S. Ghosh and S. , R-adapted arbitrary lagrangian-eulerian finite-element method in metal-forming simulation, Journal of Materials Engineering and Performance, vol.23, issue.No. 1, pp.271-282, 1993.
DOI : 10.1007/BF02660296

W. Cao, W. Huang, and R. Russell, Comparison of two-dimensional r-adaptive finite element methods using various error indicators, Mathematics and Computers in Simulation, vol.56, issue.2, pp.127-143, 2001.
DOI : 10.1016/S0378-4754(01)00285-3

T. Strouboulis and K. Haque, Recent experiences with error estimation and adaptivity, Part II: Error estimation for approximations on grids of triangles and quadrilaterals, Computer Methods in Applied Mechanics and Engineering, vol.100, issue.3, pp.359-430, 1992.
DOI : 10.1016/0045-7825(92)90090-7

T. Belytschko and M. Tabbara, H-Adaptive finite element methods for dynamic problems, with emphasis on localization, International Journal for Numerical Methods in Engineering, vol.6, issue.24, pp.4245-4265, 1993.
DOI : 10.1002/nme.1620362409

J. Fish and S. Markolefas, Adaptive global-local refinement strategy based on the interior error estimates of theh-method, International Journal for Numerical Methods in Engineering, vol.1, issue.5, pp.827-838, 1994.
DOI : 10.1002/nme.1620370508

P. Díez and A. Huerta, A unified approach to remeshing strategies for finite element h-adaptivity, Computer Methods in Applied Mechanics and Engineering, vol.176, issue.1-4, pp.215-229, 1999.
DOI : 10.1016/S0045-7825(98)00338-7

G. Bessette, E. Becker, L. Taylor, and D. Littlefield, Modeling of impact problems using an h-adaptive, explicit Lagrangian finite element method in three dimensions, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.13-14, pp.1649-1679, 2003.
DOI : 10.1016/S0045-7825(02)00657-6

I. Babuska and M. Suri, -Version of the Finite Element Method, SIAM Journal on Numerical Analysis, vol.24, issue.4, pp.750-776, 1987.
DOI : 10.1137/0724049

URL : https://hal.archives-ouvertes.fr/hal-00756747

F. Barros, S. Proenca, and C. De-barcellos, Generalized finite element method in structural nonlinear analysis -a p-adaptive strategy, Computational Mechanics, vol.33, issue.2, pp.95-107, 2004.

A. Düster and E. Rank, The p-version of the finite element method compared to an adaptive h-version for the deformation theory of plasticity, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.15-17, pp.1925-1935, 2001.
DOI : 10.1016/S0045-7825(00)00215-2

J. Fish, The s-version of the finite element method, Computers & Structures, vol.43, issue.3, pp.539-547, 1992.
DOI : 10.1016/0045-7949(92)90287-A

Z. Yue and D. Robbins, Adaptive superposition of finite element meshes in elastodynamic problems, International Journal for Numerical Methods in Engineering, vol.69, issue.11, pp.1604-1635, 2005.
DOI : 10.1002/nme.1331

W. Sun and N. Zamani, An adaptiveh-r boundary element algorithm for the laplace equation, International Journal for Numerical Methods in Engineering, vol.53, issue.3, pp.537-552, 1992.
DOI : 10.1002/nme.1620330305

H. Askes and A. , A combined rh???adaptive scheme based on domain subdivision. Formulation and linear examples, International Journal for Numerical Methods in Engineering, vol.51, issue.3, pp.253-273, 2001.
DOI : 10.1002/nme.142

L. Demkowicz, J. Oden, W. Rachowicz, and O. Hardy, Toward a universal adaptive finite element strategy, part 1. Constrained approximation and data structure, Computer Methods in Applied Mechanics and Engineering, vol.77, issue.1-2, pp.79-112, 1989.
DOI : 10.1016/0045-7825(89)90129-1

J. Oden, L. Demkowicz, W. Rachowicz, and T. Westermann, Toward a universal adaptive finite element strategy, part 2. A posteriori error estimation, Computer Methods in Applied Mechanics and Engineering, vol.77, issue.1-2, pp.113-180, 1989.
DOI : 10.1016/0045-7825(89)90130-8

W. Rachowicz, J. Oden, and L. Demkowicz, Toward a universal adaptive finite element strategy part 3. design of meshes, Computer Methods in Applied Mechanics and Engineering, vol.77, issue.1-2, pp.181-212, 1989.
DOI : 10.1016/0045-7825(89)90131-X

J. Valenciano and R. G. Owens, An h???p adaptive spectral element method for Stokes flow, Applied Numerical Mathematics, vol.33, issue.1-4, pp.365-371, 2000.
DOI : 10.1016/S0168-9274(99)00103-8

M. Iskandarani, J. Levin, B. Choi, and D. Haidvogel, Comparison of advection schemes for high-order h???p finite element and finite volume methods, Ocean Modelling, vol.10, issue.1-2, pp.233-252, 2005.
DOI : 10.1016/j.ocemod.2004.09.005

P. Haldenwang and D. , Dynamically adapted mesh refinement for combustion front tracking, Computers and Fluids, pp.31-589, 2002.

D. Lebrun-grandié, J. Ragusa, and B. Turcksin, Adaptive multimesh hp-FEM for a coupled neutronics and nonlinear heat conduction problem, International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, 2011.

D. Fournier, R. Le-tellier, and C. Suteau, Analysis of an a posteriori error estimator for the transport equation with SN and discontinuous Galerkin discretizations, Annals of Nuclear Energy, vol.38, issue.2-3, pp.221-231, 2011.
DOI : 10.1016/j.anucene.2010.11.006

A. Düster, A. Niggl, and E. Rank, Applying the hp???d version of the FEM to locally enhance dimensionally reduced models, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.37-40, pp.3524-3533, 2007.
DOI : 10.1016/j.cma.2006.10.018

P. Solin, J. Ceverny, L. Dubcova, and D. Andrs, Monolithic discretization of linear thermoelasticity problems via adaptive multimesh <mml:math altimg="si28.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>h</mml:mi><mml:mi>p</mml:mi></mml:math>-FEM, Journal of Computational and Applied Mathematics, vol.234, issue.7, pp.2350-2357, 2010.
DOI : 10.1016/j.cam.2009.08.092

H. and B. Dhia, Problèmes mécaniques multi-échelles: la méthode Arlequin, Comptes rendus de l'Académie des Sciences de Paris Série II b 326, pp.899-904, 1998.

H. Qiao, Q. Yang, W. Chen, and C. Zhang, Implementation of the Arlequin method into ABAQUS: Basic formulations and applications, Advances in Engineering Software, vol.42, issue.4, pp.197-207, 2011.
DOI : 10.1016/j.advengsoft.2011.02.005

W. Hackbusch, Multi-Grid Methods and Applications, no, in Springer Series in Computational Mathematics, 1985.
DOI : 10.1007/978-3-662-02427-0

K. Khadra, P. Angot, J. Caltagirone, and P. , Concept de zoom adaptatif en architecture multigrille locale ; étude comparative des méthodes, RAIRO -Modélisation mathématique et analyse numérique, pp.39-82, 1996.

M. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, Journal of Computational Physics, vol.53, issue.3, pp.484-512, 1984.
DOI : 10.1016/0021-9991(84)90073-1

A. Brandt, Multi-level adaptive solutions to boundary-value problems, Mathematics of Computation, vol.31, issue.138, pp.333-390, 1977.
DOI : 10.1090/S0025-5718-1977-0431719-X

W. Hackbusch, Local Defect Correction Method and Domain Decomposition Techniques, Computing Suppl, pp.89-113, 1984.
DOI : 10.1007/978-3-7091-7023-6_6

P. Angot, J. Caltagirone, and K. Khadra, Une méthode adaptative de raffinement local : la Correction de Flux à l'Interface, Comptes Rendus de l'Académie des Sciences de Paris, pp.315-739, 1992.

S. Mccormick, Fast Adaptive Composite Grid (F.A.C.) Methods : theory for the variational case, Computing Suppl, pp.115-121, 1984.

R. Boussetta, T. Coupez, and L. Fourment, Adaptive remeshing based on a posteriori error estimation for forging simulation, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.48-49, pp.48-49, 2006.
DOI : 10.1016/j.cma.2005.06.029

URL : https://hal.archives-ouvertes.fr/hal-00512775

E. Biotteau, A. Gravouil, A. Lubrecht, and A. Combescure, Multigrid solver with automatic mesh refinement for transient elastoplastic dynamic problems, International Journal for Numerical Methods in Engineering, vol.175, issue.8, pp.947-971, 2010.
DOI : 10.1002/nme.2927

URL : https://hal.archives-ouvertes.fr/hal-00525956

I. Babuska and W. Rheinboldt, A-posteriori error estimates for the finite element method, International Journal for Numerical Methods in Engineering, vol.15, issue.10, pp.1597-1615, 1978.
DOI : 10.1002/nme.1620121010

P. Ladevèze and D. Leguillon, Error Estimate Procedure in the Finite Element Method and Applications, SIAM Journal on Numerical Analysis, vol.20, issue.3, pp.485-509, 1983.
DOI : 10.1137/0720033

O. Zienkiewicz and J. Zhu, A simple error estimator and adaptive procedure for practical engineerng analysis, International Journal for Numerical Methods in Engineering, vol.7, issue.18, pp.337-357, 1987.
DOI : 10.1002/nme.1620240206

L. Gallimard, P. Ladevèze, and J. Pelle, An enhanced error estimator on the constitutive relation for plasticity problems, Computers & Structures, vol.78, issue.6, pp.801-810, 2000.
DOI : 10.1016/S0045-7949(00)00056-0

T. Gratsch and K. Bathe, A posteriori error estimation techniques in practical finite element analysis, Computers & Structures, vol.83, issue.4-5, pp.235-265, 2005.
DOI : 10.1016/j.compstruc.2004.08.011

URL : https://hal.archives-ouvertes.fr/hal-01390203

M. Belliard and M. Grandotto, Local zoom computation of two-phase flows in steam generators using a local defect correction method, Numerical heat transfer -Part A Applications, pp.111-135, 2003.

P. Angot and M. Laugier, The FIC method of conservative connection between nested subdomains for an ocean circulation model, Comptes Rendus de l'Académie des Sciences de Paris -Série II -Part 1, pp.319-993, 1994.

X. Coré, P. Angot, and J. Latché, A multilevel local mesh refinement projection method for low Mach number flows, Mathematics and Computers in Simulation, vol.61, issue.3-6, pp.3-6, 2003.
DOI : 10.1016/S0378-4754(02)00140-4

W. Kramer, H. Clercx, R. Mattheij, and R. Minero, A finite volume local defect correction method for solving the transport equation, Computers & Fluids, vol.38, issue.3, pp.533-543, 2009.
DOI : 10.1016/j.compfluid.2008.04.015

B. Watremetz, M. Baietto-dubourg, and A. Lubrecht, 2D thermo-mechanical contact simulations in a functionally graded material: A multigrid-based approach, Tribology International, vol.40, issue.5, pp.40-754, 2007.
DOI : 10.1016/j.triboint.2006.07.001

URL : https://hal.archives-ouvertes.fr/hal-00507274

G. Carre and A. Dervieux, On the Application of FMG to Variational Approximation of Flow Problems, International Journal of Computational Fluid Dynamics, vol.18, issue.2, pp.99-117, 1999.
DOI : 10.1016/S0045-7930(96)00045-X

B. Michel, J. Sercombe, G. Thouvenin, and R. Chatelet, 3D fuel cracking modelling in pellet cladding mechanical interaction, Engineering Fracture Mechanics, vol.75, issue.11, pp.3581-3598, 2008.
DOI : 10.1016/j.engfracmech.2006.12.014

C. Nonon, S. Lansiart, C. Struzik, D. Plancq, S. Martin et al., Julien, Differential PCI behaviour of PWR fuel rods under transient conditions, International Topical Meeting on LWR Fuel Performance, 2004.

G. Roberts, The concentration of stress in cladding produced by the expansion of cracked fuel pellets, Nuclear Engineering and Design, vol.47, issue.2, pp.257-266, 1978.
DOI : 10.1016/0029-5493(78)90068-7

R. Minero, M. Anthonissen, and R. Mattheij, A local defect correction technique for time-dependent problems, Numerical Methods for Partial Differential Equations, vol.151, issue.1, pp.128-144, 2006.
DOI : 10.1002/num.20078

M. Anthonissen, B. Bennet, and M. Smooke, An adaptive multilevel local defect correction technique with application to combustion, Combustion Theory and Modelling, vol.5, issue.2, pp.273-299, 2005.
DOI : 10.1002/(SICI)1098-2426(199809)14:5<607::AID-NUM5>3.0.CO;2-M

M. Anthonissen, R. Mattheij, and J. Boonkkamp, Convergence analysis of the local defect correction method for diffusion equations, Numerische Mathematik, vol.95, issue.3, pp.401-425, 2003.
DOI : 10.1007/s00211-002-0451-8

M. Lemke and D. Quinlan, Fast adaptive composite grid methods on distributed parallel achitectures, Communications in Applied Numerical Methods, vol.12, issue.9, pp.609-619, 1992.
DOI : 10.1002/cnm.1630080908

D. Ritter, M. Sturmer, and U. Rude, A fast-adaptive composite grid algorithm for solving the free-space Poisson problem on the cell broadband engine, Numerical Linear Algebra with Applications, vol.31, issue.3, pp.291-305, 2010.
DOI : 10.1002/nla.703

I. Ramière, P. Angot, and M. Belliard, A general fictitious domain method with immersed jumps and multilevel nested structured meshes, Journal of Computational Physics, vol.225, issue.2, pp.1347-1387, 2007.
DOI : 10.1016/j.jcp.2007.01.026

P. Raviart and J. Thomas, Introduction à l'analyse numérique des équations aux dérivées partielles, P.G. Ciarlet and J.L. Lions, 1998.

I. Ramière, -finite element method for elliptic problems with non-boundary-fitted meshes, International Journal for Numerical Methods in Engineering, vol.81, issue.4, pp.1007-1052, 2008.
DOI : 10.1002/nme.2278

URL : https://hal.archives-ouvertes.fr/hal-01439629

G. Kunert and S. Nicaise, Zienkiewicz-Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes, ESAIM -Mathematical Modelling and Numerical Analysis -Modélisation Mathématique et, Analyse Numérique, vol.37, issue.6, pp.1013-1043, 2003.

P. Wriggers and O. Scherf, Different a posteriori error estimators and indicators for contact problems, Mathematical and Computer Modelling, vol.28, issue.4-8, pp.437-447, 1998.
DOI : 10.1016/S0895-7177(98)00133-2

P. Bouillard, J. Allard, and G. Warzee, Superconvergent patch recovery technique for the finite element method in acoustics, Communications in Numerical Methods in Engineering, vol.30, issue.9, pp.581-594, 1996.
DOI : 10.1002/(SICI)1099-0887(199609)12:9<581::AID-CNM7>3.0.CO;2-S

K. Murthy and M. Mukhopadhyay, Adaptive finite element analysis of mixed-mode crack problems with automatic mesh generator, International Journal for Numerical Methods in Engineering, vol.42, issue.8, pp.1087-1100, 2000.
DOI : 10.1002/1097-0207(20001120)49:8<1087::AID-NME995>3.0.CO;2-P

O. Zienkiewicz and J. Zhu, The superconvergent patch recovery anda posteriori error estimates. Part 1: The recovery technique, International Journal for Numerical Methods in Engineering, vol.31, issue.7, pp.1331-1364, 1992.
DOI : 10.1002/nme.1620330702

O. Zienkiewicz and J. Zhu, The superconvergent patch recovery anda posteriori error estimates. Part 2: Error estimates and adaptivity, International Journal for Numerical Methods in Engineering, vol.8, issue.7, pp.1365-1382, 1992.
DOI : 10.1002/nme.1620330703

X. Desroches, Estimateur d'erreur de Zhu-Zienkiewicz en élasticité 2D, manuel de référence Code_Aster, 2009.

J. Zhu and O. Zienkiewicz, A posteriori error estimation and three-dimensional automatic mesh generation , Finite Elements in, Analysis and Design, vol.25, pp.167-184, 1997.

E. Biotteau, A. Gravouil, A. Lubrecht, and A. Combescure, Three dimensional automatic refinement method for transient small strain elastoplastic finite element computations, Computational Mechanics, vol.24, issue.2, pp.123-136, 2012.
DOI : 10.1007/s00466-011-0628-z

URL : https://hal.archives-ouvertes.fr/hal-00938388

I. Ramière, P. Angot, and M. Belliard, A fictitious domain approach with spread interface for elliptic problems with general boundary conditions, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.4-6, pp.766-781, 2007.
DOI : 10.1016/j.cma.2006.05.012

L. Barbié, I. Ramière, and F. Lebon, A multilevel technique based on nested local meshes for nonlinear mechanics, Proceedings of the Eighth International Conference on Engineering Computational Technology