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ABSTRACT region-specific. Indeed, the Hemodynamic Filter (HF) is as-

In this paper, we present a fast numerical scheme to estima?@med to be invariant only'locally, SO that neuroimagingdat
Partition Functions (PF) of symmetric Ising fields. Ourstra IS accordingly segmented infofunctionnally homogeneous
egy is first validated on 2D Ising fields. and then applied td'régular parcels]” being the order of several hundreds. This
the joint detection-estimation of brain activity from fitimal ~ €ads to a region-based analysis whéréendependent HFs
Magnetic Resonance Imaging (fMRI) data, where the goal ibave to b_e |de_nt|f|ed. Each model y|elds_ a HF shape estimate
to automatically recover activated regions and estimage thand spatial mixture models (SMM) are jointly expressed on
region-dependent hemodynamic filter. For any region, a spdh® amplitude of the HF for every stimulus type to perform
cific 3D Ising field may embody spatial correlation over the@ctivation detection. SMMs in turn imply the involvement of
hidden states of the voxels by modeling whether they are adiscrete Ising fields to model spatial correlation. Therefo
tivated or not. To make spatial regularization adaptiver, ouS€Veral hundreds of temperature levels have to be estimated
approach s first based upon a classical path sampling meth&@2king a hand-tuning procedure unrealistic. Moreovetesin

to approximate a small subsetreferencePFs corresponding ©Ptimal setting of such parameter may be different when con-
to prespecified regions. Then, we propose an extrapolatiof{dering different regions of the brain, all temperatunesle
method that allows us to approximate the PFs associated f&Nnot be fixed to the same value. The purpose of this paper
the Ising fields defined over the remaining brain regions. IS then to provide an unsupervised and adaptive regul@izat
comparison with preexisting approaches, our method issbbu SCheéme in such a situation.

against grid inhomogeneities within the reference PFsandr  For a single field, unsupervised spatial regularizatiorr con
mains efficient irrespective of the topological configusag  Sists in estimating the temperature level. This requiresea p

of thereferenceandtestregions. Our contribution strongly al- Cise estimation of the PF that makes the MRF integrable over
leviates the computational cost and makes spatially agapti its domain. Section 2 is dedicated to the formulation of the

regularization of whole brain fMRI datasets feasible. PF estimation problem for Ising fields. The main contribatio
of this paper lies in Section 3 wherdastextrapolation tech-
1. INTRODUCTION nique to PF estimation of 3D Ising Fields is proposed and val-

idated both in the 2D and 3D context since the former offers
In medical image analysis, one is often interested in recovethe opportunity to provide a ground truth to the PF computa-
ing spatial structures. A simple but suboptimal approach tdion of Ising fields. The application to Joint Detection &g
enhance signal-to-noise ratios (SNR) consists in filtetirey tion (JDE) of brain act|V|_ty in fMRI is presented in Section 4
datasets at the expense of a loss of spatial resolution. & mof-onclusions are drawn in Section 5.
challenging approach works on the unsmoothed data by intro-
ducing some prior knowledge on the sought spatial strusture 2. PROBLEM STATEMENT
Spatial information is usually embedded in local interaati
models such as Markov Random Flelds_ (MRFs), which deLet us consider a grid characterized by a set of sites
pend on a set of hyper-parameters. qu mstance,' thg tempetg-i)i:1:7l_ A binary labelg; € {0,1} is associated to each
aturg Iev_eI controls the amount c_Jf spatial correlat_lon Imsy gies. A pair of adjacent sites; ands; (i # j) is de-
metric Ising models. In the considered fMRI application [1] eq; ~ j and is called a clique. The set of all cliques
which aims at analyzing 4D signals to jointly perform dynam-

) o 2 ) o allows us to define an undirected graph denagied.etq =
ics estimation and activation detection, the MRF definitn (q1.q2, -~ ,qn) € {0,1}" be the set of binary labels asso-
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according to a symmetric Ising model: 3.2. Fast and robust extrapolation technique

Pr(q|8) = Z(3) " exp (BU(q)), (1) Our algorithm proceeds in two steps: 1) Akin to [5], refer-
ence PFsZg, (B1) are estimated using path sampling. The

whereU(q) = Ziwj I(¢; = ¢;) is the global “negative en- topological configurations of the reference gri@s,),—1.p
ergy” andI(A) = 1 wheneverA is true and0 otherwise. can be inhomogeneous to cover a maximum of situations that
The inverse temperature > 0 controls the amount of spa- may occur when dealing with a brain parcellation into func-
tial correlation between the componentsgadiccording tog.  tionally homogeneous ROIs. 2) For any test dgfigthe quan-
The partition functionZ(3) readszqe{071}7L exp (BU(q))  tity log Z7 is approximated from aingle reference log-PF
and depends on the geometry@f Its exact evaluation in a estimate out oflog Zg, (3)),=1.p Selected by an appropri-
reasonable amount of time is impossible except on tiny gridsate criterion. Letn; be the number of neighbors for site
Robust and fast estimation 4f(3) is thus a key issue for nu- andry = o, 7/u, 7 @ measure of grid homogeneity where
merous 3D medical imaging problems involving Ising modelsu,, 7 ando,, 7+ provide the average number of neighbors per
and more generally discrete MRFs. site over7 and the corresponding standard deviation, respec-
tively: the smallerr+ the more regulafZ. Our topological
similarity measure given b¢+(G,) = |lr7 —rg,||* helps us

. . . choosing the closest reference géids to 7 in combination
Several approaches have been designed to estimate a sm%ﬁ: thegapproximation errorcritgrimglf(ﬁ G,) defined by:

PF [2—4]. Path-sampling is an extension of importance sam-
p.Iing.for esti_mating ratios of normalizing constaqts, bywo. A7(B,G,) = || log Z7(B3) — log Z7(8,G,p)||*/ || log Z7 ()|
sidering series of easy-to-sample unormalized intermedia
densities. Such a strategy was proven efficient to tabubate t . = _cT =
PF for the Ising case; see [5] for details. Algorithms withVith 108 Z7(5.Gp) = (Z(log Zg,(0)~log2)+log2), (2)
polynomial time complexity [4, 6] provide efficient alterna )
tives to a single PF estimation. However, none of them is abl¥Nere(cr, ¢g,) and(nr, ng, ) are the number of cliques and
to perform multiple PF estimation at the same time. Sincé!tes Of the Ising fields defined ovérandg,, respectively.
several hundreds of grids of variable size and shape are m@Ur extrapolation formula (2) is built up according to two
nipulated in our fMRI application, fast estimation of mplg ~ Principles:i.) an unbiased asymptotic approximation efror
- = e ,
PF is necessary. To this end, we propose a hybrid schen@dii.) an exact approximation dfog Z7(8))" for 5 — 0.
which consists in resorting to path sampling to get logscal These principles are summarized in Appendix A. The refer-
estimates(log Zg, (3)),—1.p in a small subset ofeference ence gridg,.¢ is exhibited using a min-max principle, which

graphs(G,),_ 1. and then in using extrapolation formulas to consists in minimizing with respect to (wrt) all referencelg
. = . . . (Gp)p=1:p the maximal approximation errot(3, G,,). In Ap-
obtainlog Z7(3) for the large remaining set of brain regions pendix B, it is shown that\(0,G,) — maxs A(3, G, ), G,

I .
to be analyzed, referenced here bigstgraph7 Hence, we get:

3. PARTITION FUNCTION ESTIMATION

3.1. Linear/bilinear regression schemes Gret = arg) min A7 (0,G,) subjectto L7(Gy) <e (3)
(gp p=L1:P

In [5], the authors have proposed a linear regression proce-and A, (0,G,) 2 [[(nr — 1)—er(ng, —1)/cq,||>/n% (4)
dure to estimatélog Zg, (3)),—1.p as a function of the num- : !
ber of cliques in the grid&g,),—1.». Estimates ofog Z7(63)

are then linearly computed using the estimated regression ¢

efficients and the number of cliques i log ZT(ﬁk) - Our method is illustrated in Fig. 1 witk = 4 by compar-

aicr at eachs, regularization level §, = EAS). . . .
A bilinear extension of this technique, which also takesN9 the distance between the reference log-PFs with the test

the number of sites in the grid into account, has been de2ne atf = 0. It appears thatog Zc is the closest curve

veloped in [7]. This procedure was shown to be efficient toabove the ground truttog Z7 (in red) and that our log-PF

estimate log-PFs ismall and irregular grid$ such as those estimatelog Z7 represented by crossesXis superimposed
appearing in our fMRI application. However, the accuracy of" the path sampled curve.

linear/bilinear PF extrapolations strongly depends onhitre

mogeneity and the number mferencegrids: the less homo- 3-3. Assesment of the method

geneous the reference set, the larger the approximation err 3 3 1 2p fields

These reasons motivate the development of a more reliable
and versatile approach. We first need to validate our approach in a situation for which

the logPF admits a closed form expression. Surprisingiy, th

wheree > 0 is a positive threshold fixed by hand. Onggs
has been identified, the log-PF estimatdins thus given by
log Z7 (53, Grer) according to Eq. (2).

IHere, by irregular grids we make reference to regular lesticombined
with non-straight boundaries. zlimﬂﬁ+Oo A1 (B,Gp) = 0.
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Fig. 1. Path sampled estimates of theference log-PFs  Fig. 2. Green Truelog Z(/3) computed by Egs. (5)-(6) for a 2D
log Zg, (Br),p = 1 : 4, in bluecurves. Ground truth as the log-PF Ising field defined over a 30x30 regular griétlue: corresponding
estimate found by path samplifigg Z7 in red Our extrapolation ~ Path-sampling estimaiee.,log Z(/3). Red Extrapolation estimates
method provides the crossed-line) log-PF estimatég Z+ log Z(3) from a reference set made up by 30 grids (1D, 2D and 3D).

situation exists thanks to the contribution of Onsageni8lp  ing boxes of increasing size (from®? to 153 sites) and reg-
derived the closed form expression of the log-PF of any 20ularization levels3 within the rang€0.2,0.7]. Regular test
square Ising fields under toroidal boundary constraints: graphs form three subsets: 30 of them aneall (less than
10® sites), 30 aranediumsize (betweeri0? and 153 sites)
log Z(8) = n(B + log [2 cosh f] + 4 [u(B)]) ()  and30 ardarge (more thanl5? sites). Finallyjrregular test
graphs also form three subsets. Each contain 30 graphs ob-
tained from bounding boxes df6® sites, for3 = 0.2, 0.4
and 0.5, respectively. We compared then our extrapolation
1 [ method with the alternative proposed in [5] and its bilinear
Y(u) = 2—/ log [(1 + V1 — u2sin® x) /2} dr (6)  extension developedin [7]. Percentages of the mean maximal
T Jo approximation errors are presented in Table 1.
for u € [0,1]. Therefore, the huge summation in Eq. (1) is  The bilinear and extrapolation methods clearly outperform
equivalent to this far simpler one dimensional equation. the linear one. Moreover, as shown in col. (B/ R) and rows-(reg
In Fig. 2, we compared the exact calculation provided byular small and irregular; = 0.2), the bilinear method leads
Eqg. (5) with the path-sampling and extrapolation approacheto inaccurate estimates when there are strong topologiical d
on a 2D Ising field defined over a 30x30 regular grid. It isferences between theferenceandtest grids. The regular
shown that our extrapolation techniqued) is as accurate reference grids are actually composed of large grids with cu
as possible since our estimate is superimposed on the grouhit, planar and curvilinar shapes whereas those lying ig-(re
truth (in blue). Moreover, it appears on Fig. 2 that these nu-ular small) and (irregulag = 0.2) are very small and highly
merical approaches slightly underestimate the true log$P sparse. In that case, our extrapolation method detects such
given by Egs (5). We have checked that this small discrepandgifferences and still succeeds in providing reliable Idged2-
is independent of the grid size. It might be due to the use ofimates. While the linear/bilinear methods takerafierence
the Swendsen-Wang sampling scheme for correlated fields.grids into consideration to derive a log-PF approximation,
our approach computes a log-PF estimate using the most ap-
3.3.2. 3D fields propriatereferencegrid. Hence, the larger the set of refer-
ence grids the more accurate our extrapolation method be-
For validation purpose, we compared log-PF estimates contomes. This explains why threferencesubsets are success-
puted using our extrapolation technique with those obthinefully mixed in the proposed approach, as shown in the first
using path sampling, considered as the ground trikéfer-  column of Table 1. Interestingly, when both the reference
enceandtestgraphs are either regular or irregular. A total and test grids are irregular the bilinear method may prowide

of 15regular referencéarge (more than0? sites) graphs are - competitive alternative to our extrapolation technique.
considered with cubic, planar and curvilinear shapes.gtrre

ula_r graphs were extr.acted. from regular bounding boxes iré.4. A Monte Carlo study to hyper-parameter estimation
which Ising field configurations were drawn using the tem-
perature dependent Swendesen-Wang algorithm [9]. In eacFhe last validation we examined addresses the estimation of
bounding box, we considered the largest connected compdthe inverse temperature levelg., -estimation) in the Maxi-
nent of sites having the same label as an irregular gréph. mum Likelihood (ML) sense either from our log-PF estimate
regular referencgraphs were then computed using 170 bounar from its path sampled counterpart. This study has been

whereu() = 2sinh 3/ cosh? 4 and they function is a one
dimensional log-elliptic integral:



Table 1. Mean maximal approximation error over regular and irreguést graphs. Both linear, bilinear and extrapolation
techniques are tested. Errors are given in percents.

Scheme / Reference grid
Test grid || E=Extrapolation, B=bilinear, L=linear / R=regular, I=égula

E/1I&R | B/l [ B/R | L/l | LIR

& | small 0.639 3.84 66.3 93.0 2728
= medium 2.77 0.991 2.17 6.37 49.5
€ Marge 3.68 131 2.48 7.18 19.4
8[3=02 0.375 1.29 94.6 83.9 3270
% 6=03 0.281 0.784 291 18.3 219
E|8=04 0.621 0.264 3.23 8.28 34.8
=05 0.693 1.27 1.96 1.52 34.2

conducted directly oobservedD Ising fields. At each tem- functionally homogeneous and connected parcels [10]. Ev-
perature levels, = kA with Ag = .1, we generated in- ery parcelP, comprising voxelgV;),=1.; is characterized
dependently 100 3D Ising fields defined over the same paraby a single HRFh. Within a givenP,, voxel-dependent and
lelepipedical grid. We tested different grid sizes (fra@®  stimulus-related fluctuations of the BOLD signal magnitude
to 50%) and showed that the number of voxels only influ-are encoded by, = (a}')j=1.,m=1:0m, the response levels
ences the error bars on the estimate. For an Ising field (m stands for the stimulus type index). The fMRI time course
defined by Eq. (1), the ML estimafé" is given by3" =  measured in voxeV; then readsy; = S0 a7’z x h +
argmax [3U(q) — Z(3)]. In Fig. 3, we compared two ML  b;, wherez™ stands for then™ binary stimuli vector and
estimators corresponding to the path sampling and extrapd; stands for the noise component [1]. Within the Bayesian
lation method for estimating the log-PFs. As illustrated inframework, prior probability density functions (pdfs) are
Fig. 3, our extrapolation techniquee@l curvg retrieves the troduced on(a, h) [1]. Spatial Gaussian mixture models are
true regularization parameter for< 0.7. For0.7 < § < 1,  expressed oa through the introduction of hidden variables
a very small bias is observed while for lor larger values, ag = (g}")75!3* that encode whether vox8l; is activat-
more significant error occurs in comparison to a more preciséng in response to stimulus: (g;* = 1) or not (¢* = 0).
path-sampling schemél(e curve. Hence, stimulus-dependent hidden Ising fields are intreduc
g on these states such that the global prior pdf reads:

14 R p(a|Os) = HZ [(Hf(a‘;m|qyl70m)) Pr(qm|5m)}

— true

1.2

andf(al" |¢" = i) ~ N(i,m,vi,m). Parameterg; ,, and
v;,m define the prior mean and variance of class 0, 1, re-
spectively for the stimulus type. The se#,,, comprises four
prior mixture paramete®,, = {110, £11,m: V0,m, V1,m, Bm }-
Samples of the full posterior pdf(h,a,q,® |y) are sim-
ulated using a Gibbs sampler algorithm and posterior mean
estimates are then computed from these samples. Here, we
introduce the sampling of parametéy,, which is achieved
Fig. 3. Monte Carlo validation (100 realizations) f@restimation using asymmetriaandom walk Metropolis-Hasting step: At
on observed 3D Ising fields defined over a 30x30x30 grid. : igou iterationk, a cand@atﬁ%f;lm Né\ﬁ/;’{f)’ag) is generated
truth given by the first bisector. : ML estimat&" relying on our ~ and is accepted.e., fm "~ = O ) with probability:
log-PF extrapolation method. : ML path-sampled estinte a(ﬁﬁ,ff) — 5,&’:*1/”) = min(1, Ak7k+1/2), where the accep-
tation ratioAy, ;.11 /2 follows from Eq. (1):
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4. APPLICATION TO FMRI DATA ANALYSIS Aposs)z = PGB lam ) _ plgm|Bm " )p(Bn )
’ k k k k k
p(Bia lase) p(ase’ |3 )p(85)
4.1. Problem statement 230
. , . . = % exp ((ﬁr(rlf-‘rl/Q)_ 6%:))[](%(5))) ,
Our extrapolation algorithm was applied to the spatiallsyad Z(ﬁ,(,ﬁ / ))

tative regularization of the region-based Joint Detectstimation
(JDE) of brain activity introduced in [1]. The JDE approachusing Bayes’ rule and considering a uniform prior {oy,.
relies on a prior parcellation of the brain i@ = (P,),=1.r  Theg,, sampling step then requires to estimate ratio 0f



or log-PF differences for alP,, parcels prior to exploring the to the robust path-sampled PF estimates if no suitable ref-

full posterior pdf. erence candidate is found. Obviously, efficiency is condi-
tionned by the number of reference grids, and more impor-
4.2. Resultsonreal fMRI data tantly by their similarity to the topologies encounteredtie

We applied the JDE procedure to real fMRI data recorde&onduaed analysis. In practice, about ten problem-sgecifi

. : ) . . reference grids are enough to provide good PF estimates.
during an experiment designed to map auditory, visual an : . . .
: : ; . . Using our fast extrapolation technique, the computational
motor brain functions, which consisted of a single session o

N — 125 scans lasting TR= 2.4 s each, yielding 3-D vol- burden remains acceptable since whole brain data analysis a

umes composed @ x 64 x 32 voxels. The paradigm was a the subject level takes about 1h30. The application to real

. S . . fMRI data showed a gain in statistical sensitivity for the un
fast event-related design comprising sixty auditory, &lsnd . : . .
L : . ; 2. : supervised version. In order to test their reproducihititese
motor stimuli, declined in 10 experimental conditions (aud

tory phrase, visual phrase, left auditory or visual cli: promising subject-level results have to be confirmed in grou
yp ' P i Y studies. Finally, in order to address the estimation of puta
We compare three versions of the JDE procedure: Ind

Sive deactivations such as those occuring in epilepsy,ectir
pendent Mixture Models (IMM), Supervised SMM (SSMM, extension of the proposed methodology to three—cIa’\ss Potts
£ = 0.8) and unsupervised SMM (USMM), in order to asses prop 9y

Sields is currently investigated.
the impact of the adaptive spatial correlation model. Fig. 4 y g
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B. MAXIMAL APPROXIMATION ERROR
A. PROPERTIESOF OUR LOG-PF ESTIMATE

] ) i i We give here a sufficient condition involving that the approx
The first property deals with the asymptotic behavior€{ i ation errorsAz (3, G,) of Ising fields defined oveT” and

c0) of the log-PF: G, achieve their largest value At= 0.
gim_(log Z(3) — fie) = log:2. (") Proposition 2 G, if (s —1)/cr # (sg, —1)/cq, (Hyp. 1)
andEr (U(q) | B)/cr # Eg,(U(q)[5)/cg,. V5 > 0 (Hyp.2)

It is quite straightforward to demonstrate that wheén— thenAz(0,G,) = maxger, A7 (8, G,), which expression is
oo only homogeneous configurations @have a significant given by Eq. (4).

weight in the evaluation of (). For a symmetric Ising field,

such configurations arise whenever all sites are equal to 0 &ooflLet errr(3,G,) be the unnormalized approximation

to 1 leading first toy , ., I(¢;x = g;) = c and finally to  error:€7(8,G,) = (log Z7(B) —log Z7(8,Gp))*. We prove

Eq. (7). Applying Eq. (7) to the extrapolation context albw that€7(0,G,) = maxger, errr (5, G,) by showingthatr (3, G,)
one to derive the following proposition. is a strictly decreasing function dR :

Proposition 1 limg_.o..A7 (5, G,) = 0, Solog Z7 (B, G,) de- &7 (B, Gp) =2 (log ZT(ﬁ)—c—T(log Zg, (8)—log2)—log2)

fined in Eq(2) provides an asymptotically unbiased estimate B G,
oflog Z7(3),VG,. F1(8)
Proof: First, applying Eq. (7) tgj, and using Eq. (2), we get: c
L appyna =i (116, andusigEa. 2. we < (Er(U]9)— L Eq, (U]9))
im — [log Zg, (8) — Beg,] = —log2 g,
B—o00 Cgp Cgp
& ﬁlim [CC—T (log Zg,(B) —log 2) — 507] =0 f2(8)
— 00 gp

. = Er(B,Gp) is strictly monotonous ofR  if f1 2(8) #0V3 >
d ﬂh—>Holo [log Z7(8,Gp) — fer] = log2 0. (ACCSZding to the second hypothesis, V\Ee)directly obtain
Applying Eq. (7) tolog Z7(3), we obtainimg_, [1og Z7r(B)— f2(8) # 0. Moreover, it is easy to notice thg(3) =
log ng(ﬂ,gp)} = 0VG,. +/E7(6,G,). Hence,fll(o_)lyé 0 according to Hyp. 1 and
The second property gives us the expression of the firstims—c f1(3) = 0 by definition ofé7 (3, G,). Furthermore,
order derivative of the log-PF a = 0. On the one hand, according to the value oflog Z())" and Hyp. 2, we get:
following [9], it can be shown thatog Z(3))' = E[U(q)|8].  f1(8) = f2(B) # 0, V5 > 0. Functionf; being continue,
On the other hand, fg# = 0, all sites are independentand fol- its sign is then contant ové ., and thenfy(3) # 0,V > 0.
low a uniform Bernoulli distribution. Hence, for each clgu AS @ consequencéy (f,,) is then stricly monotonous for
j ~ k the two homogeneous configuratiofss, ¢x) = (0,0) 3 > 0. According to Hyp. 1, we obtaifir (0,G,) > 0. Since
and(q;,qx) = (1,1) contribute toU/ with the same weight DY definitionlims .o £7(5,G,) = 0, function&7 (3, G,) is
of 1/4. We therefore obtaii(U(q) | 3 = 0) = 3, _;1/2.  therefore strictly decreasing dR.. and finally&7(0,6,) =
Finally, by equating the two expressions, we get: maxger, E7(4,0p). Sincelog Z(B) is a strictly increas-
ing function of 3, its inverse is strictly decreasing dR,

(log Z(0)) £ dlog Z(B)/dBly_y = /2. (8) SOAT(0.Gp) =maxser, A7(5,Gp).





