A. Arneth, P. A. Miller, M. Scholze, T. Hickler, G. Schurgers et al., CO 2 inhibition of global terrestrial isoprene emissions: Potential implications for atmospheric chemistry, Geophys. Res. Lett, pp.10-11029, 2007.

A. Arneth, U. Niinemets, S. Pressley, J. Bäck, P. Hari et al., Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO<sub>2</sub>-isoprene interaction, Atmospheric Chemistry and Physics, vol.7, issue.1, pp.31-5310, 2007.
DOI : 10.5194/acp-7-31-2007

A. Arneth, R. K. Monson, G. Schurgers, U. Niinemets, P. et al., Why are estimates of global isoprene emissions so similar (and why is this not so for monoterpenes)?, Atmospheric Chemistry and Physics Discussions, vol.8, issue.2, pp.4605-462010, 2008.
DOI : 10.5194/acpd-8-7017-2008

URL : https://hal.archives-ouvertes.fr/hal-00304087

A. Arneth, G. Schurgers, T. Hickler, and P. A. Miller, Effects of species composition, land surface cover, CO2 concentration and climate on isoprene emissions from European forests, Plant Biology, vol.104, issue.1, pp.150-162110, 2008.
DOI : 10.1055/s-2007-965247

A. Arneth, S. Sitch, A. Bondeau, K. Butterbach-bahl, P. Foster et al., From biota to chemistry and climate: towards a comprehensive description of trace gas exchange between the biosphere and atmosphere, Biogeosciences, vol.75194, pp.121-14910, 2010.

K. Ashworth, O. Wild, H. , and C. N. , Sensitivity of isoprene emissions estimated using MEGAN to the time resolution of input climate data, Atmospheric Chemistry and Physics, vol.10, issue.3, pp.1193-120110, 1193.
DOI : 10.5194/acp-10-1193-2010-supplement

R. Atkinson, Atmospheric chemistry of VOCs and NOx, Atmospheric Environment, vol.34, issue.12-14, pp.2063-2101, 2000.
DOI : 10.1016/S1352-2310(99)00460-4

A. Arneth, Sensitivity to variability in climate and vegetation Net ecosystem fluxes of isoprene over tropical South America inferred from GOME observations of HCHO columns, J. Geophys. Res, vol.113, pp.10-21029, 2008.

M. P. Barkley, P. I. Palmer, I. De-smedt, T. Karl, A. Guenther et al., Regulated large-scale annual shutdown of Amazonian isoprene emissions?, Geophysical Research Letters, vol.4, issue.18, p.4803, 2009.
DOI : 10.1029/2008GL036843

M. P. Barkley, P. I. Palmer, L. Ganzeveld, A. Arneth, D. Hågberg et al., Can a 'state of the art' chemistry transport model simulate Amazonian tropospehric chemistry, J. Geophys. Res, 2011.

D. J. Beerling and F. I. Woodward, Vegetation and the terrestrial carbon cycle. Modelling the first 400 Million years, 2001.

P. T. Buckley, Isoprene emissions from a Florida scrub oak species grown in ambient and elevated carbon dioxide, Atmospheric Environment, vol.35, issue.3, pp.631-634, 2001.
DOI : 10.1016/S1352-2310(00)00332-0

M. Centritto, P. Nascetti, L. Petrilli, A. Raschi, and F. Loreto, Profiles of isoprene emission and photosynthetic parameters in hybrid poplars exposed to free-air CO2 enrichment+, Plant, Cell and Environment, vol.16, issue.4, pp.403-412, 2004.
DOI : 10.1016/S1369-5266(02)00253-4

M. Claeys, B. Graham, G. Vas, W. Wang, R. Vermeylen et al., Formation of Secondary Organic Aerosols Through Photooxidation of Isoprene, Science, vol.303, issue.5661, pp.1173-1176, 2004.
DOI : 10.1126/science.1092805

D. Gerten, S. Schaphoff, U. Haberlandt, W. Lucht, and S. Sitch, Terrestrial vegetation and water balance???hydrological evaluation of a dynamic global vegetation model, Journal of Hydrology, vol.286, issue.1-4, pp.249-270, 2004.
DOI : 10.1016/j.jhydrol.2003.09.029

A. Guenther, R. K. Monson, and R. Fall, Isoprene and monoterpene emission rate variability: Observations with eucalyptus and emission rate algorithm development, Journal of Geophysical Research, vol.329, issue.D6, pp.10799-10808, 1991.
DOI : 10.1029/91JD00960

A. Guenther, C. N. Hewitt, D. Erickson, R. Fall, C. Geron et al., A global model of natural volatile organic compound emissions, Journal of Geophysical Research, vol.93, issue.3, pp.8873-8892, 1995.
DOI : 10.1029/94JD02950

A. Guenther, T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer et al., Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys, vol.65194, issue.6, pp.3181-321010, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00295995

M. Hansen, R. S. Defries, J. R. Townshend, M. Carroll, C. Dimiceli et al., Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm, Earth Interactions, vol.7, issue.10, pp.1-15, 2003.
DOI : 10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2

D. A. Hauglustaine, J. Lathiere, S. Szopa, and G. A. Folberth, Future tropospheric ozone simulated with a climatechemistry-biosphere model, Geophys. Res. Lett, pp.10-1029, 2005.

C. L. Heald, M. J. Wilkinson, R. K. Monson, C. A. Alo, G. L. Wang et al., changes and implications for global budgets, Global Change Biology, vol.34, issue.5, pp.1127-1140, 2009.
DOI : 10.1111/j.1365-2486.2008.01802.x

T. Hickler, . Smith, I. C. Prentice, K. Mjöfors, P. Miller et al., CO 2 fertilization in temperate FACE experiments not representative of boreal and tropical forests, Global Change Biol, vol.14, pp.1-12, 2008.

A. R. Huete, K. Didan, Y. E. Shimabukuro, P. Ratana, S. R. Saleska et al., Amazon rainforests green-up with sunlight in dry season, Geophysical Research Letters, vol.94, issue.D20, pp.640510-1029, 2006.
DOI : 10.1029/2005GL025583

T. Karl, M. Potosnak, A. Guenther, D. Clark, J. Walker et al., Exchange processes of volatile organic compounds above a tropical rain forest: Implications for modeling tropospheric chemistry above dense vegetation, Journal of Geophysical Research, vol.93, issue.D8, pp.1830610-11029, 2004.
DOI : 10.1029/2004JD004738

T. G. Karl, T. J. Christian, R. J. Yokelson, P. Artaxo, W. M. Hao et al., The tropical forest and fire emissions experiment: method evaluation of volatile organic compound emissions measured by PTR-MS, FTIR, and GC from tropical biomass burning, Atmos. Chem. Phys, vol.75194, pp.5883-589710, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00296386

A. Kiendler-scharr, J. Wildt, M. D. Maso, T. Hohaus, E. Kleist et al., New particle formation in forests inhibited by isoprene emissions, Nature, vol.45, issue.7262, pp.381-384, 2009.
DOI : 10.1038/nature08292

R. Kistler, E. Kalnay, W. Collins, S. Saha, G. White et al., The NCEP???NCAR 50???Year Reanalysis: Monthly Means CD???ROM and Documentation, Bulletin of the American Meteorological Society, vol.82, issue.2, pp.247-267, 2001.
DOI : 10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2

C. Körner, responses: an issue of definition, time and resource supply, New Phytologist, vol.67, issue.3, pp.393-411, 2006.
DOI : 10.1111/j.1365-2486.2005.01086.x

U. Kuhn, S. Rottenberger, T. Biesenthal, A. Wolf, G. Schebeske et al., Strong correlation between isoprene emission and gross photosynthetic capacity during leaf phenology of the tropical tree species Hymenaea courbaril with fundamental changes in volatile organic compounds emission composition during early leaf development Impact of climate variability and land use changes on global biogenic volatile organic compound emissions, Sensitivity of isoprene emissions from the terrestrial biosphere to 20th century changes in atmospheric CO 2 concentration, climate , and land use, pp.1469-1485, 1029.

D. Taraborrelli, W. , and J. , Atmospheric oxidation capacity sustained by a tropical forest, Nature, vol.452, pp.737-740, 2008.

S. Levis, C. Wiedinmyer, G. B. Bonan, and A. Guenther, Simulating biogenic volatile organic compound emissions in the Community Climate System Model, Journal of Geophysical Research: Atmospheres, vol.34, issue.4, pp.10-1029, 2003.
DOI : 10.1029/2000GB001360

D. W. Li, Y. Chen, Y. Shi, X. Y. He, C. et al., Impact of Elevated CO2 and O3 Concentrations on Biogenic Volatile Organic Compounds Emissions from Ginkgo biloba, Bulletin of Environmental Contamination and Toxicology, vol.39, issue.4, pp.473-47710, 2009.
DOI : 10.1007/s00128-008-9590-7

H. K. Lichtenthaler, THE 1-DEOXY-D-XYLULOSE-5-PHOSPHATE PATHWAY OF ISOPRENOID BIOSYNTHESIS IN PLANTS, Annual Review of Plant Physiology and Plant Molecular Biology, vol.50, issue.1, pp.47-65, 1999.
DOI : 10.1146/annurev.arplant.50.1.47

W. Lucht, I. C. Prentice, R. B. Myneni, S. Sitch, P. Friedlingstein et al., Climatic Control of the High-Latitude Vegetation Greening Trend and Pinatubo Effect, Science, vol.296, issue.5573, pp.1687-1689, 2002.
DOI : 10.1126/science.1071828

T. D. Mitchell and P. D. Jones, An improved method of constructing a database of monthly climate observations and associated high-resolution grids, International Journal of Climatology, vol.78, issue.6, pp.693-712, 2005.
DOI : 10.1002/joc.1181

R. K. Monson and R. Fall, Isoprene Emission from Aspen Leaves : Influence of Environment and Relation to Photosynthesis and Photorespiration, PLANT PHYSIOLOGY, vol.90, issue.1, pp.267-274, 1989.
DOI : 10.1104/pp.90.1.267

R. K. Monson, N. Trahan, T. N. Rosenstiel, P. Veres, D. Moore et al., Isoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.30, issue.6920, pp.1677-1695, 2007.
DOI : 10.1038/nature01312

P. Morales, M. T. Sykes, I. C. Prentice, P. Smith, . Smith et al., Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes, Global Change Biology, vol.21, issue.12, pp.2211-2233, 2005.
DOI : 10.1029/2001JD000624

J. F. Muller, T. Stavrakou, S. Wallens, I. De-smedt, M. Van-roozendael et al., Global isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environment model, Atmos. Chem. Phys, vol.85194, pp.1329-134110, 1329.
URL : https://hal.archives-ouvertes.fr/hal-00296477

V. Naik, C. Delire, and D. J. Wuebbles, Sensitivity of global biogenic isoprenoid emissions to climate variability and atmospheric CO 2, J. Geophys. Res, pp.10-01029, 2004.

U. Niinemets, J. D. Tenhunen, P. C. Harley, R. Steinbrecher, ¨. U. Niinemets et al., A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses The emission factor of volatile isoprenoids: caveats, model algorithms , response shapes and scaling, Plant, Cell, Environ. Biogeosciences Biogeosciences, vol.225194, issue.7, pp.1319-1335, 1809.

F. Pacifico, S. P. Harrison, C. D. Jones, A. Arneth, S. Sitch et al., Evaluation of a photosynthesis-based biogenic isoprene emission scheme in JULES and simulation of isoprene emissions under modern climate conditions, Atmospheric Chemistry and Physics Discussions, vol.10, issue.11, pp.4371-438910, 2011.
DOI : 10.5194/acpd-10-28311-2010

P. I. Palmer, D. S. Abbot, T. M. Fu, D. J. Jacob, K. Chance et al., Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column, Journal of Geophysical Research, vol.5, issue.D12, p.10, 2006.
DOI : 10.1029/2005JD006689

G. G. Pfister, L. K. Emmons, P. G. Hess, J. F. Lamarque, J. J. Orland-o et al., Contribution of isoprene to chemical budgets: A model tracer study with the NCAR CTM MOZART-4, Journal of Geophysical Research: Atmospheres, vol.112, issue.2, p.5308, 2008.
DOI : 10.1029/2007JD008948

N. Poisson, M. Kanakidou, C. , and P. J. , Impact of non-methane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3- dimensional modelling results, Journal of Atmospheric Chemistry, vol.36, issue.2, pp.157-20310, 2000.
DOI : 10.1023/A:1006300616544

M. Possell, N. C. Hewitt, and D. J. Beerling, The effects of glacial atmospheric CO2 concentrations and climate on isoprene emissions by vascular plants, Global Change Biology, vol.153, issue.1, pp.60-69, 2005.
DOI : 10.1007/s004420051019

M. Possell and C. N. Hewitt, Isoprene emissions from plants are mediated by atmospheric CO 2 concentrations, Global Change Biol, 2010.

M. Prather, D. Ehhalt, F. J. Dentener, R. Derwent, E. J. Dlugokencky et al., Atmospheric chemistry and greenhouse gases, in: Climate Change 2001. The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, pp.238-287, 2001.

S. Pressley, B. Lamb, H. Westberg, J. Flaherty, J. Chen et al., Long-term isoprene flux measurements above a northern hardwood forest, Journal of Geophysical Research, vol.113, issue.D14, 2005.
DOI : 10.1029/2004JD005523

T. N. Rosenstiel, M. J. Potosnak, K. L. Griffin, R. Fall, and R. K. Monson, Increased CO 2 uncouples growth from isoprene emission in an agriforest ecosystem, Nature Atmos. Chem. Phys, vol.4218037, issue.11, pp.8037-8052, 2011.

A. Arneth, Sensitivity to variability in climate and vegetation 259, pp.210-1038, 2003.

T. N. Rosenstiel, A. L. Ebbets, W. C. Khatri, R. Fall, and R. K. Monson, Induction of Poplar leaf nitrate reductase: A test of extrachloroplastic control of isoprene emission rate, Plant Biol, vol.6, pp.12-21, 2004.

M. G. Sanderson, C. D. Jones, W. J. Collins, C. E. Johnson, and R. G. Derwent, Effect of Climate Change on Isoprene Emissions and Surface Ozone Levels, Geophysical Research Letters, vol.34, issue.19, 1029.
DOI : 10.1029/2002GL015269

S. Schaphoff, W. Lucht, D. Gerten, S. Sitch, W. Cramer et al., Terrestrial biosphere carbon storage under alternative climate projections, Climatic Change, vol.106, issue.(D19), pp.97-122, 2006.
DOI : 10.1007/s10584-005-9002-5

P. A. Scholefield, K. J. Doick, B. M. Herbert, C. N. Hewitt, J. P. Schnitzler et al., Impact of rising CO2 on emissions of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring+, Plant, Cell and Environment, vol.25, issue.4, pp.393-401, 2004.
DOI : 10.1016/S0168-9452(99)00197-1

G. Schurgers, T. Hickler, P. A. Miller, and A. Arneth, European emissions of isoprene and monoterpenes from the Last Glacial Maximum to present, Biogeosciences, vol.65194, pp.2779-279710, 2009.

G. Schurgers, A. Arneth, and T. Hickler, The effect of species composition on plant functional type emission capacities of biogenic compounds, J. Geophys. Res, 2011.

T. D. Sharkey, F. Loreto, and C. F. Delwiche, High carbon dioxide and sun/shade effects on isoprene emission from oak and aspen tree leaves, Plant, Cell and Environment, vol.5, issue.3, pp.333-338, 1991.
DOI : 10.1016/0926-6585(65)90170-6

C. Shim, Y. H. Wang, Y. Choi, P. I. Palmer, D. S. Abbot et al., Constraining global isoprene emissions with Global Ozone Monitoring Experiment (GOME) formaldehyde column measurements, Journal of Geophysical Research, vol.103, issue.D21, pp.10-1029, 2005.
DOI : 10.1029/2004JD005629

S. Sitch, . Smith, I. C. Prentice, A. Arneth, A. Bondeau et al., Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Global Change Biology, vol.87802, issue.5, pp.161-185, 2003.
DOI : 10.1046/j.1466-822x.2001.00175.x

B. Smith, I. C. Prentice, and M. T. Sykes, Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space, Global Ecology & Biogeography, vol.10, issue.6, pp.621-637, 2001.
DOI : 10.1046/j.1466-822X.2001.00256.x

A. Staniforth, A. White, N. Wood, J. Thuburn, M. Zerroukat et al., 1: Model Formulation, Joy of U.M, vol.6, 2005.

T. Stavrakou, J. F. Müller, I. De-smedt, M. Van-roozendael, G. R. Van-der-werf et al., Global emissions of non-methane hydrocarbons deduced from SCIAMACHY formaldehyde columns through, Atmos . Chem. Phys, vol.95194, pp.3663-367910, 2003.

T. Stavrakou, J. Peeters, and J. F. Müller, Improved global modelling of HOx recycling in isoprene oxidation: evaluation against the GABRIEL and INTEX-A aircraft campaign measurements, Atmos. Chem. Phys, vol.105194, pp.9863-987810, 2010.

D. S. Stevenson, F. J. Dentener, M. G. Schultz, K. Ellingsen, T. P. Van-noije et al., Multimodel ensemble simulations of present-day and near-future tropospheric ozone, Journal of Geophysical Research, vol.33, issue.7, p.8301, 2006.
DOI : 10.1029/2005JD006338

P. J. Telford, J. Lathì-ere, N. L. Abraham, A. T. Archibald, P. Braesicke et al., Effects of climate-induced changes in isoprene emissions after the eruption of Mount Pinatubo, Atmos. Chem. Phys, vol.105194, pp.7117-712510, 2010.

A. E. Wiberley, A. R. Linskey, T. G. Falbel, and T. D. Sharkey, Development of the capacity for isoprene emission in kudzu, Plant, Cell and Environment, vol.112, issue.7, pp.898-905, 2005.
DOI : 10.1046/j.0016-8025.2003.01059.x

M. Wilkinson, R. K. Monson, N. Trahan, S. Lee, E. Brown et al., concentration, Global Change Biology, vol.30, issue.5, pp.1189-1200, 2009.
DOI : 10.1111/j.1365-2486.2008.01803.x

F. I. Woodward, T. M. Smith, E. , and W. R. , A global land primary productivity and phytogeography model, Global Biogeochemical Cycles, vol.44, issue.special issue 1, pp.471-49010, 1995.
DOI : 10.1029/95GB02432

P. J. Young, A. Arneth, G. Schurgers, G. Zeng, and J. Pyle, The CO 2 inhibition of terrestrial isoprene emission significantly affects future ozone projections, Atmos. Chem. Phys, vol.95194, pp.2793-280310, 2009.

P. Zhang, B. And-erson, M. Barlow, B. Tan, and R. Myneni, Climate related vegetation characteristics derived from MODIS LAI and NDVI, J. Geophys. Res, pp.10-21029, 2004.