S. K. Solanki, A. Lagg, J. Woch, N. Krupp, and M. Collados, Three-dimensional magnetic field topology in a region of solar coronal heating, Nature, vol.425, issue.6959, p.692, 2003.
DOI : 10.1038/nature02035

L. Hu, J. Zou, X. Fu, Y. H. Yang, X. D. Ruan et al., A reconstruction approach to determining the magnetic field around an electromagnetic velocity probe, Measurement Science and Technology, vol.20, issue.1, p.15103, 2009.
DOI : 10.1088/0957-0233/20/1/015103

L. Marié, N. C. Daviaud, and F. , Galerkin analysis of kinematic dynamos in the von Kármán geometry Phys, p.17102, 2006.

C. Normand, Modal versus energy stability analysis of kinematic dynamos in cylindrical configurations, Physics of Fluids, vol.20, issue.8, p.84105, 2008.
DOI : 10.1063/1.2972889

P. Hansen, REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems, Numerical Algorithms, vol.55, issue.Suppl., pp.1-35, 1994.
DOI : 10.1007/BF02149761

L. Marié, Transport de moment cinétique et de champ magnétique par un écoulement tourbillonnaire turbulent: influence de la rotation, 2003.

N. Leprovost, Influence des petites échelles sur la dynamique a grande échelle en turbulence hydro et magnétohydrodynamique, 2004.

M. Bourgoin, Magnetohydrodynamics measurements in the von Karman sodium experiment Phys, p.3046, 2002.

A. Gailitis, Detection of a Flow Induced Magnetic Field Eigenmode in the Riga Dynamo Facility, Physical Review Letters, vol.84, issue.19, p.4365, 2000.
DOI : 10.1103/PhysRevLett.84.4365

R. Stieglitz and U. Müller, Experimental demonstration of a homogeneous two-scale dynamo, Physics of Fluids, vol.13, issue.3, p.561, 2001.
DOI : 10.1063/1.1331315

R. Monchaux, Generation of a Magnetic Field by Dynamo Action in a Turbulent Flow of Liquid Sodium, Physical Review Letters, vol.98, issue.4, p.44502, 2007.
DOI : 10.1103/PhysRevLett.98.044502

URL : https://hal.archives-ouvertes.fr/hal-00492342

R. Monchaux, The von K??rm??n Sodium experiment: Turbulent dynamical dynamos, Physics of Fluids, vol.21, issue.3, p.35108, 2009.
DOI : 10.1063/1.3085724

L. Marié, J. Burgete, F. Daviaud, and J. Léorat, Numerical study of homogeneous dynamo based on experimental von K???rm???n type flows, The European Physical Journal B - Condensed Matter, vol.33, issue.4, p.469, 2003.
DOI : 10.1140/epjb/e2003-00187-2

F. Ravelet, A. Chiffaudel, F. Daviaud, and J. Léorat, Toward an experimental von K??rm??n dynamo: Numerical studies for an optimized design, Physics of Fluids, vol.17, issue.11, p.117104, 2005.
DOI : 10.1063/1.2130745

F. Ravelet, A. Chiffaudel, F. Daviaud, and J. Léorat, Towards a von Kármán dynamo: numerical studies based on experimental flows Phys, p.117104, 2005.

F. Pétrélis, M. Bourgoin, L. Marié, J. Burguete, A. Chiffaudel et al., Nonlinear Magnetic Induction by Helical Motion in a Liquid Sodium Turbulent Flow, Physical Review Letters, vol.90, issue.17, p.174501, 2003.
DOI : 10.1103/PhysRevLett.90.174501

M. Berhanu, Dynamo regimes and transitions in the VKS experiment, The European Physical Journal B, vol.170, issue.4, p.459, 2010.
DOI : 10.1140/epjb/e2010-00272-5

URL : https://hal.archives-ouvertes.fr/hal-00941490

S. Fauve and F. Pétrélis, Chaotic dynamics of the magnetic field generated by dynamo action in a turbulent flow, J. Phys.: Condens. Matter, vol.20, p.494203, 2008.

A. Naso, R. Monchaux, P. H. Chavanis, and B. Dubrulle, Statistical mechanics of Beltrami flows in axisymmetric geometry: theory revisited Phys. Rev, p.66318, 2010.

P. Cortet, P. Diribarne, R. Monchaux, A. Chiffaudel, F. Daviaud et al., Normalized kinetic energy as a hydrodynamical global quantity for inhomogeneous anisotropic turbulence, Physics of Fluids, vol.21, issue.2, p.25104, 2009.
DOI : 10.1063/1.3073745

URL : https://hal.archives-ouvertes.fr/cea-01378758

A. Iskakov, S. Descombes, and E. Dormy, On magnetic boundary conditions for non-spectral dynamo simulations Geophys. Astrophys. Fluid Dyn, p.481, 2005.

J. Guermond, R. Laguerre, J. Léorat, and C. Nore, An interior penalty Galerkin method for the MHD equations in heterogeneous domains, Journal of Computational Physics, vol.221, issue.1, p.349, 2007.
DOI : 10.1016/j.jcp.2006.06.045

F. Stefani, M. Xu, G. Gerbeth, F. Ravelet, A. Chiffaudel et al., Ambivalent effects of added layers on steady kinematic dynamos in cylindrical geometry: application to the VKS experiment, European Journal of Mechanics - B/Fluids, vol.25, issue.6, p.894, 2006.
DOI : 10.1016/j.euromechflu.2006.02.002

URL : https://hal.archives-ouvertes.fr/hal-00180228

R. Laguerre, C. Nore, A. Ribeiro, J. Léorat, J. Guermond et al., Impact of Impellers on the Axisymmetric Magnetic Mode in the VKS2 Dynamo Experiment, Physical Review Letters, vol.101, issue.10, p.104501, 2008.
DOI : 10.1103/PhysRevLett.101.104501

URL : https://hal.archives-ouvertes.fr/hal-00381958

F. Pétrélis, N. Mordant, and S. Fauve, On the magnetic fields generated by experimental dynamos Geophys. Astrophys. Fluid Dyn, p.289, 2007.

A. Giesecke, F. Stefani, and G. Gerbeth, Role of Soft-Iron Impellers on the Mode Selection in the von K??rm??n???Sodium Dynamo Experiment, Physical Review Letters, vol.104, issue.4, p.44503, 2010.
DOI : 10.1103/PhysRevLett.104.044503

C. Gissinger, A numerical model of the VKS experiment Eur, Phys. Lett, vol.87, p.39002, 2009.