This allowed us to estimate the flux and the associated errors (Table 1) even for a

non-detection. We tested whether the data could be fitted with a constant, namely the mean of

the data. We compared these data to the mean flux value using a chi-squared test. We found a

reduced chi-square (χ2

ν
) value of 2.5 (5 degrees of freedom) which is much greater than unity,

demonstrating that a constant is a poor fit to the data and supporting the variable nature. Further,
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Table 1: The 7 radio observations organised by date and showing the Swift X-ray unabsorbed
flux (0.5−10.0 keV)× 10−13 erg cm−2 s−1 (and the 90% confidence errors) along with the
combined 5 and 9 GHz peak brightness radio flux (with the associated 1σ noise level) or the
3 σ upper limit for the non-detections. The final column gives the radio flux from fitting a point
source (using the point spread function) (and the associated 1σ noise level).

Observation X-ray 5+9 GHz peak 5+9 GHz flux
date flux flux (µJy/beam) density (µJy)

13 Sep. 2010 4.57(±0.68

0.50
) 50 (11) 42 (10)

3 Dec. 2010 2.40(±0.60

0.50
) <36 11 (20)

25 Aug. 2011 4.57(±0.30) <30 14.5 (7)
31 Aug. 2011 4.57(±0.30) 51 (10) 63 (18)
1 Sep. 2011 4.57(±0.30) <31 25 (10.5)
3 Sep. 2011 4.57(±0.30) 45 (10.5) 43 (10)
4 Sep. 2011 4.57(±0.30) 30 (7.5) 27 (7.5)

combining all of the detections (5 and 9 GHz), the source is observed at 45µJy/beam, with a

1 σ noise level of 5.5µJy, which shows a confident detection at the 8σ level. Combining, in

a similar fashion, the data in which no radio emission was detected, we obtained a 3σ upper

limit in the combined 5+9 GHz data of 21µJy/beam (Fig 2). The variability rules out emission

from a nebula. The observed variable radio emission is then again consistent with a transient jet

ejection event.

It has been shown that observations of super massive black holes and stellar mass black

holes support the scale invariance of jets (27,28). This was done by comparing X-ray and radio

measurements, tracers of mass accretion rate and kinetic output respectively, with the black hole

mass to form a “fundamental plane of black hole activity”. Under the hypothesis that HLX-1

is indeed an intermediate mass black hole, we can test the proposed relation. We take what is

generally considered to be the maximum mass of intermediatemass black holes,∼1×105 M⊙

(8) and the X-ray luminosity, 5.43× 1041 erg s−1 (0.5-10.0 keV), determined from Swift X-

ray telescope (29) observations made at the same time as our radio detection. Continuum (non

flaring) radio emission could then be estimated with the aforementioned relationship (28), which
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is based on a sample that includes black holes in all different X-ray states. This relation implies

a continuum radio emission at the∼20µJy level. This is slightly lower than the 3σ non-flaring

upper limit, suggesting that the mass of the black hole is likely to be less than∼1×105 M⊙.

Radio flares are seen to occur in Galactic black hole binarieswhen the X-ray luminosity is

10−100 per cent of the Eddington luminosity (30). HLX-1 has already shown similar behaviour

to the Galactic black hole binaries. Therefore assuming that the radio flares that we observed

also occur when the X-ray luminosity is 10−100 per cent of the Eddington luminosity indicates

a black hole mass between∼9.2×103 M⊙ and∼9.2×104 M⊙, commensurate with the mass

estimate above and those of (15,22,31) and confirming the intermediate mass black hole status.
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Figure 1: Longterm Swift lightcurve showing the dates of thefirst two ATCA observations and
the period during which the subsequent five ATCA observations were taken. Three X-ray state
transitions from the low/hard state (count rate. 0.002, 0.3-10.0 keV) to the high/soft state (0.01
. count rate. 0.05, 0.3-10.0 keV) can be seen.

Supporting Material

Observations and analysis

HLX-1 in ESO 243-49 was observed with the Australia Telescope Compact Array seven times

as shown in Table S1, using the upgraded Compact Array Broadband Backend (CABB) (32).

The data were taken using the CFB 1M-0.5k correlator configuration with 2 GHz bandwidth

and 2048 channels, each with 1 MHz resolution. Each observation was performed at the central

frequencies of 5.5 GHz and 9 GHz simultaneously. During the first observation the array was

in the 750 m configuration (giving baselines up to 5 km when all6 antennas are used). During

the second and subsequent observations it was in the 6 km configuration. The total on-source

integration time was∼11 h for each observation. The primary calibrator PKS 1934-638 was

used for absolute flux and bandpass calibration, while the secondary calibrator 0048-427 was
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Figure 2: Left: 5 and 9 GHz combined radio observations (contours: -3, 3, 4, 5, 6, 7, 8, 9,
10, 15, 20, 25 times the 1σ rms noise level (5.6µJy/beam)) using the radio data taken on
the 13th September 2010, 31st August 2011, 3rd and 4th September 2011 with the ATCA and
superimposed on an I-band Hubble Space telescope image of ESO 243-49 (inverted colour
map). The beam size is shown in the bottom left hand corner. The galaxy, ESO 243-49, is
clearly detected in radio. A 8σ point source falls at RA = 01h10m28.28s and declination =
-46◦04’22.3” (1 σ error on the position of RA=0.43” and dec.=0.67”), well within the 0.3”
Chandra error circle of HLX-1. Right: 5 and 9 GHz combined radio observations (contours:
-3, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 times the 1σ rms noise level (7.0µJy/beam)) made from
the 3rd December 2010, 25th August 2011 and 1st September 2011 ATCA observations and
superimposed on the same I-band Hubble Space telescope image of ESO 243-49. The galaxy
ESO 243-49 is again clearly detected, but no source is found within the Chandra error circle.
Again the beam size is shown in the bottom left hand corner.

used for the phase and antenna gain calibration. For each observation, we observed 1934-638

for 10 min and the phase calibrator was observed every 15 min.

The data reduction and analysis was performed with the Multichannel Image Reconstruc-

tion, Image Analysis and Display (MIRIAD) software (33). We loaded the data into MIRIAD

using theATLOD task with options birdie, xycorr, rfiflag, and noauto, which flags out the chan-

nels affected by self-interference, correcting the phase difference between the X and Y chan-

nels, discarding any autocorrelation data, and automatically flagging out frequency bands that

are known to be heavily affected by Radio Frequency Interference (RFI). The standard data re-

duction steps were flagging, bandpass, phase and amplitude calibration, following the MIRIAD
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User Guide1. We used multi-frequency synthesis (MFS) methods (32) to produce the dirty

maps. Imaging was carried out using the multi-frequency (32) clean algorithms. We note that

imaging did not involve any self-calibration.

The detections with the associated 1σ noise level and the 3σ non-detections for the 5

GHz, 9 GHz and combined observations are given in Table S1. All the images were naturally

weighted in order to reach the best sensitivity, with the exception of the September 2010 5 GHz

(and the 5+9 GHz) image which was weighted with robust=0 due to the lower resolution of this

data. We also combined the 5-GHz and 9-GHz data sets in order to enhance sensitivity.

We estimated the position errors by adding the errors due to phase calibration, the position

of the phase calibrator and the point-source model fit in quadrature. We note that as we have a

Very Long Baseline Interferometry measurement for the phase calibrator, its positional error is

negligible. The error due to phase calibration depends on the distance between the target and

the calibrator of 11.5 degrees which corresponds to a positional uncertainty of∼0.2”. We find

the error on the RA is 0.43” and on the dec. is 0.67”.

We verified that the radio source was consistent with a point-like object by comparing the

fluxes and the fitted point source model fluxes. For all of our detections, the radio source was

consistent with a point source.

The Swift-XRT Photon Counting data were processed using thetool XRTPIPELINEv0.12.6.

We used the grade 0-12 events, giving slightly higher effective area at higher energies than the

grade 0 events, and a 20 pixel radius circle to extract the source and background spectra us-

ing XSELECT v2.4b. The ancillary response files were createdusing XRTMKARF v0.5.9 and

exposure maps generated by XRTEXPOMAP v0.2.7. We fitted all the spectra within XSPEC

v12.7.0 using the response file SWXPC0TO12S6-20070901V012.RMF (34).

The 11 ks of data taken on the 13-14th September 2010 revealeda spectrum that was well

1http://www.atnf.csiro.au/computing/software/miriad/userguide/userhtml.html
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Table S1: The 7 radio observations organised by date and showing the radio detection with
the associated 1σ noise level or the 3σ non-detection for the 5 GHz, 9 GHz and combined
observations

5 GHz flux (µJy/beam) 9 GHz flux (µJy/beam) 5+9 GHz flux (µJy/beam)
Observation Detection Non-detect. Detection Non-detect.Detection Non-detect.

date (1σ noise) (3σ) (1 σ noise) (3σ) (1 σ noise) (3σ)
13 Sep. 2010 45 (11) 36 50 (11)
3 Dec. 2010 33 63 36

25 Aug. 2011 36 45 30
31 Aug. 2011 44 (11.5) 51 51 (10)
1 Sep. 2011 36 48 31
3 Sep. 2011 36 81 (17) 45 (10.5)
4 Sep. 2011 27 39 30 (7.5)

fitted with an absorbed disc blackbody model (χ2

ν
=0.66, 7 degrees of freedom (dof), nH = 4

× 1020 cm2, kT=0.20+0.02

−0.02
keV). This gives a 0.5-10.0 keV unabsorbed flux of 4.57(±0.68

0.50
) ×

10−13 erg cm−2 s−1, thus a luminosity of 4.9× 1041 erg s−1 (0.5-10.0 keV), assuming a source

distance of 95 Mpc (using the WMAP cosmology).

The 6.4 ks of Swift data taken on the 3rd December 2010 gave a spectrum that we fitted with

the same blackbody and absorbed power law model as the secondX-ray observation presented

in (16). These characteristics were chosen as the faintness of thesource meant that there were

too few counts to constrain the fit. The goodness of the fit was acceptable (C-stat=38, 61

channels) and the unabsorbed flux value was found to be 2.4±0.60

0.50
) × 10−13 erg cm−2 s−1 (0.5-

10.0 keV) which gives an unabsorbed luminosity of 2.7× 1041 erg s−1 (0.5-10.0 keV).

Data taken during the 2011 outburst were best fitted with the same model as the September

2010 data. We initially took all the data during the observing period from 5th August 2011

to the 16th August 2011 (34 ks of data) and found an unabsorbedflux value of 4.57±0.30×

10−13 erg cm−2 s−1 (0.5-10.0 keV). Using a subset of this data (taken between the 24th and

31st August 2011, which gives 7.2 ks X-ray data) and fitting with the same model reveals an

unabsorbed flux of 4.86±0.70× 10−13 erg cm−2 s−1 (0.5-10.0 keV), hence compatible within
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the 90% confidence errors quoted. We therefore took the flux calculated over the whole period,

as it has the smallest error bars, which reveals a luminosityof 5.43× 1041 erg s−1 (0.5-10.0

keV).

The χ2 test to determine the variability of the source

We tested the hypothesis that the flux values are constant. Fitting the seven flux values deter-

mined through the point source fitting (Table 1), in association with the errors, with a constant

value we determined a mean flux of 28.48µJy. The 1σ errors on this value are±3.71µJy. The

χ2 of the fit was found to be 12.52. Since the mean value was obtained from the sample data,

the number of degrees of freedom are the number of data pointsminus 1 minus the one fitted

parameter, which totals five. Theχ2

ν
value of 2.5 is much greater than unity, indicating that a

constant is a poor fit to the data.

The black hole fundamental plane

We used the sample presented by (27), which includes black holes in all states and the correla-

tion presented from the analysis of this sample by (28), as they consider the emission within the

0.5-10.0 keV band, as opposed to the emission in the 2.0-10.0keV band in the study of (27).

The wider band used by (28) is better adapted to the current study of HLX-1, as the X-ray

emission in the high/soft state shows very few counts in the 2.0-10.0 keV band, leading to large

uncertainties in the X-ray luminosity in this band. The correlation found by (28) is

log(Lx) = ξRlog(LR) + ξM log(M) + bx

whereLx is the X-ray luminosity (0.5-10.0 keV),ξR = 1.74±0.20,LR is the radio luminos-

ity, ξM = -1.35±0.27,M is the mass of the black hole,bx = -14.23±5.75.
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