J. Baranger, J. Maitre, and F. Oudin, Connection between finite volume and mixed finite element methods, ESAIM: Mathematical Modelling and Numerical Analysis, vol.30, issue.4, pp.445-465, 1996.
DOI : 10.1051/m2an/1996300404451

W. Beyn, Discrete Green's functions and strong stability properties of the finite difference method, Appl. Anal, vol.14, pp.73-98, 1982.

S. Boivin, F. Cayré, and J. Hérard, A finite volume method to solve the Navier???Stokes equations for incompressible flows on unstructured meshes, International Journal of Thermal Sciences, vol.39, issue.8, pp.806-825, 2000.
DOI : 10.1016/S1290-0729(00)00276-3

J. H. Bramble and B. E. Hubbard, On the formulation of finite difference analogues of the Dirichlet problem for Poisson's equation, Numerische Mathematik, vol.15, issue.1, pp.313-327, 1962.
DOI : 10.1007/BF01386325

J. H. Bramble, B. E. Hubbard, and M. Zlamal, Discrete Analogues of the Dirichlet Problem with Isolated Singularities, SIAM Journal on Numerical Analysis, vol.5, issue.1, pp.1-25, 1968.
DOI : 10.1137/0705001

J. H. Bramble and V. Thome, Pointwise Bounds for Discrete Green???s Functions, SIAM Journal on Numerical Analysis, vol.6, issue.4, pp.582-590, 1969.
DOI : 10.1137/0706053

Y. Chen, Uniform convergence analysis of finite difference approximations for singular perturbation problems on an adapted grid, Advances in Computational Mathematics, vol.21, issue.1, pp.197-212, 2006.
DOI : 10.1007/s10444-004-7641-0

S. Chou and Q. Li, Error estimates in $L^2$, $H^1$ and $L^\infty$ in covolume methods for elliptic and parabolic problems: A unified approach, Mathematics of Computation, vol.69, issue.229, pp.103-120, 2000.
DOI : 10.1090/S0025-5718-99-01192-8

S. Chou and X. Ye, Unified Analysis of Finite Volume Methods for Second Order Elliptic Problems, SIAM Journal on Numerical Analysis, vol.45, issue.4, pp.1639-1653, 2007.
DOI : 10.1137/050643994

P. G. Ciarlet, Discrete variational Green's function. I, Aequationes Mathematicae, vol.6, issue.1-2, pp.74-82, 1970.
DOI : 10.1007/BF01817748

P. G. Ciarlet and R. S. Varga, Discrete variational Green's function, Numerische Mathematik, vol.10, issue.2, pp.115-128, 1970.
DOI : 10.1007/BF02308864

A. Draganescu, T. F. Dupont, and L. R. Scott, Failure of the discrete maximum principle for an elliptic finite element problem, Mathematics of Computation, vol.74, issue.249, pp.1-23, 2005.
DOI : 10.1090/S0025-5718-04-01651-5

H. Esser, The green's function of a compact discretization, Numerical Functional Analysis and Optimization, vol.25, issue.1-2, pp.77-89, 1989.
DOI : 10.1080/01630568908816292

R. E. Ewing, T. Lin, and Y. Lin, On the Accuracy of the Finite Volume Element Method Based on Piecewise Linear Polynomials, SIAM Journal on Numerical Analysis, vol.39, issue.6, pp.1865-1888, 2002.
DOI : 10.1137/S0036142900368873

R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods Handbook of numerical analysis, pp.713-1020, 2000.

P. A. Forsyth and P. H. Sammon, Quadratic convergence for cell-centered grids, Applied Numerical Mathematics, vol.4, issue.5, pp.377-394, 1988.
DOI : 10.1016/0168-9274(88)90016-5

R. D. Grigorieff, Convergence of discrete Green's functions for finite difference schemes, Appl. Anal, vol.19, pp.233-250, 1985.

W. P. Jones and K. R. Menzies, Analysis of the Cell-Centred Finite Volume Method for the Diffusion Equation, Journal of Computational Physics, vol.165, issue.1, pp.45-68, 2000.
DOI : 10.1006/jcph.2000.6595

R. D. Lazarov, I. D. Mishev, and P. S. Vassilevski, Finite Volume Methods for Convection-Diffusion Problems, SIAM Journal on Numerical Analysis, vol.33, issue.1, pp.31-55, 1996.
DOI : 10.1137/0733003

T. Linss, Uniform Pointwise Convergence of an Upwind Finite Volume Method on Layer-Adapted Meshes, ZAMM, vol.82, issue.4, pp.247-254, 2002.
DOI : 10.1002/1521-4001(200204)82:4<247::AID-ZAMM247>3.0.CO;2-9

T. Linss, Sufficient conditions for uniform convergence on layer-adapted meshes for one-dimensional reaction-diffusion problems, Numer. Algorithms, vol.40, issue.1, pp.23-32, 2005.

J. A. Mackenzie and K. W. Morton, Finite volume solutions of convection-diffusion test problems, Mathematics of Computation, vol.60, issue.201, pp.189-220, 1993.
DOI : 10.1090/S0025-5718-1993-1153168-0

T. A. Manteuffel and A. B. White-jr, The numerical solution of second-order boundary value problems on nonuniform meshes, Mathematics of Computation, vol.47, issue.176, pp.511-535, 1986.
DOI : 10.1090/S0025-5718-1986-0856700-3

G. T. Mcallister and E. F. Sabotka, Discrete Green's functions, Math. Comput, vol.27, pp.59-80, 1973.

E. O. Riordan and M. Stynes, An Analysis of a Superconvergence Result for a Singularly Perturbed Boundary Value Problem, Mathematics of Computation, vol.46, issue.173, pp.81-92, 1986.
DOI : 10.2307/2008216

L. E. Payne and H. F. Weinberger, An optimal Poincar?? inequality for convex domains, Archive for Rational Mechanics and Analysis, vol.5, issue.1, pp.286-292, 1960.
DOI : 10.1007/BF00252910

R. Sacco, Convergence of a second-order accurate Petrov???Galerkin scheme for convection???diffusion problems in semiconductors, Applied Numerical Mathematics, vol.11, issue.6, pp.517-528, 1993.
DOI : 10.1016/0168-9274(93)90091-5

T. Vejchodsky and P. Solín, Discrete maximum principle for higher-order finite elements in 1D, Mathematics of Computation, vol.76, issue.260, pp.1833-1846, 2007.
DOI : 10.1090/S0025-5718-07-02022-4

A. Weiser and M. F. Wheeler, On Convergence of Block-Centered Finite Differences for Elliptic Problems, SIAM Journal on Numerical Analysis, vol.25, issue.2, pp.351-375, 1988.
DOI : 10.1137/0725025