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DISCRETE POINCAR E INEQUALITIES FOR ARBITRARY MESHES IN THE
DISCRETE DUALITY FINITE VOLUME CONTEXT

ANH HA LE ¥ AND PASCAL OMNES*

Abstract. We establish discrete Poincaré type inequalities on adiweensional polygonal domain covered
by arbitrary, possibly nonconforming meshes. On such neestiscrete scalar fields are defined by their values
both at the cell centers and vertices, while discrete gnasliare associated with the edges of the mesh, like in the
discrete duality finite volume scheme. We prove that the teots that appear in these inequalities depend only on
the domain and on the angles in the diagonals of the diamdifgloomstructed by joining the two vertices of each
mesh edge and the centers of the cells that share that edge.
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AMS subject classifications.65N08, 46E35

1. Introduction. Let be a two-dimensional polygonal domain. Let us introduce the
following two Poincaré inequalities which will be mentieah throughout this article: The
Friedrichs (also called Poincaré) inequality

(1.1) / u?(z)de < cp | |Vu(z)|?dr , Yu € Hy(Q)
Q Q
and the Poincaré (also called mean Poincaré) inequality
(1.2) / u?(x)de < cP/ |Vu(z)|?dz , Yu € H(Q) such that/ u(z)dr =0,
Q Q Q

wherecr andcp are constants depending only@nThese two inequalities play an important
role in the theory of partial differential equations. HekE,(2) is the Sobolev space @£ ()
functions with generalized derivatives {?(Q2))?, and H{ (€2) is the subspace aff ()
with zero boundary values in the sense of trace®Qn More details on the Sobolev spaces
H(), H}(£2) may be found, e.g., ird].

This article considers discrete versions of Poincaréuaéties for the so-called discrete
duality finite volume (DDFV) method of discretization on d@rlry meshes, as presented, e.g.,
in [11]. Originally developed for the discretization of (posgilbleterogeneous, anisotropic,
nonlinear) diffusion equations on arbitrary mesh&sg] 11, 15, 16, 20], this technique has
found applications in other fields, like electromagneticg,[div-curl problems §] and Stokes
flows [8, 18, 19], drift diffusion and energy transport modelq |

The originality of these schemes is that they work well orkadtl of meshes, including
very distorted, degenerating, or highly nonconforming ness(see the numerical tests in
[11]). The name DDFV comes from the fact that these schemes aeellwa the definition of
discrete gradient and divergence operators which verifigeaete Green formula.

Details about this method are recalled in sectinin this introduction, let us only
mention that in the DDFV discretization, scalar functionsdiscretized by their values both
at the centers and at the vertices of a given mesh, and thediegits are evaluated on the
so-called “diamond-cells” associated to the edges of thehméach internal diamond-cell is
a quadrilateral; its vertices are the two nodes of a givegrinatl edge and the centers of the
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two cells which share this edge. Each boundary diamond €elldegenerated quadrangle
(i.e. atriangle); its vertices are the two nodes of a giveurtalary edge and the center of the
corresponding cell and that of the boundary edge.

Then, the discrete version of tH& norm on the left-hand side of (1) and (L.2) is the
half-sum of theL.? norms of two piecewise constant functions, one defined wighdiscrete
values given at the centers of the original ("primal” in wiiaiows) cells, and the other
defined with the discrete values given at the vertices of ttnegd mesh, to which we associate
cells of a dual mesh. Moreover, the discrete version of tadigntL? norm on the right-hand
side of (L.1) and (L.2) is the L2 norm of the piecewise constant gradient vector field defined
with it discrete values on the diamond-cells.

In the finite volume context, discrete Poincaré-Friedsiaiequalities have previously
been proved in12, Lemma 9.1, Lemma 10.2] and4], respectively for so-called "admissi-
ble” meshes (roughly speaking, meshes such that each edigkagonal to the segment join-
ing the centers of the two cells sharing that edge, see thusprdefinition in L2, Definition
9.1]) and for Voronoi meshes. Similar results on duals ofgabsimplicial triangulations are
proved in P1]. In the DDFV context, a discrete version df.{) is given for arbitrary meshes
in [3]. However, the discrete constant which appears in that paper depends on the mesh
regularity in a rather intricate way, se& Formula (2.6) and Lemma 3.3].

The main result of our contribution is the proof of discregesions of both1.1) and (.2
in the DDFV context, with constants- andcp depending only on the domain and on the
minimum angle in the diagonals of the diamond cells of thelmes

Our proof of the discrete version of.() is very similar to those given inlp] or [21].
We also prove a discrete version @fJ) in a slightly more general situation when the domain
is not simply connected and the discrete values of the fanatanish only on the exterior
boundary of the domain and are constant on each of the inteonadaries (this will have a
subsequent application in the last section of the preserk)wo

However, the task is more difficult for the mean-Poincaggumlity. Like in [LZ], it is
divided into three steps. The first is the proof of this indijyian a convex subdomain; in the
second, our proof differs from that id}] because we actually do not need to prove a bound
on the L% norm of the difference of discrete functions and their digemean value on the
boundary of a convex subset, but rather an easier bound oh'therm of this difference.
The final step consists in dividing a general polygonal denmatio several convex polygonal
subdomains and in combining the first two steps to obtainedhkelt.

As a consequence of these results, we derive a discreteadentiof the following result
(which is a particular case of a result given ir8]): Let us consider open, bounded, simply
connected, convex polygonal doma(msl)qe[mq of R? such that), c Qo forallg € [1,Q)]
andQ,, N Qg = 0 forall (qg1,q2) € [1,Q]* with ¢1 # ¢2. LetQ be defined by2 =
0\ (UL, Q). Let us denote by = 0Q = UZ Iy, with I'; = 99, for all ¢ € [0,Q).
Then, there exists a constafit depending only orf2, such that for all vector fields in
H(div,Q) N H(rot,Q) withv-n = 0onI"and(v - 7,1)r, = 0forall ¢ € [1,Q)], there
holds

Vllzz) < CUIV - vllL2) + IV X V[L2(0))-

The discrete equivalent has applications in the derivatioa priori error estimates for the
DDFV method applied to the Stokes equatiori€]].

Let us mention that, although 3D extensions of the DDFV sehbave been published
[2, 5, 6], the extension of our results to 3D is beyond the scope efdtticle.

This article is organized as follows. Sectidsets some notations and definitions related
to the meshes, to discrete differential operators and twetis functions. In sectioB) discrete
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FiG. 2.1.A nonconforming primal mesh and its associated dual meé#h fied diamond-mesh (right).

Poincaré inequalities are presented. First, we provecaatesPoincaré inequality for discrete
functions vanishing on the boundary of the polygonal donaaid then extend this result to
the slightly more general case mentioned above. Then, wephe discrete mean Poincaré
inequality with the 3 steps described above. Finally, wes@néin sectior an application of
the previous results to the derivation of another discratguality, relating the norm of dis-
crete vector fields defined on the diamond cells and verifgpegial boundary conditions, to
that of their divergence and curls defined on the primal arad sheshes. In the Appendi,
we present the details of the proof of a Lemma involved in oaimmesults.

2. Notations and Definitions. The following notations are summarized in Figland
Fig. 2.2 Let () be defined as above and be covered by a primal mesh with paygels
denoted byT;, ¢ € [1,I]. With eachT;, we associate a poirit; located in the interior of
T;. let us denote by, with & € [1, K] the nodes of the cells. With ars,, we associate a
dual cell P, by joining the pointg; associated with the primal cells surroundisigto the
midpoints of the edges of whic$}, is a node.

With any primal edged; with j € [1,J], we associate a so-called diamond-dall
obtained by joining the verticeS;, ;) and Sy, ;) of A; to the pointsiy;, ;) andGy, ;) as-
sociated with the primal cells that shadg as a part of their boundaries. Whelj is a
boundary edge (there aiB such edges), the associated diamond-cell is a flat quaslat
(i.e. atriangle) and we denote l6y;, ;) the midpoint ofA; (thus, there arg" such addi-
tional pointsG;). The unit normal vector tol; is n; and points fromG;, (;) to Gy, ;). We
denote byA’; (resp.A’,) the segment joining:;, (;) (resp.Gi,(;)) and the midpoint ofd ;.
Its associated unit normal vector, pointing fra, (;) to Si,(;), is denoted by’ (resp.
n’,). We also define vectors;, 7, andt’, such thatn;, 7;), (n;, 7,) and(n’,, 7,)
are orthonormal, positively oriented basisk. In the case of a boundary diamond-cell,
reduces to{G;, ;) } and does not play any role. Finally, for any diamond-égJ| we shall
denote byM;, x, the midpoint of(G;_ (;)Sk,(;)], With (o, 8) € {1;2}2, M; the midpoint
of S, (j)Sk.(;) @ndd;, (respd;,) is defined by the angle, lower tharn'2, between segment
Ski() Ska () AN segments;, ;) M; (respG, (j) Mj).

We shall use the following definition

DEFINITION 2.1. We denote by* > 0 the greatest angle in the mesh such that

6, > 60" andf,;, > 0* forall j e [1,J].

Now we shall associate discrete scalar values to the p6ingdS; and discrete two-
dimensional vector fields to the diamond-cells. This leasisouthe following definitions.
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i1ky %

FIG. 2.2.Notations for the inner diamond-cell (left) and a boundaigndond mesh (right).

DEFINITION 2.2. Letg = (o7, ¢¥), andy = (v, ¢F) be inR! x RE. Letv = (v;)
andw = (w;) bein (RJ)Q. We define the following scalar products and associated sorm

1

(6 0)rp =5 | D ITlelvl + D [Bulovuy |
i€[1,1] ke[l,K]
= (¢, )P,
(WaV pi= Y IDjlw;-v; , |IV[H = (v,v)p.
JEL,J]

DEFINITION 2.3. Let¢ = (¢!, ¢%) be inRI*+7" x RX. We define the tracé of ¢
on the boundary edge$; C I' with ¢; := ((bkl i ¢ G) T gbk G )) We also define a

discrete scalar product for the traces of n and¢ on the boundarie§,

(v- na¢ Ly,h* j{: P4| ‘nj) ¢J

jely

and onI"

(21) (V -, &)F,h = Z (V -1, @Fq h
q€[0,Q]

In the proof of discrete Poincaré inequalities, we oftea il piecewise constant functions
based on the discrete functions defined at the centers ofreash; we set the following
definitions

DEFINITION 2.4. Letp € RI+7" x RE. The piecewise constant function§(z) and
¢ (x) are defined following, respectively,

o' (x) = ¢F | Vo e T;andi € [1,1];
¢" (x) = ¢ , Va € Py andk € [1, K].

We recall here the discrete gradienit 1] and (vector) curl operator®] which have been
constructed on the diamond cells.
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DEFINITION 2.5. Letp = (oI, ¢£) be inR’+/"  its discrete gradienv ? ¢ and discrete
curl VhD x ¢ are defined by their values in the cells; through

1
|Djl

(Vyo); = 5 {[#%, — 1 J([AG 0" j1 + |Afgn’j2) + [8F, — &7 1| Ajny ),

1
(VY x ¢); = ~3D)] {lor, — PR (A |7 1 + | Al 7 52) + (67, — &1 1Al 75}

In the proof of our results, we shall use the following theorehich is exactly §, Theorem
4.7]
THEOREM 2.6 (Discrete Hodge Decompositiop Let (v;) <1, be a discrete vector
field defined by its values on the diamond-célls
There exist unique = (¢}, ¢y )ici1, 1+ ke k] © = (OO )ien 1+ ke, k) @nd
(c¢h, el )qen ) such that:

(2.2) vi=(Vye); + (V5 x);, Vje(LJ],

Y ITlel = > |Pder =0,

i€[1,1] ke[l,K]
(2.3) oI =0,Viely , ¢ =0,VkeTy,
and
(2.4) Vae[1,Q, ¢ =cg,Viel, , o =c¢;,VkeT,.

Moreover, decompositior2(2) is orthogonal. We shall also need the following construction
of discrete divergence and (scalar) curl operators on hathgband dual cells:

DEFINITION 2.7. Letv = (v;) be defined ifR?)” by its values on the diamond-cells.
We define

1
(Vi -v), = T > 14;lv; g,

JEOT;

1
(V}If 'V)k =15 E (|A}1|Vj ) n,/jlk + |A3‘2|Vj -nﬁ»%)
| P |

JEOP;

|45
+ Z TJVJ' -y,

JEIOP,NT

1
(Vi xv), = T > 1Al T
" jeaT;

(V}If X V)

B

1
= o (30 (A T+ Al )
| P

JEOP;

|45
+ Z TJV]'-TJ' .

JEOP,NT
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The following result §, Proposition 4.1], which consists in discrete Green foasuhas
motivated the name "discrete duality”:

THEOREM 2.8 (Discrete Green Formulag. For v € (R?)” and¢ = (¢7,¢") €
R+ x R it holds that

(25) (Va VhD(b)D _(v'}?P ©V, ¢)T,P + (V -1, é)l—‘,ha
(2.6) (v, V}) x ¢)p = (V;}F’P XV, 0)r.p — (V- T,0)T -

3. Discrete Poincag Inequalities. We first start with a discrete version df.().
Our result is a special case of that provedinfemma 3.3], but our expression of the discrete
constantr is more precise and simple, in that its dependence on the efepwf the cells
occurs only through the angles in the diagonals of the dialvamlls. This is an important
result in the DDFV context, since priori error estimations of the discrete solution of the
Laplace equation obtained with this method also only deperithe cell geometries through
angles in the diamond-cells (se€l]).

THEOREM 3.1 (Discrete Poincae-Friedrichs Inequality). Let) be an open bounded
polygonal domain; let us consider= (u”,uf) € RI+7" x RX such that

uf =0,Vkel andul =0, VieT.

Let#* be defined by DefinitioB.1 Then, there exists a constant C only dependin@@md
0* such that

(3.1) lull7,p < CIVullp-

Proof. Letu”'(-) andu”(-) be the piecewise constant functions defined in Definifigh
Then obvioushyi|u[|7. p = ([u"[|72(q) + Ilu”172(qy)/2. SO that, in order to proves(d), it
suffices to prove

(3.2) [u™ || L2(e) < CIVRullp,
(3.3) [u|| 20y < ClIVEullb.

We shall first proved.2). Letd; = (0,1) anddy = (1,0)%; for x € Q, let D! andD? be the
straight lines going through and parallel to the vector$; andd,. For any edgg < [1, J]
and anyz € Q, letus define} "' (z) andy *(x) by

1 if A;NDL £

fort=1,2.
0 if Ajﬁ'Di:@

(3.4) X (x) = {

REMARK 3.2. For anyr = (z,z2) € 2, we note thaij(x) only depends om; and
x?(x) only depends on,. From the first formula of definitio®.5and simple geometry, it

is easy to see that

% i
(3.5) (Viw)j - Giy(Gin(g) = Uiy — Uiyiy» V9 € [L, ).

)

Then, for anyi € [1, ] and a.ex € T;, let us follow the straight lin®’, until it intersects the
boundanf’, and let us denote by (¢) := i, v2(i), - - - , v,—1(2) the indices of the primal cells
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FiG. 3.1.Straight lineD?2 intersecting primal cells from point to the boundary.

that it intersects (in the order they are intersected) and, 0% the index in[Z + 1,1 + J']
corresponding to the first boundary segment intersecteB®‘bgsee Fig.3.1). Then, since
“fn(z‘) = 0 because of the boundary conditions, we may write

T T _ T T T T T T
Ui = Uy (i) = (U, (1) = Uy (i) F (W) = Uy(y) T+ (U, (1) — U, (i)
n—1
_ T T
= 2 (W) = Yopyi(i)s
m=1

so that, since any coup(@fm(i), ufmﬂ(i)) is a pair of neighboring values through an edge

Aj intersected byD{, there holds, thanks t&(5)

J
——
(@) = i1 < 3 ‘(V?U)j -Gy ()Gt | X5 ()
J=1

for ¢ = 1,2. Then, setting); := ‘(V.?u)j . Gil(j)Giz(j)‘, one has

J J

(" (@) < | v xg @) | | Dow NG (@)

j=1 j=1

Integrating the above inequality ov&r and summing over € [1, I] yields

J J
@8 Nt < [ | (Xl @] (St )|
j=1 j=1

Leta = inf{x1; (w1,22) € Q} andfB = sup{z1; (v1,22) € Q}. For eachr; € (o, §),
we denote byH (z1) the set ofz, such that: = (z1,22) € Q. From Remark3.2and the
factthat/,, ,  x7 " (2)dws < |4 and [7 X" (z1)dz, < |A;], we infer that 8.6) may be
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written in the following way:

B J J
e lizece) < / dwl/ drs | Y v x; (@) Y vg x; P (we
a H(xzq1) =1 =
/ Z’U7 XJ 1'1 / ZU] XJ $2)d$2 dxy
“ H(xy)
/ Zv7 X;' ZUJ/ 202 )dzo | dxq
a 1])

B J J
S/ > v @) | Y vl Ayl | das
@ = i=1

J J 8 J J
< [ Dl Zva‘/ X ey < [ Y w4y | DD vl4y
j=1 j=1 « j=1 j=1
We thus obtain
2
—>
(3.7) [ [1720) < Z| (V7 u);.Giy ()G ) |1 44
Finally, Using the Cauchy-Schwarz inequality, we have
J
a2y < Z| (Vi u)1?1G ) Gann 1A | | D 1G5 Gin ) 14
j=1

SinC8|Dj| = % (|AJ||GZIMJ| sinﬂjl + |AJ||G12MJ| sinﬂjz), we have tha]‘.AJ||G“Gl2| <
24| 1y Definition2.1and the triangle inequality. Moreover, sin@;.]:1 |D,| = |9, there

sin 6*

holds

[ |72 < QH*IQIZI (V5 w);[*|Djl.

We have completed inequalit$.Q) with C' = ==,
We shall use a very similar process to that employed in thefmb(S 2. A slight dlfference
comes from the fact that dual cells may be non-convex, aricthlesstraight linesD’ may
thus intersect twice the boundany,, U A’, between two adjacent dual cells (see Rg),
in which case it is not useful to introduce the d|fferem§e — u,C ) in the calculation. We

thus def|n% Yz )andxj ?(x) by

A / Y4 / 14
Pl — {1 ifeither 47, N DL #Dor Aj, NDL#D Lo

7 0 if (A UAL)NDL =0

In the above definition, it is meant that the “either’ - or” iscusive: if D! intersects both
A%y and Ay, thenxf”“}(a:) = 0. From the first formula of definitio.5, it is easy to see that

—> )
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FIG. 3.2.The straight lineD? intersects twice the boundarfy;1 ) A;Q of a non convex dual.

Thus, for anyk € [1, K] and a.ex € P, one has

—
Jug | < Z| Viu); Sk Skl X3 (@), £=1,2.
Using a similar process as in the proof 8f3) and taking into account that

B
[ ey <145+ 145 |and/ X (wa)dey < |G, |+ 45,
«@ zl)

we obtain

[u”[1Z20) < ZIV )il A5l (A7, [+ 1A5,1)

which allows to obtain, similarly as above

4

[u” 1220y < 29*|Q|Z| Vi w);* 1Dyl
=1

which concludes the proof of inequality.g) with C' = 2 |Q[/2. a0

We now turn to a generalization of Theor&i which will be useful in the last section
of this work.

THEOREM 3.3 (Discrete Poincae-Friedrichs Inequality). Let us consider open, boun-
ded, simply connected, convex polygonal dom(ambs)qe[O,Q] of R? such that, C Q for
all g € [1,Q] andQ,, NQ,, = O forall (¢1,¢2) € [1,Q)> with ¢; # go. LetQ be defined by
Q= QO\(UleQq). Let us denote by = 0Q = Ufzol“q, withT', = 09, forall ¢ € [0, Q).

Letu = (u”,uP) € R7+/" x RE be such that

uf =0, Vk €Ty and ul =0, Vi € Ty,
up, =k, vk eTy, and uf =], Vi e Ty, Vg € [1,Q].

(3.8)
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My Mo

Uy 0= Woa ()

FiG. 3.3.Straight lineD2 intersecting primal cells from point to the boundary through internal boundaky,.

With 6* given by Definitior.1, there exists a constait depending only of2 and#* such
that (3.1) holds.

Proof. Like in Theorens.], it suffices to prove both3(2) and @3.3). We shall only prove
(3.2, since the proof of3.3) follows exactly the same lines.

The only difference in the proof of3(2) in Theorem3.3 with respect to Theoreri.1
is that the straight lin@‘ may now intersect one or several internal boundary(igswith
g € [1,Q], before intersecting the external bound&xy (see Fig. 3.3). For the sake of
simplicity, we shall consider only one intersection withiaternal boundary’, (since the
alternative may be treated exactly in the same way), and wetdéywv,, (i) andv,,, 1 (i)
the indices inI + 1,1 + J] corresponding to those intersected boundary edg&s.ofVe
may still write

n—1
T __ T T
U; = Z (uum(i) - “vmﬂ(i))a
m=1

but, now, the couple(aufn i ) is nota pair of neighboring values through an edge

T
) Yoy 11 (0)
Aj intersected byD!. However, these two values are equal becausa.8}, (so that

T _ T T
u; = Z (uum(i) - uvm+1(i))'
me [1,n—1]

m# ng

Now, any coupleu’ (i) “fmﬂ(i)) in the above suns a pair of neighboring values through

m

an edged; of the mesh, intersected 1y, so that there holds, thanks .9
J
7
uil= 2 ‘(VJD w);j G () G| x5 (7)
j=1

for ¢ = 1,2 and we finish the proof just like in the proof &.¢). O

Let us now turn to a discrete version 4f%). As announced in the Introduction, the proof
will be divided in three steps. The first step is to prove ithe tase of a convex polygonal
domain (Theoren3.4), then we shall prove an inequality related to the mean vatuéhe
boundary of a convex polygonal domain (Theorém and we shall conclude by the general
case of a possibly non-convex polygonal domain (Thedéein

THEOREM 3.4 (Discrete mean Poincaé Inequality for a convex polygonal domair).
Let(2 be an open bounded polygonal connected domaingabe an open convex polygonal
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X2

o

FiG. 3.4.Notation for pointsA, B, C, D and pointst ac, TBp, YAC, YBD-

subset of), withw # (). Letu = (u?, uF) € R’+/" xR the associated piecewise constant
functionsu”', u* are defined through Definitio?.4. Letd* be defined through Definitich 1.
Let us define the following mean-values:

T *i UTII mPU' ! UPZCCC
mlw) = [ @ e mEw = o [ o) e

]

Then, there exists a constant C only dependin@@md6é* such that

(3.9) [u” = mE ()| 2wy < CIVRYullp,
and
(3.10) [ = mE (W)l 12y < ClIVE ullp.

(Choosingv = 2 proves the discrete equivalent @f.2) if €2 is convex.)
Proof. We only prove inequality3.9). The proof of .10 may be adapted just like in
the proof of Theoren3.1 We first note that
T L T
(@) - [ )y

- [ @) = mEyas = [ s
< | ] e T Py

We define pointsi, B, C, D belonging tao in the following way

2
dzx

xg = inf{zy; (21, 22) Ew}, o =sup{ay;(z1,22) € w},
yp = inf{y2; (y1,42) € W}, yp = sup{y2; (y1,92) € w}.

REMARK 3.5. Up to a rotation ofy, we may always suppose that those four points are
different one from the other, except.ifis triangular; in that case, up to a rotation.gfwe
may setd = B and the proof is exactly the same as that below.

Foranyx = (z1,22) € w, we definex,¢ € [AC] such thafxsc)1 = 21 andapp €
[BD] such thatlzpp)2 = x2. The notations are summarized in Fig}4. These points are
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used because, sinag does not depend ary, norxzgp onxy, they will help us simplify

the quadruple integral in the right-hand side ®f1() into double integrals only. Moreover,

since these points are all located on the two fixed straighs|iAC] and[B D], the evaluation

of the remaining integrals may be treated in a systematic aswill be shown below.
Applying the triangle inequality leads to

[u” (2) — u” ()| < [u” (2) =« (z5D)| + |[u" (w5D) — u” (yac)|

3.12

242 + [uT (yac) — v’ (y)]

and also to

(3.13) [u”(z) — " (y)| < Iu:(fc) - UT(xTAC” + [uT (za0) — uT (y5D)|
+ [u” (ypp) — u” (y)|-

From 3.12 and 3.13, we have

(3.14) //|u T () Pdady < ZIZ,

=1

wherel;—Iqy are defined and estimated in what follows:
Treatment off;

(3.15) I = / / " () —u"(zpp)| [u” (z) — u” (zac)| dudy.

Using again 8.4) and @.5), we may write

J
—
(3.16) 0T (2) = T (wac)| < 3NN @) (VR0 - Gy G|
=1
and
J
—
(3.17) lu?(z) —ul(zpp)| < ZX? (z) ‘(Vh u); Gh(j)Gig(j)‘ :
j=1

. ——
Henceforth, we set for conveniencg = ’(Vfu)j G () Gy () |-

Recalling thaty; ' (z)

only depends on; andx ( ) only depends on,, and noting that the integrand i8.05
does not depend an there holds

We use that
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and
YD
(3.18) / X) 2 (x)dzs < |A;]
yB
and obtain
2
J
(3.19) o<l | YA |
j=1
Treatment ofl,

I = /w/w T (z) — T (z5p)| T (xac) — uT (ypp)| dzdy.

Using inequality 8.17), we have

J
I < // (fo(x) 'Uj) lu” (xac) —u” (ypp)| dxdy.
wdw \ o

By definition,xf (x) only depends on; (whichis in[yg, yp]), while 2 4 only depends on
x1 (whichisin[z 4, z¢]); of courseypp does not depend on so that

J YD zc
Iy < (Z Uj/ X?’2(f€)d$2) // [u" (zac) —u” (ypp)| dr1dy.
j=1 YB wJSTA

Thanks to 8.18, we thus have

J zo
" (Z |Aj|vj) // [u” (wac) —u” (ypp)|drrdy.
i=1 w

A

Sinceygp only depends ops andx 4o does not depend an the integration with respect to
y1 (whichis in[z 4, z¢]) is straightforward and yields

J yp pxc
(320) I < (w0 —24) (Zwm—) [ ] W wac) — g derde
j=1 YB TA

Treatment off;

Iy = /w/w |UT(:E) - UT(HUBD)| |UT(yBD) - UT(y)| dxdy.
This integral clearly decouples into two independent irdtsy

Iy = /w lu”(x) —u” (z5D)| dw/w lu" (ysp) —u’ (y)| dy

which may be treated like in the estimation Gfthanks to 8.17), (3.18 and the fact that
x©? depends only om,. We obtain

2
J
(3.21) I3y = (vc — xa)® (Z |Aj|vj) -

Jj=1
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Treatment of,

fe= / / [ (z5p) —u” (yac)| [u" (z) — u” (vac)| dudy.

We may proceed very similarly to the estimation/efand we obtain that

J Tc YD
(322)  Li<(p—us) [ 140 / / 7 () — 07 (yac)| duadyr.
TA YB

Jj=1

Treatment ofl5

Is = / / |’U,T(CCBD) — uT(yAC)l |UT($AC) _ UT(yBD)| dl‘dy

On the one hand;zp andyac do not depend on; on the other hand; o andygp do
not depend on,, so that the integration with respectitaecouples into

Is < /w </y:D lul (zpp) — ul (yac)] d,CCQ) (/;C |ul (zac) — uT (ypD)| d:z:1> dy.

We also note thaygp andz 4 do not depend op; and thaty s andxzgp do not depend
ony-, so that the integration with respectit@ecouples into

(3.23)
Iy < / / W (zpp) —u” (yac)| diﬂzdyl/ / [u" (zac) — v (yBp)| dr1dys.
TA yB yB TA

Treatment oflg

o= [ [ 107 a) ~ " (wac)] 14" (zn) ~ 7 ()| dody

We may proceed very similarly to the estimationggfind, and we obtain that

J Tc Yo
(3.24)  Is < (zc—xa) | Y|4y / / " (D) —u' (yac)| drady:.
TA YyB

Jj=1

Treatment off;

= / / [u” (yac) —u" ()| |[u" (z) — u” (vac)| dudy.

We may proceed very similarly to the estimation/gfand we obtain that

2
J

(3.25) I: < (yp —yB)* Z | A;]v;

J=1

Treatment oflg

Iz = / / |uT(yAC) - uT(y)| |uT(xAC) _ UT(yBD)| dzdy.
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We may proceed very similarly to the estimationdgfl, andls and we obtain that

J yp rrc
(326) I < (yp — yp) (Zvu—m-) [ ] W @ac) = o (g dosde
j=1 YB TA

Treatment off,

Iy = / / " (yac) —u’ (v)| " (ysp) — u” (y)| dzdy.

We may proceed very similarly to the estimationgpind we obtain that

j=1

2
J
(3.27) Iy < |w| (Z|Aj|vj) .

In order to conclude the proof of Theore®, we need the following lemma, a proof of
which is postponed to Appendix.
LEMMA 3.6. There exists a constant; depending only of such that

Yo rc
/ / luT (xac) — uT (ypp)| dr1dys < Chdiam(w (Z |A; |v3) ,
YB TA

|A; |v3> .

Applying Lemma3.6 and combining estimations3(19 to (3.27 with the bound 8.14)

results in
2
J
/ lu” (z) — u" (y)|*dady < C3 (Z |Aj|Uj> ;
QJQ .

Jj=1

<o M
HMN
— ,_.

xc YD
/ / luT (xpp) — ul (yac)| drady; < Crdiam(w) (
A YyB

whereC? = (4+4C +C%)diam?(w). Now this inequality may be treated exactly like7),
and there holds

403 <
[ [ @) = T wPdedy < S22l 3 (TR PID;|
wJw =1

From 3.11), we have

J

07w - motas < S5 v
w « sin? 6+ 4
which implies the desired result with = s?fg*. 0

The second step in the proof of a discrete versionlad)(is to establish an inequality
related to the mean value on the boundary of a convex polygianaain

THEOREM 3.7 (Mean boundary Inequality). LetQ be an open bounded polygonal
connected subset & and letw be an open polygonal convex subsefdndZ C dw, with
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D

)

o X

F1G. 3.5.Notation for points A, B, C, D and poinisac, o5p-

|Z| > 0 (|Z| is the one-dimensional Lebesgue measurtg)ofAssume thal is included in a
hyperplane ofR2. Letu = (u?,u?) € RI+/" x R’ be given and the associated piecewise
constant functions” andu’ be defined through Definitioh4. Lety” (u)(o) = u! for all

o €T;Now. (f o € T; NTy, then the choice af! or «% in the definition ofy” does not
matter). Lety” (u)(o) = ul forall o € Py N ow. (If o € P, N Py, then the choice af’

or uf, in the definition ofy” does not matter). LetX (u) (resp m£ (u)) be the mean value
of v (u) (resp v (u)) onI. Let#* be defined through Definitiod.1. Then, there exists a
constant’, only depending of2, w, Z and#* such that

(3.28) [u” = mT (W)l 11wy < CIIVEullb,
(3.29) [u” = mE (W) 1) < ClIVEullp.

Proof. SinceZ is included in a hyperplane, it may be assumed, without lbgsiverality,
thatZ = {0} x [a,b] andw C R x R (the convexity ofv is used here). We choose points
A, B, C andD, belonging tao, such that

xp = inf{zy; (21, 22) € w}, xc =sup{ay; (v1,22) € W},

yp = inf{wy; (1, 22) € w}, yp = sup{xa; (v1,22) € w}.

REMARK 3.8. It may happen in particular cases that those four pairgsiot different
one from the other, but this does not change the general idée @roof. If A = B and
7 = [BD], then it even simplifies the proof since in that case, we ddhawe to introduce
the pointozp defined below.

For anyz = (x1,22) € w ando = (01,02) € Z, we definezac € AC such that
(xac)1 =z andopp € BD suchthalogp)s = 02. The notations are summarized in Fig.
3.5. The following triangle inequality holds:

[ (2) = yu” (o) < Ju”(z) —u" (zac)]

+ |UT(£CA()) — UT(UBD)| + |’YUT(0) - uT(UBD)|.
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Moreover, there holds

u? — m ()| 11 ) = /
w

u? (z III/W o)do|d
7 7@ = @)

= / / [u” (z) = yu" ()] doda,

so that, taking into account the above triangle inequaligypbtain:

dz

1
T = mE @l < 1 [ [ 107 @) =T @) dod

|I|//|U zac) —u' (opp)| dodx + |I|//|”yu —uT(opp)| dodz.

We first observe that the function” (z) — u” (x4 )| doesn’t depend on the variabtethen,
using similar techniques to those WhICh led ®1©, and the fact thafc T 1( Ydx; <
|A,;], there holds

J
(3.30) % /w /I |u' () — ul (za0)| dodz < diam(w) (; |Aj|vj) ,

where we recall the notatiary = [(V}w); - Gi, (G, (5)|-

Then, we know that the functidnu” (o) — u” (o5p)| only depends on the variabie
then, using similar techniques to those which ledd 7), and the fact thafI x?’z(a)do- <
|4, we have

1 ZRES
(3.31) E/W/IWUT( o) —uT(opp)|dodx < 7 (Z|Aj|vj).

Now, z 4 doesn’t depend on the variahie, so that

! dmm
m//|uT(xAC)—uT(UBD)|dde< / /|u (xac)—uT(opp)| dodz;.
wJT

Applying an inequality like in Lemma&.6leads to

(3.32) %/W/I|u(x,40)—u(agp)|dadx< Cld’“m <Z|A m).

Using 3.30, (3.3) and 3.32, we conclude that

[T = mF ) ) < [dwm< )+ % 4 “7’"} (Z 1A; m) |

Then, the Cauchy-Schwarz inequality yiel@s29. Similarly, we also obtain3.29. d
Now, we come to the final step of our result.
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THEOREM 3.9 (Mean Poincaré Inequality). Let 2 be an open bounded polygonal
connected subset &2; let u = (u”, u”) be iNR/+/" x RX andu” (z), uf (z) be defined
through Definition2.4. Let#* be defined through definitich 1. Then, there exists a constant
C only depending of2 and6* such that

(3.33) [u” = mE W) L2y < C| V7 ullp
and
(3.34) [u” = m§ ()l 2 < CIVE ullp,

wherem}, (u) (resp.mf, (u)) is the mean-value af” (resp.u”’) on (.

Proof. Since(2 is polygonal, there exists a finite number of disjoint conpexygonal
sets, denoted b{f2y, ..., Q,,}, such that) = U ;Q;. LetZ; ; = Q; N Q; and B be the set
of couples(i, j) € {1,...,n}? such that # j and the one-dimensional Lebesgue measure of
Z; ;, denoted byZ; ;| is strictly positive.
Letm; denote the mean value of on€);,i € {1,...,n}, andm; ; denote the mean value of
u? onZ;;, (i,j) € B. Note thatm, ; = m;; forall (i,5) € B.
TheorenB.4gives the existence @, i € {1, ...,n} only depending of2 (since the2; only
depend onf2) and#*, such that

(3.35) [u” —mil| 2 < Ci | VR ullp, Vie{l,..,n}
Applying the Cauchy-Schwarz inequality, we have
[u” = mill i < 1QV2Ci VR ullp, Vie{l,..,n}.

Moreover, TheorerB.7 gives the existence @; ;, (¢, j) € B, only depending of2 and§*,
such that

lu” = mi il < Cij VR ullp, V(i,j) € B.
Then, one has, by a triangle inequality
(3.36) €0l [mi — mi | = [lmi —mijllLie,) < (|Qi|1/20i + Cz',j) IV ullp,

for all (i, j) € B. Applying a triangular inequality and using the fact that, = m;,;, we
get from 3.3 that there exists a constafif ; only depending o2 and#* such that

(3.37) Imi —m;| < Cf; ||V3 ullp,

forall (i, j) € B.

Since() in connected, we can always connect dnyj) € {1,...,n}? by a finite set
of couples belonging taB. Applying triangular inequalities and the related inedfies
(3.37), we obtain the existence @f; ;, only depending o2 andé*, such thatm,; — m;| <
K, ;| V7 ul p forall (i, 5) € {1,...,n}2, and therefore, the existence of a constaft only
depending oif2 and#*, such that

1

(3.38) ‘mg(u) — mi’ = 9]

Y 194](my —mi)| < M| V7 ullp.

JE[L,n]
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Then, 8.39, (3.38 and a triangle inequality yield

la” =)l 2@ < la” = mall g, + 1962 mb ) — mi]

(3.39) < (Ci+ 2lu2) |V Pullp.

Summing up the squares of inequaliti®@s39 overi € {1,...,n} yields 3.33. We obtain
(3.39 in a similar way. This completes the proof of Theorar O

COROLLARY 3.10. Let Q be an open bounded polygonal connected subsif pfet
u= (uT,uP) beinR+/" x RX and such that

I K
D Tifuf = |Piluf =0.
i=1 k=1

Letd* be defined through definitich 1. Then, there exists a constant C only dependinon
and#* such that

lullz.p < CIV7ullp.

4. Application. The so-called “div—curl” problem, which consists in findiagveloc-
ity field from the knowledge of its divergence and curl, tdgatwith appropriate boundary
conditions, has important applications in electrostaditd magnetostatics as well as in fluid
dynamics; the discrete duality discretization allows twsthis problem numerically on arbi-
trary 2D meshes; se8][ The next theorem shows the stability of such a numericagdure.

THEOREM 4.1 (Discrete Div-Curl stability ). Let Q) be a two-dimensional polygonal
domain with exterior boundary denoted by and internal connected components denoted
byT,, with ¢ € [1,Q]. There exists a constat depending only o2 and §* defined by
Definition 2.1, such that for any discrete vector fiels;);cp,;) Withv-n = 0 onT and
(v-71,1)r,»n = 0forall ¢ € [1,Q], there holds

4.1) IIvllp < C(IV"F -vlirp + VTP x v||z,p) .

Proof. Let (v;);epn, ) be given withv -n = 0 onTI' and (v - 7,1)p,» = 0 for
all ¢ € [1,Q]. According to Theoren®.6, there existsp = (&7 , ¢} )ic(1,1+7) ke[, K]
P = (W F Viep, 1407 ke, k) @nd(cl, el) g, q) such that2.2) holds, the decomposition
being orthogonal. Then there holds

(4.2) IV[H = (v.VYé)p + (v, V) x 9)p
and
(4.3) IV ollp < lIvllp and [|VE x ¢llp =|IVYY|lp < |[v|lp-

Using the discrete integration by part propertie$)and €.6) in (4.2), we obtain

@4y [|v[|5 ==V v, o) p+ (v, @)+ (VT x v, 0" ) p— (Vo7 9)r



20 A.H. LE AND P. OMNES

In (4.4), both boundary terms vanish. The first becausa = 0 onT". As far as the second
is concerned, fromA.4) and the definition of the boundary scalar prodact) we have

: : gl
(V'Taw)l—‘,h = (V'Tﬂ/’)l“(),h‘f' Z 2 (V'Tal)l—‘q,ha
q€[1,Q]

so that .9 and the fact thatv - 7, 1)r, , = 0 for all ¢ € [1,Q] allow us to conclude that
(v-7,9)p,, = 0. Thus, we have

(4.5) VI3 ==(Vi" v, ") e + (Vi x v, 9" ) p

Using the Cauchy-Schwarz inequality i4.%), and then applying Theore3 for ¢» and
Corollary3.10for ¢, we get @.1) from (4.3). d

Appendix A. Proof of Lemma 3.6. We shall only give the proof of the first inequality
in Lemma3.6, since the proof of the other inequality follows exactly g#ame lines. If the
four points(A, B, C, D) are all different, then we may denote Bythe intersection oAC
andBD, and the angler between the diagonalsC and B D is different from0. This is also
the case of the angles and~; displayed on FigA.1. If w is a triangle, up to a rotation, we
have thatA = B and we sel = A = B. Then, the anglea, 3; and~; are all different
from 0 and evaluating the ter@ in (A.1) reduces to the evaluation &f,, which simplifies
the proof. Let us go back to the general case. We set

YD Trc
(A.1) GZ/ / lu! (zac) —u” (ypp)| do1dys = Hy + Ha + Hz + Hy,
Yy xT

where

- / / T (2ac) — " (ysp)| derdys,
/ / [ul (zxac) — u” (ypp)| dz1dys,

/ / T (@ac) — uT (ypp)| d1dyn,
=/ / [ (xac) —u” (ypp)| dridys.
YyB T

We only estimate the first term in the right-hand side of iredifi (A.1), since the other may
be treated similarly. Forany,c € IC andygp € 1D, letzy, (resp.yp) be the intersection
of DC with the straight line going thougha¢ (resp.ysp) and parallel to the segmeftD]
(resp.[IC]), and letx,, (resp.yp,) be the intersection of D (resp. IC) with the straight
line going throughe;; (resp. zp) and parallel to the segme (resp. ID). Then, we
shall examine two cases, according to where the brokenclige: sz, intersects with the
broken lineyspypyp, at pointN.

Case 1 The broken linec acxprx vy, intersectsDC ata )y, before it intersects the broken
line yspypryp,, (see FigA.1). Then, using the triangle inequality leads to

[ (zac) = u" (yp)| < [u” (zac) — u” (war)| + [u” (221) — u" (N))|

+ [ (N) =" (yp)| + |u” (yp) — ulysp)|-
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/]

B
FIc. A.l.zacxprxy, intersectsDC before it intersecty s pypyp, -

Let the functiony; fromR? x R? to {0, 1} be defined by

XAED =20 i eyl nA; =0

Recalling once again the notatiop= |(V)u”); - Gy, (;yGi,(j |, we have that
J J
(A.2) lu"(za) —u" (V)| < ZX;‘(CCM, N)v; < Z X5 (Tar, Tary) v,
j=1 =1

due to the fact that sinc¥ € [zarxar, ] thenx;(zar, N) < xj(xar, Tar, )-
Similarly, we obtain that

J
(A.3) W (N) —u"(yp)| < x5(wp,yp,) ).
j=1
We also have
J
(A.4) " (wac) — o (2a)| < xj(wac, mar) vj,
j=1
and
J

(A.5) w"(yp) = u" (ynp)| <D X;(yBDsYP) V-
Jj=1

21
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Bz

B
FIG. A.2. z acxprx 0, INtersectsyppypyp, before itintersectdC.

From (A.2)—(A.5), we have

J J

[u" (zac) —u" (ysp)| < ZX;‘(CCAC,CCM) vj + Z X5 (Tar, ar, ) v;
=1 =1
J J

+ > xi(BD,yp) v + > X (We yp) v)-
j=1 j=1

Case 2 The broken linez acxarxar, intersects the broken lings pypyp, at N before
it intersectsDC' (see Fig.A.2). We use the triangle inequality to obtain

(A-6) [ (wac) — u" (ysp)| < [u” (wac) — u (N)| + [u" (N) — u" (y5D)|-

Similarly to Case 1, sinc&’ € [xacx ] andN € [yspyp], there holds

J

(A7) [u" (zac) —u" (N)| < ZX;‘(ZCAC,CCM) v;
Jj=1
J

(A.8) [u"(N) —u"(ypp)| < ZXj(yBDayP) vj.
j=1

Adding (A.7) to (A.8), and combining withA4.6) we have

J J

" (wac) —u" (ysp) <Y xj(@ac, ) vi + > Xi(UBD, YP) V).
Jj=1 Jj=1
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So that in both cases, we always obtain

J J

" (wac) —u" (ysp)l <> xi(wac,enm)v; + Y x5 (@, war,) v
j=1 j=1
J J

+ Z X;j(YBD,YP)vj + Z X;(yp,yp,) vj.
=1 i=1

We thus always have

YD
(A.9) H, = / / luT (zac) —u” (ypp)|derdys < Ly + Lo + L3 + Ly,
YyrI

whereL, Lo, L3, andL, are defined as follows:

Ll / / IAC?'IA{) Ugdilfldy%

YD IC J
Lo = / / X;(@ar, zar, ) vidzidys,
Y1
yp rxc J
L3 = / / ZXj(yBDa yp) vidridys,
Yyr xTr j=1

yp rzc J
Ly= / / ZX;‘ (yp,yp,) vidzidys.
Yyr Ty j=1

Observing thai; (x ac, zar) only depends on variable, we find

2o J

Li < (yp — yz)/ > Xi(@ac, zar) viday
xTr j:l

J we
= (yp —yr) Z/ Xj(rac, za)driv;.
j=17er

Let us take a look at FigA.3 and its associated notations. Simple geometrical arguisment
show that

zc
cosay _ cosailA,;]
/ Xj(Tac,zp)dry =:dy = dycosay = dz3—— < —— .
oy sin o sin o

This results in

J
COS a1
A.10 L; < — Ailv;
( ) 1< (yp —y1) sina J:Zl| J|UJ
Moreover, there holds

zc J

Ly < (yp — yz)/ > xi(@a, war) vidn

I =1

J
J e
(yp — 1) Z/ X (@ar, 2, )derv;.



24 A.H. LE AND P. OMNES

A
X5
D
Y1
i/ B
ds c
(0
(0 d2
IVARNH Xi
aq

FiIG. A.3. How to estimate the terrﬁflc Xj(zac,xa)dy.

le\
2 d
Y.
d5 A d
WA
L O‘dz B1
I al dl XT

FIG. A.4. How to estimate the terrﬁflC Xj(zar, @ gy ot

Let us take a look at FigA.4 and its associated notations. Simple geometrical argusment
show that

zc
cos aq
/ Xj(war, Tar )drr =: dy = dg cosag = d3—;
oy sin «

cos o siny; cosajgsiny; _ cosaq siny |4,

. (o) . . — . .
sin « sin «v sin 31 sin « sin 31

So that there holds

cos 1 sinyp

J
(A.12) Lo W(UD — Y1) ; |4 |v;

IN
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Similarly,
J
COS Qv
(A.12) Ly < ——(xc — ) ; | A; v
(A.13) L, < Sosa2sinb ZJj |A;|v;
T sina sinyg put I

From (A.9)—(A.13), we conclude that there exists a constardepending only on the geom-
etry ofw (since the angles depend only on the geometuy)afuch that

(A.14)

J
H, < Cdiam(w) Z |A;jlv;
j=1

Using similar techniques, we also obtain that

J
(A.15) Hy < Cdiam(Q) | > |A;lv; | |
j=1
J
(A.16) Hy < Cdiam(Q) [ > |Alv; | ,
j=1
J
(A.17) Hy < Cdiam(Q) | > |A;v;
j=1

Combining @A.14)—(A.17) with (A.1), we have

YD el J
/ / " (zxa0) — u" (ypp)| drrdys < Crdiam(Q) [ > |A v |
YB TA j=1

whereC; = 4C, which concludes the proof of Lemn3a6.
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