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[1] It is estimated that more than 500 eddy covariance sites are operated globally,
providing unique information about carbon and energy exchanges between terrestrial
ecosystems and the atmosphere. These sites are often organized in regional networks like
CarboEurope‐IP, which has evolved over the last 15 years without following a predefined
network design. Data collected by these networks are used for a wide range of
applications. In this context, the representativeness of the current network is an important
aspect to consider in order to correctly interpret the results and to quantify uncertainty.
This paper proposes a cluster‐based tool for quantitative network design, which was
developed in order to suggest the best network for a defined number of sites or to assess
the representativeness of an existing network to address the scientific question of interest.
The paper illustrates how the tool can be used to assess the performance of the current
CarboEurope‐IP network and to improve its design. The tool was tested and validated with
modeled European GPP data as the target variable and by using an empirical upscaling
method (Artificial Neural Network (ANN)) to assess the improvements in the ANN
prediction with different design scenarios and for different scientific questions, ranging
from a simple average GPP of Europe to spatial, temporal, and spatiotemporal variability.
The results show how quantitative network design could improve the predictive capacity
of the ANN. However, the analysis also reveals a fundamental shortcoming of optimized
networks, namely their poor capacity to represent the spatial variability of the fluxes.
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1. Introduction

[2] Since the first successful measurements of the net CO2

exchange between forest and atmosphere [Baldocchi et al.,
1988], eddy covariance (EC) based methods have gained
popularity and have become one of the central observational
tools at more than 500 sites around the world [Baldocchi,
2008]. These data have been increasingly used to support
regional and global analyses of CO2, water and energy
exchanges between terrestrial ecosystems and the atmo-
sphere [e.g., Beer et al., 2010; Ciais et al., 2005; Piao et al.,
2008; Valentini et al., 2000]. However, this network of sites
was never formally designed; that is, new towers were not
necessarily established at locations that represented a gap in
the network. Instead, site selection was based on feasibility
and previous experience. As a result, accessibility, logistics

and topography suitable for EC measurements were major
determinants for site selection.
[3] As an example, while over 100 sites were established

in Europe, often in the context of European coordinated
projects, with the exception of a few large institutes, most
sites were managed by individual research groups. The
European network went through several cycles of self‐
organization. After a first phase of focus on forest ecosys-
tems the network was extended with grassland, cropland and
wetland sites subject to different management practices.
Later, sites were added in the more extreme climate condi-
tions of northern and southern Europe and following the
expansion of the EU itself, Eastern European partners were
taken onboard. The network is currently believed to cover
the most important land uses of the dominant climate zones.
However, it does not by any means cover the full botanical,
environmental and edaphic diversity, nor the variety of
disturbances and management strategies found at the Euro-
pean continent. Although some regional clusters of sites
were established to study the effect of land use change or
land management, the network as a whole lacks a formal
experimental design.
[4] In parallel with the more fundamental research that

seeks to better understand the carbon and water cycle of
terrestrial ecosystems, international commitments to reduce
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CO2 emissions (Kyoto) require that the self‐declared emis-
sion reduction be verified by atmospheric measurements
[Nisbet and Weiss, 2010]. In Europe, the dense network of
EC towers appears as a powerful source of information to
complement the observations of a network of atmospheric
stations monitoring the changes in atmospheric CO2 con-
centrations (i.e., the ICOS initiative). However, the use of
the existing EC network to inform priors for emission
verification is hampered by, among other things, its lack of
design and therefore its ill‐defined or better, unknown
representativeness.
[5] In general terms, the representativeness of a network

can be defined by its ability to reproduce the main (statis-
tical) characteristics of quantities or processes of the popu-
lation under study. An optimal sampling network represents
the characteristics of the population while avoiding redun-
dancies. From a more practical perspective, this implies that
sampling network should be constituted by measurement
stations (i.e., EC towers) in as many different conditions as
possible. In the example of an EC network, conditions can
either refer directly to the quantity or process of interest
or its drivers or parameters, in which case, network design
becomes a multidimensional task. For multidimensional
problems, clustering techniques, as applied in this study,
have been shown to be useful for characterizing multidi-
mensional environmental data [Luyssaert et al., 2004] and
quantifying the representativeness of particular locations
[Hargrove and Hoffman, 1999].
[6] There have been attempts to assess the representa-

tiveness of an existing flux tower network. Hargrove et al.
[2003] studied the American EC network and the impact of
the actual design on specific analysis using a GIS approach
that identified areas with similar characteristics in respect to
climate, soil and disturbances based on stratification of
the environmental data space using k‐means clustering.
The samemethodology was applied in the initial design of the
National Ecological Observatory Network (NEON) in the
United States [Schimel et al., 2007].
[7] Furthermore, minimum distance approaches have been

used for empirical and model‐based upscaling. The model
parameters used at each pixel were taken from the most
similar EC site of the European network, where the para-
meters were estimated using the measurements [Carvalhais
et al., 2010]. That study used a nearest neighborhood clas-
sification of the climatic and phenological conditions in
order to quantify the multidimensional distance in data
space between each pixel and the sites. Jung et al. [2009]
studied the effect of the actual network design in the con-
text of an empirical upscaling exercise. For upscaling, a
machine learning approach making use of model simula-
tions was applied to show the ability of machine learning to
reproduce monthly gross primary production (GPP) of the
globe when the learning algorithm was parameterized using
only data extracted at the locations of existing observational
stations.
[8] The current paper presents a tool for evaluating the

representativeness of the current European EC network and
proposes possible improvements to the network design with
the longer‐term objective of designing the EC network in
such a way that allows it to become a powerful component
of a monitoring system able to track changes in the bio-
sphere‐atmosphere exchanges. The proposed quantitative

network design (QND) tool can deal with the three fol-
lowing general network design questions: (1) How repre-
sentative is an existing network and in which regions does
the network perform poorly? (2) Where should measure-
ment stations be added or removed in order to optimize an
existing network? (3) How should a new network of mea-
surement stations be designed so that it is optimal in the
sense that it contains the minimal number of stations to
obtain a specific precision and accuracy for its objectives
(see below) and represents all relevant ecological char-
acteristics represented (e.g., major ecosystem and vegetation
types)?
[9] The network design question is closely linked to the

objectives for which the observations of the network are
used. Examples of the objectives that have been and may be
studied with data from the EC network include cross‐site
synthesis activities addressing issues in ecophysiology,
ecology, model development, ecosystem model parameter-
ization and validation, as well as upscaling of ecosystem
fluxes to larger spatial scales. This study has worked toward
developing a tool that enables its users to quantitatively
analyze the current network and optimize its design for
future use.
[10] In order to demonstrate and validate this tool, its

possibilities, limitations and interpretation, four realistic
network objectives were selected with increasing computa-
tional complexity. These objectives were to monitor the
mean, spatial variability, semivariance and spatiotemporal
variability of gross primary production (GPP). The four
objectives were applied in order to evaluate the represen-
tativeness of the current network and suggest how its design
could be improved to better study the same objectives in the
future. Validation of the QND tool required knowledge of
the target spatial explicit variable. As a target quantity, the
study used the GPP simulated by means of a biogeochem-
ical model as a substitute of the true but unknown GPP.
[11] The specific objectives of the paper are as follows:

(1) show how the choice of objectives of the network affects
the apparent representativeness of the current network,
(2) identify the regions of Europe where the current network
is uncertain (depending on the objectives; 2.3.1) and
(3) quantify the degree to which this uncertainty could be
reduced by network optimization.

2. Methods

2.1. Features of the Quantitative Network Design Tool

[12] A quantitative network design (QND) tool was
developed that can be used to answer the three following
distinct design questions: (1) Is an existing network of
measurement stations representative for its objectives and
consequently, which areas are less represented and therefore
have a higher uncertainty? (2) Where should measurement
stations be added or removed in order to optimize an existing
network for its objectives? (3) How can a new network of
measurement stations be designed so that it is optimized for
its objectives (that is, the minimal number of stations needed
to obtain a specific precision and accuracy for its objec-
tives)? The most important features of such a tool, from a
user’s point of view, are listed below.
[13] 1. Based on a number of spatially explicit data (e.g.,

maps of climate variables, vegetation and soil character-
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istics, remotely sensed data, and model output), the QND
tool analyzes the representativeness of an existing moni-
toring network, highlights the areas that are currently less
represented, or optimizes the monitoring network in order to
cover the maximum variability contained in the spatially
explicit data. The tool is independent of spatial and temporal
scale; it can be used at the global, continental, regional,
landscape or site level depending on the spatial scale of the
input data. Similarly, it can be used at decadal, annual,
seasonal, monthly, weekly, daily or hourly levels depending
on the temporal resolution of the input data
[14] 2. Choosing the spatially explicit data to be used in

network evaluation or network design is critical, as these
data must fully represent the process or application under
study. If, for example, the representativeness analysis is
performed in order to improve the quality of an upscaling
model, the data used in the network evaluation should be the
same as the input of the upscaling model. If, however, the
analysis aims to study the representativeness of the network
in terms of climate variability, the inputs could be maps of
variability (e.g., standard deviations) of the different mete-
orological data. Consequently, data space in terms of the
variables and number of variables is defined by the user.
However, all variables should have the same spatial and
temporal resolution.
[15] 3. The underlying algorithm does not formally

require the spatially explicit input variables to be indepen-
dent. However, all variables are considered equally impor-
tant and, therefore, are processed with the same weight.
Consequently, using strongly related variables will result in
a network that better represents the related variables. For
example, a network study based on air temperature and
precipitation will result in a network that is equally repre-
sentative for both variables. If, however, a similar network is
designed for precipitation, air temperature and soil temper-
ature, the network will better represent the variability in
temperature than in precipitation because two strongly
related temperature variables were used.
[16] 4. The QND tool has the option of using one variable

to create distinct strata; for example, different plant func-
tional types or administrative units. In this case, the different
strata are treated as independent with respect to each other
and the algorithm has the innovative feature of ensuring
representation of each of the strata based on the input
variables and the towers that already represent the strata.
The tool treats all strata simultaneously and the user can
choose from two options for allocating towers to strata. The
first option involves adding a tower to the stratum where
the new tower results in the largest absolute uncertainty
reduction, while the second adds a tower to the stratum with
the highest uncertainty of all strata. Adding a new tower
reduces this uncertainty. Towers are added to this stratum
until its uncertainty drops below that of one of the other
strata.
[17] 5. In order to analyze the representativeness of an

existing network, the locations of measurement stations
within the network are given. When the tool is used to
design an optimal network, the user should specify the
maximum number of sites based on, for example, financial
constraints or a quantitative measure of precision or accu-
racy the network should reach.

[18] 6. When the tool is used to optimize an existing
network (design question 2, above), the analysis takes the
existing sites and their location into account. For each sta-
tion, the user must specify whether the station is mandatory
in the optimized network. A mandatory station is a site that,
even if it is not optimally located for the objectives of study,
is retained in the network. It may be desirable to retain
suboptimal stations because of other aspects, such as fund-
ing, length of the time series, and completeness of the data.
When designing a network with many mandatory stations,
more stations will be required in total in order to obtain the
same representativeness level as with a network without
mandatory stations. Nonmandatory stations are only retained
when their representativeness exceeds the threshold of a user‐
specified representativeness measure. User‐specified repre-
sentativeness measures can be defined in many ways but they
are all technical (and are therefore dealt with in section 2.2.3).

2.2. Workflow and Principles of the Quantitative
Network Design Tool

2.2.1. Workflow of the QND Tool
[19] The QND tool builds on recent progress in cluster

analysis. A novel feature of the tool is that spatially explicit
input data are clustered in order to obtain groups of locations
with similar values for the different variables. The cluster
center is the location that best represents the whole cluster
because it has the smallest total distance, in terms of data
space, to all members of the cluster. The QND will rec-
ommend pixels with characteristics similar to the cluster
center as the sampling station. The cluster center is a sta-
tistical feature of the data and does not necessarily exist in
situ. Hence, sampling locations will be proposed at in situ
locations with characteristics that are as similar as possible
to the clusters’ centers.
[20] The representativeness of an existing network is

dependent on the distance, measured in data space, between
the cluster centers and the established stations. This is a
typical phenomenon in predictive modeling in which func-
tions are interpolated and extrapolated using models that
are not entirely correct. In this respect, it is unlikely that
any model of a complex natural system would be correct
[Shapiro, 1998]. When the data are rather smooth, i.e., when
small changes in drivers do not produce large changes in
fluxes, the uncertainty of the model can be assumed to be
proportional to the difference of the values of the variables
to those observed at the sampling stations. An important
feature of the proposed QND tool is that it does not assume
any specific model for the ecosystem [cf. Law et al., 2004].
[21] Irrespective of whether representativeness or design

questions need to be addressed, the QND tool follows the
same workflow. However, depending on the question under
study, some of the quantitative results of a previous task are
not used. The order of the tasks within the QND tool is as
follows.
[22] 1. Define the scientific question to be answered by

the network, select the appropriate input and related char-
acteristics (e.g., temporal and spatial resolutions) and decide
if the analysis should consider different strata and, if so,
define them (e.g., different plant functional types, different
countries, different climatic regions). This specifies the
dimensions of the data (Table 1, first to fourth rows).

SULKAVA ET AL.: MONITORING NETWORK REPRESENTATIVENESS G00J04G00J04

3 of 14



[23] 2. Cluster data space separately for each individual
stratum with all numbers of clusters between one and the
maximum number of clusters specified by the user (Table 1,
fifth row). Clustering is based on the k‐means++ algorithm
[Arthur and Vassilvitskii, 2007]. For this task, the number of
initializations, the number of strata, and the variable used for
stratification must be specified (Table 1, sixth and seventh
row).
[24] 3. Calculate the order in which stations are allocated

to strata. Quantitative results of this task are not used when
addressing design question 1 (representativeness analysis of
existing networks). For this task, the criterion for assigning
stations between strata must be specified (Table 1, eighth
row).
[25] 4. Read the list of established towers and their status;

that is, mandatory or nonmandatory. For a representativeness
study, all towers from the list are accounted for in the analysis.
If optimizing an existing network, the user‐specified status of
the station is used. If designing a new network, the list of
established towers is ignored. For this task, the user must
specify the status of the stations within the existing network
(Table 1, ninth and tenth rows).
[26] 5. Reuse nonmandatory towers in the network if they

pass the user‐specified threshold. The setting in the eleventh
row of Table 1 applies for this task. Quantitative results of
this task are not used when evaluating the representativeness
of an existing network or designing an optimal network
from scratch. Quantify the cost in terms of representative-
ness to retain a suboptimal tower in the network.
[27] 6. Add new towers in the pixels nearest to the cluster

centers if no mandatory tower is found suitable. The setting
in the eleventh row of Table 1 applies for this task. Quan-
titative results of this task are not used when addressing
design question 1.
[28] Once the tool has finished assigning towers to the

strata, the user can compare networks with different numbers
of towers and study their performance in detail. Selecting
which of the suggested networks is most suitable requires
balancing the desired performance of the network against the
maximum number of towers available. In the rather unlikely
case the maximum number of available towers is quite high
compared to the area of study and no quantitative perfor-
mance criteria are available for the network, the number of

towers may be limited; for example, by using different
information criteria [Sugar and James, 2003].
2.2.2. Underlying Algorithm of the Quantitative
Network Design Tool: K‐means++
[29] The QND tool clusters data space by making use of

the k‐means++ algorithm, which is an improvement on
k‐means, a widely used method for clustering multidimen-
sional data that has also been used in the context of QND
[Hargrove and Hoffman, 1999; Schimel et al., 2007]. The
aim of k‐means is to minimize the average squared distance
between vectors in the same cluster; that is, the quantization
error. The algorithm starts with k cluster centers chosen
arbitrarily. Consequently, two steps are repeated until the
process converges. First, each data vector is assigned to
the closest cluster center. Second, each center is updated
as the mean of all vectors assigned to the corresponding
cluster. The initialization of the k centers affects the result
of the clustering. Therefore, multiple runs of the algorithm
with different initializations can be performed in order to
achieve a better result [Arthur and Vassilvitskii, 2007]. In
this study, 10 runs of the algorithm were used in order to
avoid accepting results from a clustering that converged
in a poor local minimum.
[30] K‐means++ is an improved version of the standard

k‐means algorithm. The initialization of the cluster centers
in k‐means++ is done using a randomized technique,
which has a higher probability of selecting a data vector as
an initial center if the distance of the vector to the already
selected initial centers is high. More specifically, a vector
is selected as an initial center with probability proportional
to the contribution of the vector to the overall potential.
This improves both the speed and accuracy compared to
the standard algorithm [Arthur and Vassilvitskii, 2007].
[31] The quantization error in clustering is related to the

clustering uncertainty. The higher the distance to the nearest
cluster center, the higher the probability that the relationship
between the driver and response variables will be different
from the similar relationship in the center. After clustering,
it is possible to calculate (1) the quantization error of each
observation, (2) the mean quantization error of each cluster,
(3) the mean quantization error of each stratum and (4) the
mean quantization error of the whole data set. Quantization
errors can be calculated for each clustering, with number of

Table 1. Settings of the QND Tool, Possible Options, and Their Effect on the Computational Cost

Setting Settings Currently Implemented Effect on Computational Cost

Spatial scale Defined by input data Number of data points not scale, per se
Temporal scale Defined by input data Number of data points or variables not scale, per se
Number of data points Defined by input data Large
Number of variables Defined by input data Moderate
Maximum number of clusters per stratum 1 to number of data points in stratum Large
Number of initializations in clustering 1 to infinity Large
Number of strata 1 to number of data points Small
Criterion for assigning station to stratum (1) Stratum with highest quantization error;

(2) stratum with largest reduction in quantization error
Insignificant

Status of existing stations Mandatory or nonmandatory read from file.
The user specifies the status of a station.

Small

Number of existing stations Read from file Moderate
Representation (1) Equal mean quantization error;

(2) mean quantization error;
(3) maximum quantization error

Small
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clusters varying from one to the maximum number of
clusters specified by the user. For each number of clusters,
the clustering with the lowest quantization error is selected
from the repeated runs.
2.2.3. Selecting the Stratum With the Priority
to Add a Station
[32] The QND tool starts by assigning one measurement

station to each stratum. Stations are then added to the stra-
tum in which an additional station provides the highest
benefit. Users can select from the two following options to
measure this benefit: (1) the tower is added to the stratum
where the remaining total quantization error is the highest or
(2) it is added to the stratum where the quantization error
decreases the most by adding the tower (Table 1, eighth
row). Adding measurement stations is repeated until the
number of towers reaches the user‐specified limit (Table 1,
fifth row). This serves the overall aim of minimizing the
distance of the pixels to the towers.
[33] The aim of the first option is to equalize the un-

certainties of the strata. If the strata differ greatly in terms of
size, this option may give too much weight to the larger
strata. The second option aims to maximize the reduction of
uncertainty gained by adding the towers. This option also
gives proper weight to small strata. However, the total
quantization errors may vary between the strata.
2.2.4. Dealing With Mandatory, Nonmandatory
and New Towers
[34] The tool accepts fixed tower locations as inputs and

each tower belongs to one of two categories. The towers can
be mandatory (that is, the tower must be used in the network
in any case) or nonmandatory (that is, a tower that can be
used in case the area the tower represents is above a given
threshold). Three measures were implemented in this study
in order to quantify the area that a tower represents (see
Table 1, eleventh row). With the first measure, observations
closest to the tower in the cluster are selected so that the
mean quantization error of the cluster with the mandatory
tower is equal to the mean quantization error of the cluster.
The ratio of the total area of observations selected this way
to the total area of the cluster is used as a measure of rep-

resentativeness of the existing tower. This definition states
that the cluster center represents the whole cluster and
a tower away from the center represents the part of the
observations in the cluster that produce an average quanti-
zation error of the same size. The second and third measures
are simpler. The second measure is the ratio of the area of
observations whose quantization error is below the mean
quantization error to the total area of the cluster. The third
measure is the ratio of the area of observations whose
quantization error is below the maximum quantization error
to the total area of the cluster. The drawback of the second
option is that even if the existing tower is located in the
cluster center, it only represents a part of the cluster. This is
counterintuitive and makes it more difficult to specify a
threshold value. The main issue with the third option is its
sensitivity to outliers in the cluster.

2.3. European Flux Tower Network Example

2.3.1. Workflow of the Example
[35] The study sought to demonstrate some of the possi-

bilities and limitations of the QND tool and validate the
results obtained with an example. Figures 1 and 2 show the
workflow established for this example. All settings, vari-
ables, design questions and the objectives are choices that
made it possible to present a relevant example for ongoing
discussions within the FLUXNET community. It should be
noted that all these aspects of the analysis can be easily
adjusted to the needs of the users. At the core of this
example is the QND tool based on the k‐means++ clustering
algorithm.
[36] This example, which addresses the three design

questions (see 2.1), studied three aspects. The first was the
capacity of the existing European eddy covariance tower
network (CarboEurope‐IP network) to estimate the gross
primary production (GPP or the photosynthetic carbon
uptake) of three plant functional types (PFTs): temperate
needle‐leaved evergreen (TeNE), boreal needle‐leaved
evergreen (BNE), and temperate grassland (TeH). The sec-
ond aspect was optimizing the same existing European
network for the GPP of TeNE, BNE and TeH. The third was

Figure 1. Schematic presentation of how the QND tool was used in the example to obtain geographical
locations for the eddy covariance towers.
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to design an optimal network to sample the GPP of TeNE,
BNE and TeH in Europe.
[37] The three design questions were divided into eight

design scenarios, which are shown in Table 2. Scenario 1
corresponds to the current CE‐IP network and, thus, design
question 1. Scenarios 2a, 2b, 3a, and 3b correspond to
design question 3. In scenarios 2a and 2b, optimal networks
are designed with the same number of towers as in the CE‐IP
network. In scenarios 3a and 3b, optimal networks are
designed with 200 towers. Scenarios 4a, 4b, and 4c corre-
spond to design question 2. In addition, four realistic defi-
nitions and quantitative objectives for GPP (Table 2) were
defined to assess the performance of the proposed networks;
that is, monitor the mean, spatial variability, semivariance
and spatiotemporal variability of gross primary production
(GPP).
[38] Demonstrating some of the possibilities and limita-

tions of the QND tool requires knowledge of the true GPP

for all four quantitative objectives. For this example, in the
absence of a map of the true GPP, the target was assumed to
be the values simulated with O‐CN, a detailed land surface
model (see 2.3.2). O‐CN is used here as a nonlinear and
complex transformation of the drivers into the variable of
interest (i.e., GPP). The nonlinearity and complexity of this
transformation challenges the capacity of the QND tool.
Using a model to simulate the true GPP was further justified
by the fact that this approach provided full knowledge about
the relevant drivers, as the authors were familiar with all the
drivers that influenced the simulated GPP. A decision was
made to focus on GPP because it has been recently dem-
onstrated that it is feasible to upscale starting from point
measurements using empirical models [Beer et al., 2010].
This has not yet been demonstrated for net ecosystem
exchange (NEE), where disturbances and management play
an important role and detailed spatial information of these
additional drivers is not yet available.

Table 2. Characteristics of Annual Sums of GPP With O‐CN for Different Design Scenariosa

Scenarios

Annual Sum 2005 Annual Sum 1996–2005b

Mean GPP
(g C m−2 y−1)

Spatial Variability
of GPP

(g C m−2 y−1)

Semivariance of GPP

RMSE of IAV
(g C m−2 y−1)

RMSE
(g C m−2 y−1)

Nugget
((g C)2 m−4 y−2 104)

Sill
((g C)2 m−4 y−2 104)

Range
(km)

Baseline, O‐CN 1260 520 9 33 2800 NA NA
(1) CE‐IP (42) 1360 ± 90 450 ± 190 11 ± 8 47 ± 105 2900 ± 1200 100 ± 90 410 ± 220
(2a) Opt (42) Clim+N 1230 ± 40 440 ± 20 5 ± 1 20 ± 3 1800 ± 500 60 ± 20 190 ± 40
(2b) Opt (42) GPP 1190 ± 150 520 ± 180 15 ± 15 36 ± 36 2200 ± 1400 120 ± 200 460 ± 320
(3a) Opt Clim+N 1240 ± 20 450 ± 10 6 ± 1 24 ± 2 2600 ± 500 50 ± 10 170 ± 10
(3b) Opt GPP 1100 ± 130 550 ± 90 10 ± 4 38 ± 20 3000 ± 600 100 ± 40 360 ± 70
(4a) CE‐IP+Clim+N 1240 ± 40 470 ± 40 6 ± 4 23 ± 6 1900 ± 900 80 ± 30 220 ± 60
(4b) CE‐IP+Clim 1220 ± 80 500 ± 90 7 ± 3 24 ± 6 1700 ± 700 90 ± 20 260 ± 140
(4c) CE‐IP+GPP 1180 ± 110 560 ± 120 17 ± 12 44 ± 42 2200 ± 1500 100 ± 60 360 ± 110

aThe confidence intervals are computed as 1.96 times the standard deviation of the repetitions used for upscaling.
bSpatiotemporal variability of GPP on N‐S transect. NA, not applicable.

Figure 2. Schematic presentation of how the ANN was used to upscale the “observation” at the k sam-
pling stations proposed by the QND tool.
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[39] Depending on the design scenarios of the network
(Table 2), either the drivers (scenarios 2a, 3a, 4a, and 4b) or
the variable of interest (scenarios 2b, 3b and 4c) were fed
into the design tool (Figure 1). The design tool quantifies
cluster centers for k clusters and provides the geographical
location of these clusters. The geographical location is
selected as the location of the pixel closest to the cluster
center in the data space.
[40] The largest reduction in quantization error was used

as the criterion for assigning towers to strata (Table 1, eighth
row). The “equal mean quantization error” (Table 1, elev-
enth row) was used as the measure of representation in the
example and the threshold of representation for using an
existing tower was set to 0.5.
[41] At this stage in the workflow, the locations that need

to be sampled are known. For all design questions, the
drivers and the variable of interest at these locations are
sampled and these data are used to train an Artificial Neural
Network (ANN, see 2.3.3). The tower data was not used in
this activity, just their location. The trained ANN was then
used to upscale GPP to the European domain by making use
of the drivers. At this point in the analysis, two spatially
explicit maps are available: one of the target GPP and one of
the network‐derived GPP. These maps are then post-
processed according to 2.3.4.
2.3.2. Obtaining Target GPP Data: The O‐CN Model
[42] The O‐CN model [Zaehle and Friend, 2010; Zaehle

et al., 2010] is developed from the land surface scheme
ORCHIDEE, described by Krinner et al. [2005], and has
been extended by representing the key nitrogen cycle pro-
cesses. O‐CN simulates the terrestrial energy, water, carbon,
and nitrogen budgets for discrete tiles (i.e., fractions of the
grid cell) occupied by up to 12 plant functional types (PFTs)
[see Krinner et al., 2005] from diurnal to decadal timescales.
The model can be run on any regular grid and is applied
here at a spatial resolution of 0.5° × 0.5°. The model has
been conceived as a land surface scheme and links a soil‐
vegetation‐atmosphere transfer scheme, dealing with energy
and water fluxes [Ducoudré et al., 1993] to representations
of short‐ and long‐term carbon cycling [Viovy, 1996] and
vegetation structure [Sitch et al., 2003]. The main features of
nitrogen dynamics in O‐CN, described in detail by Zaehle
and Friend [2010], are (1) prognostic plant tissue N con-
centrations, (2) N control on leaf‐level photosynthesis and
plant respiration, (3) nutrient status‐dependent allocation to
different plant organs, (4) N control on soil organic matter
decomposition and N mineralization rate and (5) half‐hourly
leaching and gaseous N losses resulting from nitrification
and denitrification processes in the soil.
[43] The model setup and results are described in detail by

S. Zaehle et al. (manuscript in preparation). Annual maps of
cropland, grassland, primary and secondary forest, and
urban areas at 0.5° × 0.5° spatial resolution were obtained
from Hurtt et al. [2006] for the period 1700–2005. Coun-
trywise total N fertilizer application rates were obtained for
1960–2005 from the FAO statistical database (FAOSTAT
accessed in 2009) and spatialized using the yearly cropland
extent and an interpolated map of 1995 fertilizer application
rates per unit area [Bouwman et al., 2005]. Wet and dry
deposition rates of reduced and oxidized Nr for decadal time
slices between 1860 and 2000 were obtained from TM3
[Dentener et al., 2006] and linearly interpolated in time to

obtain yearly fields of reactive N deposition. Monthly cli-
matologies of air temperature, precipitation, wet days per
month, cloudiness, and wind speed were obtained from
CRU for 1901–2005 at 0.5° × 0.5° spatial resolution (see
Mitchell and Jones [2005] for details). These were dis-
aggregated in time to half‐hourly values using the weather
generator as in the work by Krinner et al. [2005]. Atmo-
spheric CO2 concentrations from 1750 to 2005 were used as
in the work by Vetter et al. [2008].
[44] O‐CN was brought to equilibrium with respect to

preindustrial carbon and nitrogen stocks and fluxes using
representative forcings of preindustrial conditions of atmo-
spheric [CO2] (1750), atmospheric N deposition (1860),
fertilizer applications and land cover (1700). Monthly cli-
matologies were drawn annually and randomly from the
period 1901–1930. From this equilibrium state, a transient
simulation from 1700 to2005 was performed, considering
the historical changes in land cover, N fertilizer and N
deposition, atmospheric [CO2] and climate. Simulated 0.5° ×
0.5° GPP from the years 1996 to 2005 were used in the
example.
2.3.3. Upscaling Using Artificial Neural Networks
[45] GPP from tower data to pixel level was upscaled in a

similar manner as Papale and Valentini [2003] and Beer et al.
[2010]. A feed‐forward back‐propagation artificial neural
network (ANN) was trained using the Levenberg‐Marquardt
algorithm [Levenberg, 1944; Marquardt, 1963]. The basic
computational unit of the ANN is a neuron, which receives
multiple inputs from the previous layer of the network and
produces a weighted and nonlinearly transformed output to
the next layer. For all tower network evaluations and opti-
mizations presented in this study, the climatic variables used
as input data of the ANN were air temperature, precipitation,
shortwave downward flux, longwave downward flux, spe-
cific humidity, N deposition, and N fertilizer. In this study,
separate ANNs were trained for the eight scenarios. The data
used as input variables of the ANN were a subset of the
drivers used in the O‐CN simulations, although the time
resolution was different (i.e., daily for O‐CN and annual for
the ANN). The hyperbolic tangent sigmoid transfer function
was used in the hidden layer of the ANN and the hidden
layer contained six neurons. The data was normalized line-
arly into zero mean and unit variance for the ANN.
[46] The ANN training makes use of 10 data sets, com-

posed by randomly choosing nine of the 10 years. For each
of these 10 training data sets, the ANN is trained by feeding
the inputs at the stations with the aim of predicting the target
output values from the input values, for which the ANN had
never been presented. In order to achieve this goal, the ANN
needs to learn from the examples. These examples are the
values of the driver variables and the variable of interest at
the stations in the 9 years of the training set. The values of
the driver variables pass through the ANN and produce an
output. This output is then compared with the expected
output and the error in prediction is back‐propagated in the
ANN to adjust the weights of the neurons in the ANN in
order to minimize it and improve the prediction capacity.
However, learning should find a balance between overfitting
(that is, losing the ability to generalize based on new
examples) and overgeneralization. This balance is achieved
by selecting a suitable number of neurons in the hidden layer
and leaving part of the data for validation. The remaining year
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was used to validate the ANN during training. The validation
set made it possible to calculate the error of unseen data and
prevented overfitting by terminating the training once the
error of the validation set no longer improved. For each of the
10 training sets, five networks with different initial connec-
tion weights were trained and validated, as described above.
From the five ANNs that were trained, the ANN with the
lowest error was used for upscaling. This approach was used
to prevent using an ANN that reached a poor local minimum
during training. In addition, the 10 different ANNs were used
to compute the uncertainties of the upscaling results. The
trained and validated ANNs were then used to obtain esti-
mates of GPP for all grid cells of Europe by feeding the cli-
matic variables and N variables into the ANN. In other words,
the gridded data was the test set in this study.
2.3.4. Postprocessing
[47] Upscaling with an ANN, as described above, resulted

in a spatially explicit map of the estimated GPP based on
data from k sampling locations, as proposed by the QND
tool. These maps were postprocessed for four realistic
quantitative objectives. The objectives were that the sam-
pling network should reproduce the mean GPP, its spatial
variability, the spatial structure of the GPP (where the spa-
tial structure was defined using the parameters of the
semivariogram), and the GPP and its interannual variability
along a north‐south transect. For each objective, the target
value/variance/distribution was calculated from the O‐CN
model output.
[48] For scenarios 1, 4a, 4b, and 4c (Table 2), an existing

network had to be assumed. To this end, the real locations of
the eddy covariance towers within the CarboEurope‐IP
network were used (Table S1).1 This example was limited to
three common PFTs: temperate needle‐leaved evergreen
(TeNE), boreal needle‐leaved evergreen (BNE), and tem-
perate grassland (TeH). No observed data was used at these
locations. For internal consistency (see discussion), this
example only uses the O‐CN input and output data.
[49] The spatial structure of GPP was determined by

means of the nugget, range, and sill of the semivariograms
[Goovaerts, 1997]. Nugget and sill characterize the spatial
variation of the data at very small and large distances,
respectively. Nugget is defined as the value of semivariance
at the shortest‐distance interval (0–100 km) and sill is
defined as the maximum value of semivariance. Range is the
distance at which semivariance reaches 95 percent of the
sill. Because semivariance calculations require stationarity,
linear trends with latitude were removed when calculating
the semivariance. Less than two percent of all pairwise lags
exceeded 3500 km. Hence, lags above 3500 km were not
considered in determining the semivariogram parameters.
[50] The ability of the proposed tower networks to

reproduce the spatiotemporal variability of a north‐south
transect is quantified using two measures: the root mean
squared error (RMSE) of GPP and the RMSE of the inter-
annual variability of GPP. The transect is selected as the
grid cells centered at longitude 14°75′E. The RMSE of the
annual sum between 1996 and 2005 is the root mean
squared difference between the upscaled GPP and GPP
simulated by O‐CN along the transect. The RMSE of the

interannual variability was calculated as the root mean
squared difference between the interannual variability of the
upscaled result and simulated GPP along the transect.
Interannual variability was calculated for each grid cell as
the standard deviation of the GPP value over the 10 year
period. In both cases, the upscaled results were compared to
O‐CN, which is considered the target value of GPP.
Therefore, the RMSE of O‐CN is zero and a small value
indicates an upscaling result that agrees with the result of
O‐CN.

3. Results

3.1. Target GPP and Representativeness of the Current
Network

[51] The capacity of the current CE‐IP network was
studied first in order to simulate the annual mean gross
primary production (GPP), its spatial variability, the struc-
ture of the spatial variability and spatiotemporal variability.
The target GPP was considered to be the GPP simulated by
O‐CN (Table 2). Three plant functional types (PFTs) were
studied: Boreal needleleaf forest (12 percent of the pixels
under study), temperate needleleaf forest (33 percent) and
the temperate humid grassland (55 percent). In Europe, the
mean combined GPP for the three plant functional types
under study was 1260 g C m−2 y−1; the spatial variability
was 520 g C m−2 y−1 and, when characterized by its
semivariogram, the nugget was 9 (g C m−2 y−1)2, the sill
33 (g C m−2 y−1)2 and the range 2800 km.
[52] When using the true location of 42 existing towers

(Table S1) and the O‐CN input variables, upscaling from
the current network would result in an eight percent
overestimation of the mean GPP (1360 ± 90 g C m−2 y−1)
and an underestimation of its spatial variability (450 ±
190 g C m−2 y−1). In addition, when the spatial variability
was characterized by its semivariogram, the nugget was 11 ±
8 (g C m−2 y−1)2, the sill 47 ± 105 (g C m−2 y−1)2 and the
range 2900 ± 1200 km. The RMSE between the target GPP
and the GPP derived from the current sampling network
along a north‐south transect is 410 ± 220 g C m−2 y−1; the
RMSE of the temporal variability along the same transect is
100 ± 90 g C m−2 y−1.
[53] Figure 3 shows the spatially explicit distribution of

GPP derived by upscaling data from the 42 towers. The
current network shows a large mismatch (>20 percent of the
target GPP) between the upscaled and target GPP, especially
on the edges of the European continent. This mismatch is
mainly due to gaps in the sampling network (Figure 4). The
correlation between the mismatch in GPP and the distance
of each grid point from the nearest tower (Figure 5) demon-
strates the capacity of the QND tool to detect observational
gaps in a network design. The coefficient of determination
of the ordinary least squares regression model in Figure 5 is
0.37 and the p value of the model is <0.01.

3.2. Optimizing the Current Network

[54] Across the three PFTs considered in this study, the
flux tower network contains 42 towers or measurement sta-
tions. The first step was to quantify how the current network
of 42 towers could be optimized without increasing the
management costs of the network (Table 2, scenario 2a). Note
that this optimization involves two stages: (1) reallocation

1Auxiliary materials are available in the HTML. doi:10.1029/
2010JG001562.
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of towers across PFTs and (2) relocation of towers within a
PFT. Although network 2a, with 42 towers optimized using
the drivers, performs slightly better for monitoring the mean
GPP, the main gain of this optimization is in the reduction of
uncertainty, specifically in the spatiotemporal variability
along a N‐S transect, which is captured much better with the
optimized network. Also note that the current and optimized
networks both performed poorly when the spatial variability
was assessed as the standard deviation of annual sums
across pixels.

[55] The next step was to assess the improvement in
the network’s performance if 200 measurement stations, a
number well above the actual foreseen development of the
European network, were allowed (Table 2, scenario 3a).
Increasing the number of towers from 42 to 200 results in
small improvements of the mean estimates of GPP and
further reduces its uncertainty (Table 2). However, estab-
lishing 200 towers would still result in an underestimation of
the spatial variability. This result is potentially due to
placing the towers as close to cluster centers as possible,

Figure 3. Relative mismatch of annual sum of GPP in 2005 obtained by upscaling the CE‐IP network.
The shade of gray shows the magnitude of relative error.

Figure 4. Distance to nearest tower of the CE‐IP network in data space. The shades of gray show the
tertiles of distances.
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which may leave extreme climatic conditions relatively
poorly represented, even with a high number of towers.
[56] Finally, the innovative feature of the QND tool was

used to optimize the current network by reusing as many of
the current towers as possible (Table 2, scenario 4a). Opti-
mization of an existing network requires the user to make a
tradeoff between keeping a tower that does not perfectly
represent the cluster to which it belongs but which may have
considerable time series of data, receive sustainable funding
or may be more conveniently located than the optimal
tower. This tradeoff was built into the QND tool by setting a
threshold of 0.5 for the mean quantization error around a
tower in data space (Table 1, eleventh row). Using this
approach, 17 of the initial 42 towers passed the threshold
and were thus reused. Consequently, 25 new towers had to be
established across and within PFTs. As might be expected,
the network performance ranks between the current (Table 2,
scenario 1) and the optimized (Table 2, scenario 2a) network
with 42 towers. Reusing existing towers results in a better
estimate of the spatial variability, probably because the
reused towers are not the best choice to represent the mean
condition of the cluster, but the distance from the cluster
center does help to better monitor the variability inside the
cluster.
[57] An additional test was performed, in which 25 towers

were added in a manner similar to that in scenario 4a except
that all the existing towers were preserved. Preserving all of
the existing towers had a minimal effect on the results. This
was somewhat expected, given that, even with a network
with 200 sites, performances did not improve substantially
compared to a network with 42 sites. In principle, however,
adding new towers should always produce a better result.

3.3. Drivers Versus Variable of Interest

[58] This study attempted to design the network in such a
way that it is representative of the variable of interest; in this
case, GPP. From a design perspective, sampling can be
representative in the data space of the variable of interest
itself, its main drivers or all its drivers. Using simulated GPP
with a process‐based model made the drivers of the target
modeled GPP known, which made it possible to test the
effect of designing networks that are representative for the
variable of interest or its drivers. In general, the performance
of the networks that representatively sample the variable of
interest (Table 2, scenarios 2b, 3b, and 4c) is poorer than
that of networks that representatively sample the drivers of
the variable of interest (Table 2, scenarios 2a, 3a, 4a, and
4b). Designing the sampling network in such a way that it
represents all drivers (Table 2, scenario 4a) rather than the
most important drivers (Table 2, scenario 4b) slightly reduces
the uncertainty of the network. Unexpectedly, however, the
spatial variability may be slightly better estimated when not
all drivers are considered.

3.4. Allocating New Sites to PFTs

[59] In designing an optimal network for different plant
functional types (the same applies for any strata), an
essential initial step is for the tool to calculate the order in
which stations are allocated to the different strata (vegeta-
tion types in this case). Two approaches were implemented
(Table 1, eighth row). In the first approach, towers are
allocated to the PFT where the largest absolute reduction in
the quantization error is achieved (Figure 6, top). The
allocation is initialized by assigning one tower to each PFT.
Towers 4 to 6 are then assigned to temperate humid grass-
lands, towers 7 to 13 are allocated alternately to temperate

Figure 5. Relationship between absolute mismatch of annual sum of GPP in 2005 (Figure 4) and dis-
tance to nearest tower of the CE‐IP network in data space (Figure 3).
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needleleaf forests and humid grasslands, and the rest of the
towers are assigned to all three PFTs. When in total 67 towers
have been assigned, the boreal needleleaf forest contains
12 percent of the towers, the temperate needleleaf forest
contains 39 percent and the temperate humid grassland
contains 49 percent. This allocation scheme guarantees that
every additional tower maximizes its effect on the network
as a whole. However, results from different PFTs can have
different uncertainties.
[60] In the second approach, new towers were allocated to

the PFT with the highest absolute quantization error, which
reduced the quantization error of that PFT. Again, the
allocation is initialized by assigning one tower to each PFT.
Towers 4 to 6 are allocated to temperate humid grasslands,
towers 7 to 66 are assigned alternately to temperate nee-
dleleaf forests and humid grasslands, and only after 66 towers
have been allocated to the temperate PFTs does the boreal
PFT have its second tower assigned (Figure 6, bottom). At
that point in the allocation scheme, three percent of the
towers have been allocated to boreal needleleaf forest, 25
percent to temperate needleleaf forest and 72 percent to
temperate humid grassland. This allocation scheme guar-

antees that all PFTs are sampled with a similar uncertainty.
The average uncertainty, however, is larger in PFTs with a
smaller area due to a relatively small number of towers.

4. Discussion

4.1. Possibilities of the QND Tool

[61] The proposed QND tool can deal with three general
network design questions. (1) How representative is an
existing network and in which regions does the network
performs poorly? (2) Where should measurement stations
be added or removed in order to optimize an existing
network? (3) How should a new network of measurement
stations be designed so that it is optimized (i.e., contains
the minimal number of stations to obtain a specific pre-
cision and accuracy for its objectives)?
[62] Although the three design questions are not specific

to monitoring terrestrial ecosystems, our QND differs con-
ceptually from the tools used in, for example, ozone moni-
toring [Wu et al., 2010] or mobile telecommunication
networks [Amaldi et al., 2003]. In the case of ozone moni-
toring, the formation and transport of ozone are well under-

Figure 6. Relationship between the number of towers and the quantization error. The result corresponds
to scenario 2a (also 3a, quantization error with 200 towers not shown). Solid line shows the results for the
temperate needleleaf forest, dashed line shows the boreal needleleaf forest, and dash‐dotted line repre-
sents temperate humid grassland. The vertical dotted lines show when the second towers are added to
temperate and boreal needleleaf forests. (top) The option of placing the tower to the PFT, which provides
the maximum reduction of quantization error. (bottom) The option of placing the tower to the PFT with
maximum remaining quantization error.
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stood and, therefore, the network can be designed mainly
based on urbanity. The network design is governed by esti-
mated traffic distribution and physical laws that are reason-
able well understood; that is, the power of an antenna or
atmospheric transport (and therefore the design tool) relies on
a mathematical description of the governing physical laws.
[63] On the contrary, the drivers of the behavior of ter-

restrial ecosystems (soil fertility, soil hydrology, manage-
ment and species interactions to mention a few) are poorly
understood and are only partly included in mathematical
models [Friedlingstein et al., 2006; Hungate et al., 2003].
Consequently, the design tool for a terrestrial carbon
exchange monitoring network is not based on a physically
known mathematical model but on spatially explicit data
related to the variable of interest (note that O‐CN was used
to validate the QND tool, not evaluate or optimize repre-
sentativeness of the monitoring network). The downside of
such an approach is that the outcome of the QND tool
cannot be generalized beyond the specific input data used in
the representativeness or network design analysis (in the
present example, the data produced by the O‐CN model).
[64] The application of the QND tool presented in this

study evaluates eight design scenarios for four objectives
(Table 2) by using GPP estimates from O‐CN simulations at
tower locations proposed by the tool and by using an ANN
for upscaling to other locations. The use of the QND tool is
not limited to the practical choices made in this application;
the tool can be used to study other design scenarios as long
as they relate to evaluating representativeness of an existing
network, optimizing an existing network or designing an
optimized network from scratch. In addition, any quantita-
tive objective, including prediction of the mean, prediction
of extremes and observing trends such as GPP, TER and
NEP, could be studied by means of the QND tool. Further,
the tool does not require the use of models such as O‐CN or
ANN, which have only been used for demonstration and
validation purpose in this study.

4.2. Flexibility Versus Hidden Assumptions

[65] The QND tool comes with a series of settings (Table 1)
intended to increase flexibility for the users. However, these
settings affect the outcome and should therefore be seen as
hidden assumptions. Irrespective of which of the three
design questions is targeted, the outcome of the study
largely depends on the number of strata, as well as on the
variable used for stratification and their characteristics in
terms of spatial and temporal resolution. Each stratum will at
least contain one measurement station and additional sta-
tions are assigned to a specific stratum based on its error
reduction. The exact criterion used to quantify error reduc-
tion may be one of the most important settings of the QND
tool because different settings result in a completely dif-
ferent number of stations per PFT (see 3.4; Figure 6).
Currently, the tool also assumes that the drivers are equally
important for all strata. This assumption may not be realistic
in all cases, but in the absence of further information, the
simplest assumption of equal importance is reasonable.
Nevertheless, the QND tools guarantees that strata are re-
presented in a rational way. Hence, it is considered more
important to fully represent the variable used for stratifica-
tion than the other variables used to evaluate or design the
network.

[66] In addition, regardless of which of the three design
questions is targeted, network evaluation and design are an
unconstrained problem because, in the absence of quanti-
tative targets, there is no single solution. For a user willing
to accept a large degree of uncertainty, one tower can rep-
resent the whole domain, whereas every location needs its
own measurement station for users who are not willing to
accept any uncertainty in the outcome. If administrative or
financial issues limit the number of towers, the network will
come with a certain precision. If, however, a precision is put
forward, the number of towers is a consequence of the
precision requirements. The QND tool can evaluate or
optimize a network with any number of stations equal or
larger than the number of strata. However, the performance
of the network largely depends on the number of measure-
ment stations specified by the user.
[67] Optimizing an existing network is more challenging

and relies on several user‐defined thresholds. First, the user
must decide which stations are retained in the network,
regardless of the cost in terms of representativeness (Table 1,
ninth row). Second, the user must set a threshold in order to
quantify how representative a station should be for it to be
retained. Finally, the user must select a measure of repre-
sentativeness. There are a range of possible measures of
representativeness, most of which are related to the share of
data points within the cluster that are located, in data space,
within a specified distance from the cluster center. It is fea-
sible to construct measures of representativeness that do not
restrict the represented points to be located within the same
cluster. This is a subject for future research.

4.3. Drivers Versus Variable of Interest

[68] If the objective of a network is to represent a certain
variable (in this example, GPP), the network can be evaluated
or designed using only information of this variable (e.g., GPP
data) or by using information of the drivers of this variable
rather than the variable itself (e.g., climate and N availability
data). The variable of interest is most likely to be a nonlinear
function of the drivers and, consequently, both approaches
are expected to obtain similar results. However, the example
in this study shows that the driver‐based networks outper-
form the networks based on the variable of interest.
[69] This paper speculates that this result is due to the

nonlinear relationship between the drivers and the variable
of interest. Due to this nonlinearity, different values of the
drivers may result in the same value for the variable of
interest. Where the clustering algorithm is able to distin-
guish different groups when the driver data are used, it is not
possible to distinguish different groups when the variable of
interest is used. In this example, GPP can be suboptimal due
to light, water or nitrogen limitations. A driver‐based net-
work will distinguish between the light, water and nitrogen
limited regions. However, if the suboptimal GPP happens to
have similar values due to different limitations, the QND
tool will not distinguish between these regions when GPP is
the sole input to the tool.
[70] The selection of the variables that will be fed into the

QND tool is a key step and, consequently, has a strong
impact on the results. The input variables should be repre-
sentative of the relevant processes (i.e., water stress), drivers
(photosynthetic active radiation) and state variables (Leaf N)
of the variable of interest. At the same time, the use of
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variables that are strongly correlated to each other should be
avoided because this would result in overestimating the
similarity of different locations (see 2.1).
[71] Although the QND tool is scale‐independent, the

interpretation of its results is not. In the present example, site
locations were linked to the input data, assuming that cur-
rently established towers with their limited footprints
observed the average gridded climate of much larger regions.
Hence, the current result cannot be interpreted at the station
level because individual stations could experience micro-
climates. Therefore, it is even possible that, for example, the
Norwegian coastal region is better represented by a station at
the west coast of the UK 1000 km away than by a station
100 km inland in Norway. In a representativeness analysis,
the use of variables measured at the sites can help to address
this aspect; in the network design applications, once the
climate characteristics of the representative tower are
found, it would be necessary to find sites with a similar
microclimate.

4.4. Representing Spatial Variability

[72] Following clustering, the QND tool assumes that if
the cluster must be represented by a single point, the cluster
center is most suitable for this purpose. Representing clus-
ters by their respective centers, in data space, largely ignores
the variability within the cluster; hence, the QND tool acts
as a smoother. As the current example shows (Table 2), a
handful of stations make it possible to represent the mean
value of the variable of interest (in our example GPP).
However, because the QND acts as a smoother, increasing
the number of stations from just over 40 to 200 has only a
limited effect on the capacity of the network to capture the
spatial variability. It is unlikely that further increasing the
number of stations within reasonable limits would overcome
this issue because every new station is located as close as
possible to the cluster center rather than on the edges of the
cluster, which means that it does not represent the extreme
values that determine the spatial variability.
[73] In this respect, it is interesting to see that the capacity

of the network to capture the spatial variability is higher
when the current network is optimized, as opposed to
designing an optimal network from scratch. When opti-
mizing an existing network, the user retains established
stations, despite the fact that these stations are not as rep-
resentative as they could be. In technical terms, suboptimal
means that the station is not located in the cluster center.
Being away from the cluster center implies that the station
better accounts for extreme values within the cluster at the
expense of being less representative for the cluster as a
whole. Therefore, retaining suboptimal stations improves
the capacity of the network to represent the spatial vari-
ability within the domain.
[74] The eddy flux network in Europe has been con-

structed in 15 years without following a formal design. One
frequent criticism is that the investigators who selected the
sites did not account for the representativeness of the sites
and paid more attention to the logistical aspects and the
usefulness to local and specific scientific questions (such as
management effects and carbon sink capacity) or selected
ecosystems with a very high or very low productivity.
Although this is likely to be true, it may not hamper the
usefulness of the network as much as is often suggested. A

network of extremes is likely to represent the mean value
but, contrary to an optimally designed network, a network
of extremes is more likely to capture the spatial variability
of the variable of interest. These important aspects should
be considered when the design of a network is started or
optimized.

4.5. Future Developments

[75] While working on the above mentioned QND tool, it
became apparent that there was a lack of understanding
regarding several critical aspects of network design, often
specific to terrestrial ecosystems. Future developments of
the tool could be structured along the following lines.
[76] 1. As discussed above, QND acts as a smoother, as the

underlying statistical approaches favor mean‐representative
ecosystems rather than ecosystems that operate at the
extreme ends of the sampled data space. Consequently,
designed networks tend to capture the mean properties of the
data space for which they were designed but fail to describe
its extremes. As this is a fundamental issue, it is independent
of scale and resolution and persists even following data
stratification. The tool should be adjusted in such a way that
it designs a network of extremes. Several options could be
tested, ranging from simply using a new measure of repre-
sentation (Table 1, eleventh row) that better accounts for the
extremes to a more complex approach in which towers are
located in the cluster center when the cluster is surrounded
by other clusters and otherwise, the tower is located at the
cluster edges. Subsequently, the properties of such a net-
work will need to be studied.
[77] 2. The outcome of QND depends on the objective and

data space for which the network has been designed.
However, monitoring networks have been operated for a
long time. Therefore, there is widespread appreciation of the
fact that the research objectives (and therefore the relevant
data space) may change during the lifetime of a network in
particular for ecosystem networks where the potential uses
of the data are very heterogeneous (for example, ongoing
FLUXNET synthesis activities address issues in ecophysi-
ology, ecology, model development, model parameteriza-
tion, model validation, and upscaling). Some of these
activities or changes in research objectives can be antici-
pated (such as climate change, land use change, and eco-
system vulnerability to extremes in climate) and should be
accounted for in the network design. Building on this
rationale, the QND tool should be developed so that it can
handle multiple objectives and data spaces for studying
representativeness of existing networks, designing new
networks or optimizing the design of operational networks.
[78] 3. QND for large geographical regions, such as

Europe, relies heavily on coarse resolution data. QND
suggests the best locations based on coarse resolution data
(1–25 km2) but the research site where the infrastructure will
be build represents a much smaller footprint (0.5–1.5 km2)
and does not necessarily represent the coarse resolution
pixel characteristics (e.g., climate, vegetation, seasonal
trends) accurately. This mismatch in scales is especially
clear in, for example, the microclimate of a site in moun-
tainous regions or the age of a forest site. Future work should
study the limitations and possibilities of high‐resolution
variability on coarse resolution QND. For this purpose, the
use of site‐level data within a coarse resolution network could
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be evaluated or networks designed based on high‐resolution
data from local case studies could be compared against the
coarse resolution network for the same case study.
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