J. Gerton, J. Derisi, R. Shroff, M. Lichten, and P. Brown, Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae, Proceedings of the National Academy of Sciences, vol.97, issue.21, pp.11383-11390, 2000.
DOI : 10.1073/pnas.97.21.11383

G. Marais, D. Mouchiroud, and L. Duret, Does recombination improve selection on codon usage? Lessons from nematode and fly complete genomes, Proceedings of the National Academy of Sciences, vol.98, issue.10, pp.5688-5692, 2001.
DOI : 10.1073/pnas.091427698

URL : https://hal.archives-ouvertes.fr/hal-00427184

J. Birdsell, Integrating Genomics, Bioinformatics, and Classical Genetics to Study the Effects of Recombination on Genome Evolution, Molecular Biology and Evolution, vol.19, issue.7, pp.1181-1197, 2002.
DOI : 10.1093/oxfordjournals.molbev.a004176

A. Kong, D. Gudbjartsson, J. Sainz, G. Jonsdottir, and S. Gudjonsson, A high-resolution recombination map of the human genome, Nature Genetics, vol.31, pp.241-247, 2002.
DOI : 10.1038/ng917

J. Meunier and L. Duret, Recombination Drives the Evolution of GC-Content in the Human Genome, Molecular Biology and Evolution, vol.21, issue.6, pp.984-990, 2004.
DOI : 10.1093/molbev/msh070

URL : https://hal.archives-ouvertes.fr/hal-00427624

L. Duret and N. Galtier, Biased Gene Conversion and the Evolution of Mammalian Genomic Landscapes, Annual Review of Genomics and Human Genetics, vol.10, issue.1, pp.285-311, 2009.
DOI : 10.1146/annurev-genom-082908-150001

URL : https://hal.archives-ouvertes.fr/hal-00428399

F. Paques and J. Haber, Multiple pathways of recombination induced by doublestrand breaks in Saccharomyces cerevisiae, Microbiol Mol Biol Rev, vol.63, pp.349-404, 1999.

G. Mazon, E. Mimitou, and L. Symington, SnapShot: Homologous Recombination in DNA Double-Strand Break Repair, Cell, vol.142, issue.4, pp.646-646, 2010.
DOI : 10.1016/j.cell.2010.08.006

E. Mancera, R. Bourgon, A. Brozzi, W. Huber, and L. Steinmetz, High-resolution mapping of meiotic crossovers and non-crossovers in yeast, Nature, vol.5, issue.7203, pp.479-485, 2008.
DOI : 10.1038/nature07135

A. Hilliker, G. Harauz, A. Reaume, M. Gray, and S. Clark, Meiotic gene conversion tract length distribution within the rosy locus of Drosophila melanogaster, Genetics, vol.137, pp.1019-1026, 1994.

B. De-massy, Distribution of meiotic recombination sites, Trends in Genetics, vol.19, issue.9, pp.514-522, 2003.
DOI : 10.1016/S0168-9525(03)00201-4

F. Baudat and N. A. , Clustering of meiotic double-strand breaks on yeast chromosome III, Proceedings of the National Academy of Sciences, vol.94, issue.10, pp.5213-5218, 1997.
DOI : 10.1073/pnas.94.10.5213

T. Petes, Meiotic recombination hot spots and cold spots, Nature Reviews Genetics, vol.97, issue.5, pp.360-369, 2001.
DOI : 10.1038/35072078

H. Blitzblau, G. Bell, J. Rodriguez, S. Bell, and A. Hochwagen, Mapping of Meiotic Single-Stranded DNA Reveals Double-Strand-Break Hotspots near Centromeres and Telomeres, Current Biology, vol.17, issue.23, pp.2003-2012, 2007.
DOI : 10.1016/j.cub.2007.10.066

C. Buhler, V. Borde, and M. Lichten, Mapping Meiotic Single-Strand DNA Reveals a New Landscape of DNA Double-Strand Breaks in Saccharomyces cerevisiae, PLoS Biology, vol.2, issue.12, p.324, 2007.
DOI : 10.1371/journal.pbio.0050324.st007

G. Butler, M. Rasmussen, M. Lin, M. Santos, and S. Sakthikumar, Evolution of pathogenicity and sexual reproduction in eight Candida genomes, Nature, vol.440, issue.7247, pp.657-662, 2009.
DOI : 10.1038/nature08064

J. Reedy, A. Floyd, and J. Heitman, Mechanistic Plasticity of Sexual Reproduction and Meiosis in the Candida Pathogenic Species Complex, Current Biology, vol.19, issue.11, pp.891-899, 2009.
DOI : 10.1016/j.cub.2009.04.058

A. Forche, K. Alby, D. Schaefer, A. Johnson, and J. Berman, The Parasexual Cycle in Candida albicans Provides an Alternative Pathway to Meiosis for the Formation of Recombinant Strains, PLoS Biology, vol.169, issue.5, p.110, 2008.
DOI : 10.1371/journal.pbio.0060110.st006

F. Odds, M. Bougnoux, D. Shaw, J. Bain, and A. Davidson, Molecular Phylogenetics of Candida albicans, Eukaryotic Cell, vol.6, issue.6, pp.1041-1052, 2007.
DOI : 10.1128/EC.00041-07

L. Duret and P. Arndt, The Impact of Recombination on Nucleotide Substitutions in the Human Genome, PLoS Genetics, vol.101, issue.5, p.1000071, 2008.
DOI : 10.1371/journal.pgen.1000071.s007

URL : https://hal.archives-ouvertes.fr/hal-00428172

M. Webster, E. Axelsson, and H. Ellegren, Strong Regional Biases in Nucleotide Substitution in the Chicken Genome, Molecular Biology and Evolution, vol.23, issue.6, pp.1203-1216, 2006.
DOI : 10.1093/molbev/msk008

M. Groenen, P. Wahlberg, M. Foglio, H. Cheng, and H. Megens, A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate, Genome Research, vol.19, issue.3, pp.510-519, 2009.
DOI : 10.1101/gr.086538.108

S. Myers, L. Bottolo, C. Freeman, G. Mcvean, and P. Donnelly, A Fine-Scale Map of Recombination Rates and Hotspots Across the Human Genome, Science, vol.310, issue.5746, pp.321-324, 2005.
DOI : 10.1126/science.1117196

Z. Wu, I. Getun, and P. Bois, Anatomy of mouse recombination hot spots, Nucleic Acids Research, vol.38, issue.7, pp.2346-2354, 2010.
DOI : 10.1093/nar/gkp1251

M. Gardiner-garden and M. Frommer, CpG Islands in vertebrate genomes, Journal of Molecular Biology, vol.196, issue.2, pp.261-282, 1987.
DOI : 10.1016/0022-2836(87)90689-9

M. Marsolier-kergoat and E. Yeramian, GC Content and Recombination: Reassessing the Causal Effects for the Saccharomyces cerevisiae Genome, Genetics, vol.183, issue.1, pp.31-38, 2009.
DOI : 10.1534/genetics.109.105049

URL : https://hal.archives-ouvertes.fr/pasteur-00408708

M. Noor, Mutagenesis from Meiotic Recombination Is Not a Primary Driver of Sequence Divergence between Saccharomyces Species, Molecular Biology and Evolution, vol.25, issue.11, pp.2439-2444, 2008.
DOI : 10.1093/molbev/msn186

I. Tsai, A. Burt, and V. Koufopanou, Conservation of recombination hotspots in yeast, Proceedings of the National Academy of Sciences, vol.107, issue.17, pp.7847-7852, 2010.
DOI : 10.1073/pnas.0908774107

F. Baudat, J. Buard, C. Grey, A. Fledel-alon, and C. Ober, PRDM9 Is a Major Determinant of Meiotic Recombination Hotspots in Humans and Mice, Science, vol.327, issue.5967, pp.836-840, 2010.
DOI : 10.1126/science.1183439

URL : https://hal.archives-ouvertes.fr/hal-00459048

S. Myers, R. Bowden, A. Tumian, R. Bontrop, and C. Freeman, Drive Against Hotspot Motifs in Primates Implicates the PRDM9 Gene in Meiotic Recombination, Science, vol.327, issue.5967, pp.876-879, 2010.
DOI : 10.1126/science.1182363

V. Borde, N. Robine, W. Lin, S. Bonfils, and V. Geli, Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites, The EMBO Journal, vol.33, issue.2, pp.99-111, 2009.
DOI : 10.1038/emboj.2008.257

M. Kellis, N. Patterson, M. Endrizzi, B. Birren, and E. Lander, Sequencing and comparison of yeast species to identify genes and regulatory elements, Nature, vol.113, issue.6937, pp.241-254, 2003.
DOI : 10.1128/MCB.20.15.5766-5776.2000

N. Sueoka, ON THE GENETIC BASIS OF VARIATION AND HETEROGENEITY OF DNA BASE COMPOSITION, Proceedings of the National Academy of Sciences, vol.48, issue.4, pp.582-592, 1962.
DOI : 10.1073/pnas.48.4.582

R. Development and C. Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2009.