Skip to Main content Skip to Navigation
Journal articles

Atom probe tomography of swift ion irradiated multilayers

Abstract : Nanometer scale layered systems are well suited to investigate atomic transport processes induced by high-energy electronic excitations in materials, through the characterization of the interface transformation. In this study, we used the atom probe technique to determine the distribution of the different elements in a (amorphous-Fe2Tb5 nm/hcp - Co3 nm)20 multilayer before and after irradiation with Pb ions in the electronic stopping power regime. Atom probe tomography is based on reconstruction of a small volume of a sharp tip evaporated by field effect. It has unique capabilities to characterize internal interfaces and layer chemistry with sub-nanometer scale resolution in three dimensions. Depth composition profiles and 3D element mapping have been determined, evidencing for asymmetric interfaces in the asdeposited sample, and very efficient Fe–Co intermixing after irradiation at the fluence 7 x 1012 ion cm-2. Estimation of effective atomic diffusion coefficients after irradiation suggests that mixing results from interdiffusion in a molten track across the interface in agreement with the thermal spike model.
Complete list of metadatas
Contributor : Chantal Brassy <>
Submitted on : Friday, April 10, 2009 - 5:22:31 PM
Last modification on : Thursday, January 14, 2021 - 9:46:18 AM



J. Juraszek, A. Grenier, J. Teillet, E. Cadel, N. Tiercelin, et al.. Atom probe tomography of swift ion irradiated multilayers. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Elsevier, 2009, 267, pp.912-916. ⟨10.1016/j.nimb.2009.02.036⟩. ⟨cea-00374996⟩



Record views