E. Zarahn, G. K. Aguirre, and M. D. Esposito, Empirical Analyses of BOLD fMRI Statistics, NeuroImage, vol.5, issue.3, pp.179-197, 1997.
DOI : 10.1006/nimg.1997.0263

M. J. Mckeown, S. Makeig, G. G. Brown, T. Jung, S. S. Kindermann et al., Analysis of fMRI data by blind separation into independent spatial components, Human Brain Mapping, vol.18, issue.3, pp.160-188, 1998.
DOI : 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1

J. Biyu, J. M. He, A. Z. Zempel, M. E. Snyder, and . Raichle, The temporal structures and functional significance of scale-free brain activity, Neuron, vol.66, pp.353-369, 2010.

P. L. Purdon and R. M. Weisskoff, Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel-level false-positive rates in fMRI, Human Brain Mapping, vol.5, issue.4, pp.239-249, 1998.
DOI : 10.1002/(SICI)1097-0193(1998)6:4<239::AID-HBM4>3.0.CO;2-4

M. A. Burock, R. L. Buckner, M. G. Woldorff, B. R. Rosen, and A. M. Dale, Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI, NeuroReport, vol.9, issue.16, pp.3735-3739, 1998.
DOI : 10.1097/00001756-199811160-00030

S. Thurner, E. Windischberger, C. Moser, P. Walla, and M. Barth, Scaling laws and persistence in human brain activity, Physica A: Statistical Mechanics and its Applications, vol.326, issue.3-4, pp.511-521, 2003.
DOI : 10.1016/S0378-4371(03)00279-6

V. Maxim, L. Sendur, J. Fadili, J. Suckling, R. Gould et al., Fractional Gaussian noise, functional MRI and Alzheimer's disease, NeuroImage, vol.25, issue.1, pp.141-158, 2005.
DOI : 10.1016/j.neuroimage.2004.10.044

URL : https://hal.archives-ouvertes.fr/hal-00260264/file/NIMG2005.pdf

K. Linkenkaer-hansen, . Monto, . Rytsala, . Suominen, S. Isometsa et al., Breakdown of Long-Range Temporal Correlations in Theta Oscillations in Patients with Major Depressive Disorder, Journal of Neuroscience, vol.25, issue.44, pp.10131-10137, 2005.
DOI : 10.1523/JNEUROSCI.3244-05.2005

J. Fadili and E. Bullmore, Wavelet-Generalized Least Squares: A New BLU Estimator of Linear Regression Models with 1/f Errors, NeuroImage, vol.15, issue.1, pp.217-232, 2002.
DOI : 10.1006/nimg.2001.0955

L. Huaien and S. Puthusserypady, fMRI data analysis with nonstationary noise models: a Bayesian approach, IEEE Trans. Biomed. Eng, vol.54, issue.9, pp.1621-1630, 2007.

P. Ciuciu, P. Abry, C. Rabrait, and H. Wendt, Log Wavelet Leaders Cumulant Based Multifractal Analysis of EVI fMRI Time Series: Evidence of Scaling in Ongoing and Evoked Brain Activity, IEEE Journal of Selected Topics in Signal Processing, vol.2, issue.6, pp.929-943, 2008.
DOI : 10.1109/JSTSP.2008.2006663

Y. Shimizu, M. Barth, C. Windischberger, E. Moser, and S. Thurner, Wavelet-based multifractal analysis of fMRI time series, NeuroImage, vol.22, issue.3, pp.1195-1202, 2004.
DOI : 10.1016/j.neuroimage.2004.03.007

J. M. Lee, J. Hu, J. B. Gao, K. D. White, B. Crosson et al., Identification of brain activity by fractal scaling analysis of functional MRI data, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005., pp.137-140, 2005.
DOI : 10.1109/ICASSP.2005.1415360

M. Torres and P. Abry, Comparison of different methods for computing scaling parameter in the presence of trends, 14th BioIngineering argentin congress, 2003.

P. Ciuciu, P. Abry, C. Rabrait, H. Wendt, and A. Robotics, LEADER-BASED MULTIFRACTAL ANALYSIS FOR EVI fMRI TIME SERIES: ONGOING vs TASK-RELATED BRAIN ACTIVITY, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.404-407, 2007.
DOI : 10.1109/ISBI.2007.356874

H. Wendt, P. Abry, and S. Jaffard, Bootstrap for Empirical Multifractal Analysis, IEEE Signal Processing Magazine, vol.24, issue.4, pp.38-48, 2007.
DOI : 10.1109/MSP.2007.4286563

C. F. Beckmann and S. M. Smith, Probabilistic Independent Component Analysis for Functional Magnetic Resonance Imaging, IEEE Transactions on Medical Imaging, vol.23, issue.2, pp.137-152, 2004.
DOI : 10.1109/TMI.2003.822821

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Poline and . Thirion, A group model for stable multi-subject ICA on fMRI datasets, Neuroimage, vol.51, issue.1, pp.288-299, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00489507

I. Daubechies, E. Roussos, S. Takerkart, M. Benharrosh, C. Golden et al., Independent component analysis for brain fMRI does not select for independence, Proceedings of the National Academy of Sciences, vol.106, issue.26, pp.10415-10422, 2009.
DOI : 10.1073/pnas.0903525106

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705604

R. H. Riedi, Multifractal processes Theory and applications of long range dependence, Doukhan, Oppenheim and Taqqu, pp.625-716, 2003.

S. Mériaux, A. Roche, G. Dehaene-lambertz, B. Thirion, and J. Poline, Combined permutation test and mixed-effect model for group average analysis in fMRI, Human Brain Mapping, vol.15, issue.5, pp.402-410, 2006.
DOI : 10.1002/hbm.20251

T. Vincent, L. Risser, and P. Ciuciu, Spatially Adaptive Mixture Modeling for Analysis of fMRI Time Series, IEEE Transactions on Medical Imaging, vol.29, issue.4, pp.1059-1074, 2010.
DOI : 10.1109/TMI.2010.2042064

URL : https://hal.archives-ouvertes.fr/cea-00470594