D. Elliot and M. Ladomery, Molecular Biology of RNA, 2011.

R. C. Friedman, K. K. Farh, C. B. Burge, and D. P. Bartel, Most mammalian mRNAs are conserved targets of microRNAs, Genome Research, vol.19, issue.1, pp.92-105, 2009.
DOI : 10.1101/gr.082701.108

I. Tinoco, . Jr, and C. Bustamante, How RNA folds, Journal of Molecular Biology, vol.293, issue.2, pp.271-281, 1999.
DOI : 10.1006/jmbi.1999.3001

M. H. Bailor, X. Sun, and H. M. Hashimi, Topology Links RNA Secondary Structure with Global Conformation, Dynamics, and Adaptation, Science, vol.327, issue.5962, pp.202-206, 2010.
DOI : 10.1126/science.1181085

R. Nussinov, G. Pieczenik, J. R. Griggs, and D. J. Kleitman, Algorithms for Loop Matchings, SIAM Journal on Applied Mathematics, vol.35, issue.1, pp.68-82, 1978.
DOI : 10.1137/0135006

M. Zuker and P. Stiegler, Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information, Nucleic Acids Research, vol.9, issue.1, pp.133-148, 1981.
DOI : 10.1093/nar/9.1.133

J. S. Mccaskill, The equilibrium partition function and base pair binding probabilities for RNA secondary structure, Biopolymers, vol.24, issue.6-7, pp.1105-1119, 1990.
DOI : 10.1002/bip.360290621

R. B. Lyngso and C. N. Pedersen, RNA Pseudoknot Prediction in Energy-Based Models, Journal of Computational Biology, vol.7, issue.3-4, pp.409-427, 2000.
DOI : 10.1089/106652700750050862

M. Y. Kuo, L. Sharmeen, G. Dinter-gottlieb, and J. Taylor, Characterization of self-cleaving RNA sequences on the genome Figure 3. Naive stericity tests used in this work for H-pseudoknots, 1988.

E. B. Dam, C. W. Pleij, and L. Bosch, RNA pseudoknots: Translational frameshifting and readthrough on viral RNAs, Virus genes, vol.4, pp.121-136, 1990.

J. Ruan, G. D. Stormo, and W. Zhang, An Iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots, Bioinformatics, vol.20, issue.1, pp.58-66, 2004.
DOI : 10.1093/bioinformatics/btg373

D. Metzler and M. E. Nebel, Predicting RNA secondary structures with pseudoknots by MCMC sampling, Journal of Mathematical Biology, vol.9, issue.1, pp.161-181, 2008.
DOI : 10.1007/s00285-007-0106-6

J. Ren, B. Rastegari, A. Condon, and H. H. Hoos, HotKnots: Heuristic prediction of RNA secondary structures including pseudoknots, RNA, vol.11, issue.10, pp.1494-1504, 2005.
DOI : 10.1261/rna.7284905

S. Bellaousov and D. H. Mathews, ProbKnot: Fast prediction of RNA secondary structure including pseudoknots, RNA, vol.16, issue.10, p.1870, 2010.
DOI : 10.1261/rna.2125310

J. Reeder and R. Giegerich, Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics, BMC Bioinformatics, vol.5, issue.1, p.104, 2004.
DOI : 10.1186/1471-2105-5-104

R. M. Dirks and N. A. Pierce, A partition function algorithm for nucleic acid secondary structure including pseudoknots, Journal of Computational Chemistry, vol.350, issue.13, pp.1664-1677, 2003.
DOI : 10.1002/jcc.10296

E. Rivas and S. R. Eddy, A dynamic programming algorithm for RNA structure prediction including pseudoknots11Edited by I. Tinoco, Journal of Molecular Biology, vol.285, issue.5, pp.2053-2068, 1999.
DOI : 10.1006/jmbi.1998.2436

J. Zhao, R. L. Malmberg, and L. Cai, Rapid ab initio prediction of RNA pseudoknots via graph tree decomposition, Journal of Mathematical Biology, vol.9, issue.1, pp.145-159, 2008.
DOI : 10.1007/s00285-007-0124-4

H. Orland and A. Zee, RNA folding and large N matrix theory, Nuclear Physics B, vol.620, issue.3, pp.456-476, 2002.
DOI : 10.1016/S0550-3213(01)00522-3

URL : http://doi.org/10.1016/s0550-3213(01)00522-3

M. Bon, G. Vernizzi, H. Orland, and A. Zee, Topological Classification of RNA Structures, Journal of Molecular Biology, vol.379, issue.4, pp.900-911, 2008.
DOI : 10.1016/j.jmb.2008.04.033

G. Vernizzi, H. Orland, and A. Zee, Enumeration of RNA Structures by Matrix Models, Physical Review Letters, vol.94, issue.16, 2005.
DOI : 10.1103/PhysRevLett.94.168103

URL : https://hal.archives-ouvertes.fr/hal-00020092

M. Pillsbury, H. Orland, and A. Zee, Steepest descent calculation of RNA pseudoknots, Physical Review E, vol.72, issue.1, pp.72-011911, 2005.
DOI : 10.1103/PhysRevE.72.011911

D. H. Mathews, J. Sabina, M. Zuker, and D. H. Turner, Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure, Journal of Molecular Biology, vol.288, issue.5, pp.911-940, 1999.
DOI : 10.1006/jmbi.1999.2700

G. Hooft, A planar diagram theory for strong interactions, Nuclear Physics B, vol.72, issue.3, pp.461-473, 1974.
DOI : 10.1016/0550-3213(74)90154-0

M. Zuker, Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Research, vol.31, issue.13, pp.31-3406, 2003.
DOI : 10.1093/nar/gkg595

URL : http://doi.org/10.1093/nar/gkg595

E. Rivas and S. R. Eddy, A dynamic programming algorithm for RNA structure prediction including pseudoknots11Edited by I. Tinoco, Journal of Molecular Biology, vol.285, issue.5, pp.2053-2068, 1999.
DOI : 10.1006/jmbi.1998.2436

K. J. Doshi, J. J. Cannone, C. W. Cobaugh, and R. R. Gutell, Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction, BMC Bioinformatics, vol.5, issue.1, p.105, 2004.
DOI : 10.1186/1471-2105-5-105

L. X. Shen and I. Tinoco, The Structure of an RNA Pseudoknot that Causes Efficient Frameshifting in Mouse Mammary Tumor Virus, Journal of Molecular Biology, vol.247, issue.5, pp.963-978, 1995.
DOI : 10.1006/jmbi.1995.0193