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ABSTRACT

Inter-subject analysis of functional Magnetic Resonance

Imaging (fMRI) data relies on single intra-subject studies,

which are usually conducted using a massively univari-

ate approach. In this paper, we investigate the impact of

an improved intra-subject analysis on group studies. basi-

cally the joint detection-estimation (JDE) framework [1–3]

where an explicit characterization of the Hemodynamic Re-

sponse Function (HRF) is performed at a regional scale and

a stimulus-specific adaptive spatial correlation model en-

ables the detection of activation clusters at voxel level. For

the group statistics, we conducted several Random effect

analyses (RFX) which relied either on the General Linear

Model (GLM), or on the JDE analyses, or even on an inter-

mediate approach named Spatially Adaptive GLM (SAGLM).

Our comparative study perfomed during a fast-event related

paradigm involves 18 subjects and illustrates the region-

specific differences between the GLM, SAGLM and JDE

analyses in terms of statistical sensitivity. On different con-

trasts of interest, spatial regularization is shown to have a

beneficial impact on the statistical sensitivity. Also, by study-

ing the spatial variability of the HRF, we demonstrate that

the JDE framework provides more robust detection perfor-

mance in cognitive regions due to the higher hemodynamic

variability in these areas.

Index Terms— fMRI, group analysis, RFX, GLM, joint

detection-estimation, hemodynamics, Bayesian inference.

1. INTRODUCTION

In fMRI studies, two strategies are available to improve

the quality of the data (such as reducing distorsion artifacts

and/or improving spatial and temporal resolution). The first

approach (i) consists in developing advanced estimation tech-

niques while the second one (ii) rests on improved acquisition

setups at higher static magnetic fields or using parallel imag-

ing. The analysis methods developed in (i) are both robust

against noise and able to adapt properly to the underlying

physiology, by modeling the spatio-temporal fluctuations of

the observed BOLD (Blood Oxygen Level Dependent) signal.

In this respect, a Bayesian detection-estimation approach has

been proposed in [1, 2]. This method jointly detects which

parts of the brain are involved in a given task or stimulus and

estimates the underlying dynamics of activations. Further

extended in [3], Adaptive Spatial Mixture Models (ASMM)

have been introduced to model spatial correlation of fMRI

data instead of uniformly smoothing them.

A previous work [4] has assessed the improvement pro-

vided by a supervised JDE approach where the maount of

spatial correlation was set empirically compared to the clas-

sical GLM-based framework using SPM51. The present pa-

per generalizes this previous contribution [4] in the follow-

ing directions: a) it studies the impact of automatic and spa-

tially adaptive regularization and b) it enables the compari-

son of spatially unsupervised JDE framework [3] with both

the GLM-based inference and and the SAGLM approach or

the constrained JDE version in which the HRF is fixed to its

canonical shape. Here, we show results for a large dataset

acquired on a 32-channel head coil at a high (2x2 mm2) in-

plane resolution. However, our global study investigated both

issues (i) and (ii) by comparing the impact of using different

spatial resolutions, acceleration factors and reconstruction al-

gorithms in a parallel imaging context on group statistics.

This paper is structured as follows. For the sake of self-

consistency, the classical fMRI analysis framework is sum-

marized in Section 2. The JDE approach is presented in Sec-

tion 3. It relies on a prior parcellation of fMRI data, which

derives from a clustering procedure that preserves connectiv-

ity and functional homogeneity. Then, at the parcel level the

JDE framework allows us to specify and estimate a specific

BOLD model. Section 4 is devoted to group studies in fMRI

where the principles of random effect analysis are reminded.

In Section 5, results obtained at the group level using different

subject-level inferences are compared on two salient contrasts

of interest of a quick fMRI mapping experiment. A special at-

tention is paid to the HRF variability in the motor and parietal

regions. Conclusions are drawn in Section 6.

1http://www.fil.ion.ucl.ac.uk/spm



2. CLASSICAL WITHIN-SUBJECT ANALYSIS IN

fMRI

2.1. Standard GLM-based approach

GLM-based methods correspond to hypothesis-driven ap-

proaches that postulate a canonical shape for the HRF hc and

enable voxelwise inference. In its simplest form, the model

of the BOLD response is spatially invariant and remains con-

stant across the brain. Hence, each regressor in the design

matrix X is built as the convolution of hc with the stimula-

tion signal xm associated with the mth stimulus type. The

GLM therefore reads:

[y1, . . . , yJ ] = X [β1, . . . , βJ ] + [b1, . . . , bJ ] (1)

where yj is the fMRI time series measured in voxel Vj at

times (tn)n=1:N and βj ∈ ❘M defines the vector of BOLD

effects in Vj for all stimulus type m = 1 : M . Noise bj is

usually modelled as a first-order autoregressive (i.e., AR(1))

process in order to account for the spatially-varying temporal

correlation of fMRI data [5]: bj,tn = ρj bj,tn−1
+ εj,tn , ∀j, t,

with εj ∼ N (0N , σ2
εj
IN ), where 0N is a null vector of length

N , and IN stands for the identity matrix of size N . Then, the

BOLD magnitudes estimates β̂j are computed in the maxi-

mum likelihood sense as follows: β̂j = argminβ∈❘M ‖yj −
Xβj‖2σ̂−2

εj
Λ̂j

, where σ̂−2
εj

Λ̂j defines the inverse of the esti-

mated autocorrelation matrix of bj ; see [6] for details about

the identification of the noise. Later, extensions that incorpo-

rate prior information on the BOLD effects (βj)j=1:J have

been developed in the Bayesian framework [7, 8]. In such

cases, vectors (β̂j)j=1:J are computed using more computa-

tionally demanding strategies. However, all these contribu-

tions consider a unique and global model HRF model while

intra-individual differences in its characteristics have been ex-

hibited between cortical areas [9].

2.2. Flexible GLM models

Although smaller than inter-individual fluctuations, the intra-

subject regional variability of the HRF is large enough to be

treated with care. GLM can actually be refined to account for

variations of the canonical HRF hc at the voxel level through

additional regressors: hc can be supplemented with its first

and second derivatives ([hc |h′

c |h′′

c ]) to model eg. differ-

ences in time-to-peak. Although powerful and elegant, flexi-

bility is achievable at the expense of fewer effective degrees

of freedom and decreased sensitivity in any subsequent sta-

tistical test. In this case, the BOLD effect is modelled using

several regressors (βm
j ∈ ❘P ) and the Student-t statistic can

no longer be used to infer on differences βm
j −βn

j between

the mth and nth stimulus types. Rather, an unsigned Fisher

statistic has to be computed, making direct interpretation of

activation maps more difficult.

(a) (b)

Fig. 1. (a) Axial view of a color-coded multi-subject parcel-

lation. (b): normalized histogram of parcel sizes for the same

parcellation.

3. BEYOND THE GLM TO WITHIN-SUBJECT

ANALYSIS IN fMRI

3.1. Multi-subject parcellation

Here, we claim the necessity of a spatially varying HRF

model to keep a single regressor per condition, and thus en-

able the direct statistical comparison (β̂m
j − β̂n

j ). The JDE

framework proposed in [1–3] enables the introduction of a

spatially adaptive GLM, where a local estimation of h is per-

formed. To conduct the analysis efficiently, HRF estimation

is performed at a regional coarser scale than the voxel level.

To define this scale, the functional brain mask is divided

in Γ functionally homogeneous parcels using a parcellation

technique proposed in [10]. This algorithm relies on the

minimization of a compound criterion reflecting both the spa-

tial and functional structures and hence the topology of the

dataset. The spatial similarity measure favours the closeness

in the Talairach coordinates system. The functional part of

this criterion is computed on parameters that characterize the

functional properties of the voxels (eg, fMRI time series).

The number of parcels Γ is set by hand. The larger the

number of parcels, the stronger the degree of within-parcel

homogeneity but potentially the lower the signal-to-noise

ratio (SNR). To objectively choose an adequate number of

parcels, theoretic information criteria have been investigated

in [11]: converging evidence for Γ ≈ 500 has been shown for

a whole brain analysis leading to typical parcel sizes around

a few hundreds voxels. Fig. 1 illustrates the group-level

parcellation and the corresponding histogram of parcel sizes.

3.2. Parcel-based modeling of the BOLD signal

Here, we use the parcel-based model of the BOLD signal in-

troduced in [2, 3]. Let Pγ = (Vj)j=1:J be the current parcel.

As shown in Fig. 2, this means that the HRF shape hγ is con-

stant within a parcel but that the magnitude of activation βm
j

may vary in space and across stimulus types:

yj =
M∑

m=1

βm
j Xmhγ + Pℓj + bj , ∀ j, Vj ∈ Pγ . (2)



Fig. 2. Regional model of the BOLD signal in the JDE frame-

work. The neural response levels amj match with the BOLD

effects βm
j .

Xm denotes the N × (D + 1) binary matrix that codes the

onsets of the mth stimulus. Vector hγ ∈ ❘D+1 represents

the unknown HRF shape in Pγ . The term Pℓj models a

low-frequency trend to account for physiological artifacts and

noise bj ∼ N (0N , σ2
εj
Λ

−1
j ) stands for the above mentioned

AR(1) process.

3.3. Bayesian JDE inference

The HRF shape hγ and the associated BOLD effects (βj)j=1:J

are jointly estimated in Pγ . Since no parametric model is con-

sidered for hγ , a smoothness constraint on the second order

derivative is introduced to regularize its estimation; see [2]

for details. On the other hand, our approach also aims at

detecting which voxels in Pγ elicit activations in response to

stimulation. To this end, prior mixture models are introduced

on (βm)m=1:M to segregate activating and non-activating

voxels in a stimulus-specific manner i.e., for each m. In [3],

it has been shown that ASMM allow us to recover clusters of

activation instead of isolated spots using hidden Markov mod-

els on voxel states. The level of spatial correlation in these

models is automatically tuned from the data and may vary

accross brain regions and between conditions since both the

contrast-to-noise ratio the spatial activation pattern fluctuate

accross stimulus types.

As our approach stands in the Bayesian framework,

other priors are formulated upon every other sought object

in Eq. (2); see [3] for details. Finally, inference is based

upon the full posterior distribution p(h, (βj), (ℓj),Θ |②),
which is sampled using a hybrid Metropolis-Gibbs sam-

pling scheme [3]. Posterior mean (PM) estimates are there-

fore computed from these samples according to: x̂PM =∑L1

k=L0
x(k)/L, ∀x ∈

{
h, (βj),Θ

}
where L = L1 −

L0 + 1 and L0 stands for the length of the burn-in period.

Note that this estimation process has to be repeated over

each parcel of each subject’s brain. Since the fMRI data are

considered spatially independent across parcels, parallel im-

plementation enables fast computation: whole brain analysis

is achievable in about 60 mn for N = 128 and Γ = 500.

Compared to [4] which resorted to supervised estimation,

the use of ASMM does not significantly increase the com-

putation load since a specific min-max procedure has been

developed to approximate parcel-dependent partition func-

tions of MRFs [3]. In this paper, we also investigate the use

of ASMM combined with the GLM framework by setting the

HRF shape to the canonical form in the JDE formalism. This

approach is referenced SAGLM in what follows.

4. CLASSICAL PARAMETRIC

POPULATION-BASED INFERENCE

Assume that S subjects are selected randomly in a popula-

tion of interest and involved in the same fMRI experiment.

As shown in previous sections, the two types of within-

subject analyses produce BOLD effect estimates β̂j,s, in

one particular voxel Vj of the standardized space (usually,

the MNI/Talairach space) and for each subject s. Compar-

ison between experimental conditions is usually addressed

through contrast definition. Here, we restrict ourselves to

scalar contrasts. Hence, we focus on signed differences

d̂m−n
j,s = β̂m

j,s − β̂n
j,s of the BOLD effect relative to the mth

and nth stimulus types. For the sake of notational simplicity,

we drop subscript j and superscript m− n.

While the estimated difference d̂s generally differs from

the true but unobserved effect ds, assume for now perfect

intra-subject estimation so that d̂s = ds for s = 1 : S. We

thus are given a sample (d1, , . . . , dS) drawn from an un-

known probability density function f(d) that describes the

distribution of the effects in the population. Here, we are

concerned with inferences about a location parameter (mean,

median, mode, ...). Assume for instance we wish to test the

null hypothesis that the population mean is negative: H0 :
µG =

∫
d f(d) dd ≤ 0 where G stands for the group. To that

end, we may use the classical one-sample t test. We start with

computing the t statistic:

t =
µ̂G

σ̂G/
√
S
, with µ̂G =

∑
s ds
S

, σ̂2
G =

∑
s(ds − µ̂G)

2

S − 1
.

Next, we reject H0, hence accept the alternative H1: µG > 0,

if the probability under H0 of reaching the observed t value

is lower than a given false positive rate. Under the assump-

tion that f(d) is gaussian, this probability is well-known to be

obtained from the Student distribution with

5. EXPERIMENTAL RESULTS

5.1. Experimental protocol

fMRI data were recorded at 3 T (Siemens Trio) using a

gradient-echo EPI sequence (TE=30ms/TR=2400ms/slice

thickness=3mm/transversal orientation/FOV=192mm2) dur-

ing a cognitive localizer experiment. The paradigm was a fast

event-related design comprising sixty auditory, visual and

motor stimuli, defined in ten experimental conditions (audi-

tory and visual sentences, auditory and visual calculations,



left/right auditory and visual clicks, horizontal and vertical

checkerboards). For the considered dataset, the acquisition

consisted of a single session of N = 128 scans lasting

TR = 2.4 s each, yielding 3-D volumes with an anisotropic

resolution of 2 × 2 × 3mm3. A 32 channel volume coil was

used to enable parallel imaging. The mSENSE parallel imag-

ing reconstruction algorithm was applied with an acceleration

factor R = 2 for all the 18 subjects2.

5.2. Random effect (RFX) analyses

To enforce the coherence of our group level comparison

with actual pipelines for fMRI data processing (SPM, FSL,

BrainVISA-fMRI toolbox), the fMRI images that enter in

GLM-based analysis were spatially filtered using isotropic

Gaussian smoothing at FWHM=3mm. However, in the JDE

formalism, we still consider unsmoothed but normalized

fMRI data. The contrast images used for the two group

analyses (based on intra-subjects analyses with SPM or JDE

frameworks) remained also unsmoothed.

Figs. 3 and 4 provide us with the group level Student-t

maps for the three estimation procedures and two contratsts of

interest. Fig. 3 focus on the Lc. – Rc. contrast that highlights

brain regions responding more to the left click than to the right

click whatever the modality (auditory or visual). It is shown

that the classical GLM-based, JDE-based and SAGLM-based

inferences qualitatively yield almost the same results: a con-

tralateral cluster in the motor cortex is found by all inference

schemes. Due to spatial smoothing, GLM-based inference

exhibits a larger cluster than alternative approaches but re-

trieves a lower voxel-level maximum T-value value than the

SAGLM-based inference as shown in Table 1. Also, for this

motor contrast, we observe that the JDE framework provides

the less sensitive results because the estimated HRF shape

closely matches the canonical one in motor areas.

Fig. 4 presents the same comparison for the more cogni-

tive Computation – Sentences (C. – S.) contrast that elicits

evoked brain activity in the fronto-parietal network. Here, the

SAGLM-based inference provides larger activation cluster in

the parietal and frontal lobes as expected [12]. This indicates

the strong impact of spatially adaptive regularization. How-

ever, the JDE framework gives the highest T-max peak value

demonstrating that a better HRF modeling enhances the fit

to fMRI data in higher cognitive regions. For this C. – S.

contrast, the GLM-based inference appears to be the less sen-

sitive both at the voxel and cluster levels: see Table 1 for de-

tails. Besides, the GLM and SAGLM-based analyses found

one cluster in the right prefrontal gyrus that was not recov-

ered in [12], indicating the presence of false positives in this

region.

These results are explained by the hemodynamic variabil-

ity between the motor and parietal regions: HRF estimates

2One k-space line out of two was sampled along the phase encoding di-

rection.

(a) (b) (c)

Axial

Coronal

Sagittal
Fig. 3. Maximum Intensity Projection (MIP) of the RFX

student-t maps for the Lc. – Rc. contrast (thresholded at

P ≤ 0.001 and K = 100 for voxel-level and cluster-extent

inferences, respectively). Neurological convention: left is

left. Columns (a)-(b)-(c): results derived using the JDE,

SPM, SAGLM analyses at the subject level, respectively.

(a) (b) (c)

Axial

Coronal

Sagittal

Fig. 4. MIP of the RFX student-t maps for the C. – S. con-

trast. Same conventions as in Fig. 3

.



(a) (b)

Time in s. Time in s.

Fig. 5. HRF estimates at the maximum intensity peak for all

subjects. (a)-(b) correspond to the Lc. – Rc. and C. – S.

contrasts, respectively. Canonical HRF in black dotted line.

in the motor region have a shape closer to the canonical

form (Fig. 5(a)) in contrast to their counterpart in the pari-

etal region (Fig. 5(b)). Hence, there is a loss in statistical

sensitivity when estimating the HRF shape in motor regions

as reported on group studies in Fig. 3. In more cognitive

regions, HRF estimation is beneficial since group-level re-

sults are more sensitive than those obtained considering a

canonical HRF.

Table 1. Suprathreshold clusters summary for the t-statistic.

Cluster size Voxel level Peak coords.

(voxels) T max x y z

C
.

–
S

. JDE 514 10.77 −32 −54 45

SPM 617 8.7 −28 −66 48

SAGLM 780 10.59 −30 −56 45

L
c.

–
R

c. JDE 169 6.76 44 −16 48

SPM 454 10.12 36 −22 54

SAGLM 390 12.21 38 −22 57

6. CONCLUSION

In this paper, we extended previous results (see [4]) and

showed that the type of intra-subject analysis impact group-

level statistical analysis: Either the JDE formalism or the

SAGLM framework provides more reliable RFX analysis

results. In the parietal region, the JDE framework reported

higher statistical peak values than SAGLM and GLM-based

counterparts due to the high variability of the HRF in this

area. In contrast, the SAGLM approach achieves the best

compromise in the motor region because of spatially adaptive

regularization. This seems to be due to a HRF shape closer

to the canonical filter in this region. Future work will be

devoted to a more extensive analysis of the between-regions

hemodynamic variability.
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