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Abstract. Functional MRI (fMRI) is a non-invasive technique allow-
ing for the evolution of brain processes to be dynamically followed in
various cognitive tasks. In BOLD fMRI, what is actually measured is
only indirectly related to neuronal activity through a process that is
still under investigation. A convenient way to analyze such data consists
of considering the whole brain as a system characterized by a transfer
response function, called the Hemodynamic Response Function (HRF).
In this paper we develop the general linear model and show how it can
be translated in terms of graphical models. This conceptual step has
the advantage of making clear all structural and functional assumptions
entailed by the model. Moreover, once embedded in a DAG, the prepara-
tory step for Gibbs sampling —variable block definition for sequential up-
dating and derivation of the corresponding conditional distributions— is
readily performed from the model specification. From there, probabilis-
tic numerical estimation of all parameters is straightforward, leading to
robust inference.

1 Introduction

Discovered in the early 90s, functional MRI (fMRI) is a recent, non-invasive tech-
nique allowing for the evolution of brain processes to be dynamically followed
in various cognitive and behavioral tasks. In the most common fMRI technique,
based on the so-called Blood Oxygen Level Dependent (BOLD) contrast, what
is actually measured is only indirectly related to neuronal activity through a
process that is not well understood yet [1,2]. For this reason, a convenient way
to analyze BOLD fMRI data consists of considering the whole brain as a “black
box” system characterized by its transfer response function, also called Hemo-
dynamic Response Function (HRF) [3]. The HRF is the theoretical signal that
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BOLD fMRI would measure in response to a single, very short stimulus of unit
intensity. Under such hypotheses, the data are related to the HRFs through the
so-called General Linear Model (GLM). This model assumes stationarity and
linearity of the underlying physiological process. Such assumptions are a good
approximation of the properties of the real system as long as the inter-stimulus
interval does not decrease beyond about two seconds [4,5]. Under such hypothe-

ses,

Estimation of the HRF is of the greatest interest when analysing of fMRI
data, since it can give a deep insight into the underlying dynamics of brain
activation and the relationships between activated areas. HRFs are increasingly
suspected to vary from region to region, from task to task, and from subject to
subject [6-8].

Precise and robust estimation of the HRF still belongs to ongoing research,
since the problem is badly conditioned, and various methods have been devised so
far to estimate the HRF. Parametric methods include Gaussian [9] or spline-like
fitting [10], spatial regularization [11], or consideration of physiological models
[12]. However, assuming the shape of the hemodynamic response to be known
a priort and invariant throughout the brain is a very strong constraint, since
it fluctuates greatly. Non-parametric methods have hence been developed in an
attempt to infer the HRF at each time sample. Methods include: averaging over
regions [13], selective averaging [4], introduction of non-diagonal models for the
temporal covariance of the noise [14], or temporal regularization [15].

In [16], we proposed a Bayesian, non-parametric estimation of the HRF for
event-related designs. Basic yet relevant physiological information was intro-
duced to temporally constrain the problem and calculate robust estimators of
the parameters of interest. In [17], we quantified the performances of the method
and showed great improvement compared to Maximum-Likelihood methods. Ro-
bustness with regard to the noise structure and level were also proven. [18] and
[19] generalized the method to asynchronous event-related designs, taking differ-
ent trial types into account, and making it possible to incorporate several fMRI
sessions to further enhance the estimation. For calculation reasons, all variants
proposed so far have the drawback of not integrating the hyperparameter uncer-
tainty. Moreover, the general model cannot treat all parameters probabilistically
(e.g., drift parameters).

In this paper, we propose to consider the GLM under a new light. We still
place ourselves in a Bayesian framework, to permit integration of information
originating from models, data, and prior information and lead efficient infer-
ence on the parameters of interest. A general model is set, as in [19], that allow
to analyze most event-related fMRI data. In a common Bayesian approach, we
would then calculate the joint posterior distribution of all parameters, which will
be the pivotal quantity for all further inference. On the contrary, we advocate
that, in our case, calculation of the posterior probability density function (pdf)
is unncessary. We propose a novel approach that focuses on modeling and that,
once the model has been properly set, makes it possible to directly lead prob-
abilistic inference about all parameters. More precisely, we utilize graph theory
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to conveniently deal with the model. Graphs give a very simple and efficient
representation of the model, however complex it may be. In this framework, we
translate the model into a directed acylcic graph (DAG) and by functional re-
lationships between the DAG variables. Using the Markov property of DAGs,
solving the problem in a general manner becomes straightforward: application
of Gibbs sampling scheme provides us with numerical approximation of the joint
posterior probability density function.

In the first part of this paper, we develop the general framework of Bayesian
estimation of the HRF, presenting an extended version of the General Linear
Model (GLM) to enable analysis of most fMRI experiments. In the next section,
the GLM is translated in terms of graphical models, and it is shown how inference
can readily be performed from there. We quickly present simulations and finally
apply our resolution model to real data, showing variability in HRFs.

2 HRF estimation in fMRI data analysis

2.1 Notations

In the following,  denotes a real number, @ a vector, and X a matrix. (z;)
stands for (2;)1<i<r- “ is the regular matrix transposition. Iy stands for the
N-by-N identity matrix. “c” relates two expressions that are proportional. For
two variables 2 and y, “z|y” stands for “x given y”, and p(z) for the probability
of z. N(m, V;x) is the Gaussian density function with mean m and covariance
matrix V calculated at point &. Inv—x?(d, s?; u) is the scaled inverse-chi-square
density function with d degrees of freedom and scale parameter s? evaluated at
point u.

2.2 General linear model (H)

Data. Let an fMRI experiment be composed of S sessions, each session involving
I different stimulus types. Define z,; = (rs7i7t)ts’0<t<ts,N as the time series of
the ith stimulus for session s and y, = (ysyts’n)1<n<_N_the corresponding BOLD
fMRI time course of a voxel at (not-necessarily uniformly sampled) times (¢; ).
A discrete linear convolution model is assumed to hold between the stimulus
vectors and the data:

I K;

M
Ysits,n — § § hi,kAtxs,i,ts,n—kAt'i' /\s,mdm,ts,n+6tn n=ng+1,..., Ny,
i=1 k=0 m=1

where n; is the largest integer so, that ¢, , — K; At < t; ; for all i. The (K; +1)-
dimensional vectors h; = (h; g a¢)" represent the unknown HRFs to be estimated,
sampled every At. They are assumed to be constant across sessions. Ly = Ny —nj
is the actual amount of data used in the calculation for each session. X, ; =
(€s,it, .—kae) are the regular Ls-by-(K + 1) design matrices, consisting of the
lagged stimulus covariates. The L;-by-M; matrices D; = (dm,ts,n) are the values
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at times (¢ ) of a basis of M, functions that takes a potential drift and any
other nuisance effect into account, and the A; = (A;,m)" are the corresponding
coeﬂicients For the sake of simplicity, the bases are assumed to be orthonormal,
i.e. L LDt ¢Ds = Iy, . Vectors e; = (€5, )" account for noise and are supposed to
consist of independent and identically distributed Gaussian variables of unknown
variances (02), assumed to be independent from the HRF. In matrix form, (H)
boils down to

I
- ZXs,ihi ‘I‘Ds)\s ‘I‘es;

i=1
also called General Linear Model (GLM). In this model, the likelihood of the
data reads

s=1,...,5,

p((y,)H, (hi), (o H (y, [, (hi), o, As),

with each term in the product reading

1
p<ys|H: (hi)aU?;)\s) = N (ZXS,ZhZ +DSASJO-?ILS;ys) .

i=1

HRF's and hyperparameters. The GLM being ill-conditioned, prior informa-
tion must be incorporated in order to constrain the problem. Since the underlying
physiological process of BOLD fMRI is as of yet only partially understood, we
set the following soft constaints [16,19]:

(P1) the HRFs start and end at 0. This amounts to setting the first and last
samples of each HRFs to 0, so that only K; — 1 parameters (instead of

K; + 1) are now unknown.
(P2) the HRFs are smooth. Quantification is achieved by setting Gaussian priors

for the norm of the second derivative of the HRFs, whose variances are
adjusted by hyperparameters ¢;’s

p(hi|H,e}) = N (0,2R; " hy) i=1,...,1
where R; is the following (K; — 1)-by-(K; — 1) matrix:
5 =41 0 0
-4 6 -4 1 0

1 -46 -41 0
0 1 46 —-41 0

1
=
0 1 —-46 —4 1 0
0 1 —4 6 —4 1
0 1 —4 6 —4
0 0 1 —4 5
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(P3) No prior dependence is assumed between HRFs, so that

I
p((hi), () |H) = [T p(hilH, &) - p(ef |H)

i=1

The ¢?’s are assumed to be a priori i.i.d. with common pdf set to a scaled
inverse-x? with n. degrees of freedom and scale parameter s2.

Drifts and noise variances. Unlike the HRFs, noise variances and drift pa-
rameters may vary across sessions. The ¢2’s are assumed to be i.i.d .with com-

df led i -x? distributi ith d f freed d scal
mon pdf a scaled inverse-y* distribution with n, degrees of freedom and scale
parameter s2. The A, are assumed to be i.i.d. with common pdf a Gaussian pdf
of mean mg and covariance matrix V.

Joint posterior distribution. Considering the model so constructed and as-
suming no further prior dependence between parameters, formal application of
the chain rule yields

S

p((y): (\). (i), (02), (D)11) = [ plw, I, (), o) - pOA|H) - (e 1)
=, 1)
< TLpthalir, ) -p(e )

i=1

Replacing all distributions by their functional forms, this joint posterior pdf
could be calculated in closed form, as is indeed done in most research papers
applying Bayesian analysis. From there, conditional pdfs could be derived if
Gibbs sampling is required. We propose to avoid this step and directly proceed
to inference. In order to do so, we beforehand embed our model in a framework
that allows for convenient representation and handling: directed acyclic graphs.

3 Graphical modeling

3.1 Directed acyclic graphs (DAGs)

A graph G is a mathematical object that consists of two sets, a set of vertices,
K, and a set of edges, F, consisting of pairs of elements taken from K. There
is a directed edge or arrow between vertices a and b in K if the set E contains
the orderd pair (a,b); vertex a is a parent of vertex b, and vertex b is a child of
vertex a. An oriented graph is a graph whose edges are all oriented.

The major feature of DAGs is that any probability density that is compatible
with the graph must factorize according to the so-called factorization property.
More precisely, let G be a DAG structure, and (mn)lgngN a set of variables. If
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the variable set is compatible with G, then the pdf p(#) that can be decomposed
as:
N
p() = [] p(@alpa(n)), (2)

n=1

where pa(n) is the set of parents of vertex @,. Defining a graph amounts to 1/
defining relevant variables (i.e., nodes) «,, 2/ defining structural relationships
(i.e., edges) ®, — @m,, and 3/ defining functional relationships p (#,|pa(n)).
Pearl [20] showed a property that proves to be very efficient for numerical sam-
pling, namely that nothing more is required to calculate the conditional prob-
ability of any DAG node: the probability distribution of any variable ®; in the

network, conditioned on the state of all other variables, is given by the product

p(anlrest) o p (zalpa(n)) - T p(=;lpali)), 3)
j€ch(n)

where ch(n) stands for the children nodes of @,. In other words, the conditional
probabilities can be derived from local quantities that are part of the model
spectification.

3.2 DAG model for HRF estimation

The GLM can easily be expressed in terms of DAG. Indeed, consider the DAG
proposed in Figure 1. Irrespective of the functional relationships between nodes,
Relation (2) states that the joint posterior pdf for all DAG variables decomposes
exactly like the posterior pdf in Equation (1). Identifying all functional relation-
ships of the DAG to their counterparts for model (H) then makes the DAG a
perfect representation of the GLM. However complicated (H) may be, it is still
much simpler to conceptualize in graph form than as it was presented before.
Whereas determination of structural relationships between two given variables
in model (H) remains a tough problem to tackle, the corresponding DAG clearly
and unambiguously represent all possible independence relationships, that can
be read off the graph using Markov properties.

3.3 Numerical inference

To obtain a numerical approximation of the joint posterior pdf, we apply Gibbs
sampling scheme. Gibbs sampling consists of starting with a seed vector and
sequentially modifying one vector component at a time by sampling according
to the conditional pdf of that component given all other components. Samples
are composed of the set of all vectors whose components have been updated an
equal amount of times.

An issue with Gibbs sampling is to break the vector of all parameters into
components whose conditional sampling can easily be performed. Another one
is derivation of the conditional pdfs corresponding to the chosen clustering. In
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Fig.1. DAG corresponding to the General Linear Model. The gray nodes represent
available information.

our case, both questions are answered at once, thanks to the previous step of
graph modeling. As a matter of fact, it first allows us to decompose the param-
eter vector onto its 27 + 2S5 canonical components: I ¢;’s and h;’s, S 02’s and
As’s (all y — s’s begin given, no sampling need to be done on these variables).
The updating steps are performed on these variables jand we therefore need ac-
cess to the following conditional pdfs: p(h;|H,rest), p(eZ|H,rest), p(o?| H, rest),
and p(As|H,rest). But, according to Pearl’s theorem, knowledge of the func-
tional relationships is sufficient to infer these conditional pdfs. Application of
Equation (3) yields

p(e?|H,rest) I p(e?|H) -p(h;|H, 612) =Inv—y? (pi, 2 ei)
s

p(hi|H’reSt) & p(hl|Hﬂ 6?) ' Hp<ys|Ha (hi):o-faAS) = N('SlaAZ:hl)
s=1

p(o?|H, rest)  p(oi|H) - p(y,|H, (hi), 02, A) = Inv—x" (vs,w?; 07)
p(As|H, rest) o< p(As|H) -p(ys|H, (hi), 02, Xs) = N (v, T's; As)
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wi = (K — 1)+ n.
5, nes?+hiRh;

TTK 1) +n
v =Ls+n,
e nes + |y, — > X5 ihi — D2
* Ls + no
1 1 ! 1
51 = <€_2R+ Z Xz le:i) Z ﬁX;,z Ys — ZXx,jhj — DA
i s e i

b
I

The sampling can then be performed. We sequentially updating the ¢;’s, then
the h;’s, the ¢2’s and finally the A’s. We are admitedly mostly interested in the
HRFs, but knowledge of the values taken by the other parameters are relevant
as well for our analysis and a better understanding of brain processing. Gibbs
sampling gives us access to estimates for all parameters or any quantity of interest
related to them.

4 Simulations

We simulated data with two HRFs, as depicted in Figure 2, and one session
of N = 100 time samples. A quadratic drift and Gaussian white noise were
also added. The noise variance was set to o2 = 50. This setting corresponds to
a SNR® of 13. For the analysis, we set K = 20, M = 3 with a quadratic drift,

= (1,000 0 0), Vo diagonal, with diag(V) = (1002 1 1), n, = n, = 1, s2 = 1,
52 = 102. Our unoptimized Matlab program took about 20 s on a Ultra Spark
workstation to run 1,000 updates. We kept the 500 last samples to lead inference.
The noise variance was estimated at 0 ~ 53.5 4 10.6, and the hyperparameters
€7 &~ 0.8440.64 and €2 ~ 0.424+0.36. As shown on Figure 2, HRF estimates are
very accurate.

5 defined as SNR= 201og, o (Xs,il| X s,ihi||/v/Ls02)
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Fig.2. Simulations. Estimated (dashed line) and true (solid line) HRFs. Top:
Maximum-Likelihood estimate; bottom: estimate with temporal prior.

5 Real data

6 Discussion

Our approach made it possible to associate the well-known general linear model
for HRF estimation in fMRI data analysis to a directed acyclic graph. This
had the first advantage of making clear all modeling hypotheses. Moreover, in a
Bayesian framework, the complex, yet central, step of calculating the joint pos-
terior pdf was avoided. Instead, the graph provided us with a very convenient
tool to first break down the set of all variables into coherent subsets, namely
its nodes. Using the Markov properties, it is straightforward to derive all con-
ditional pdfs that are required for Gibbs sampling as products of conditional
pdfs that have been specified with the modeling. Fully probabilistic numerical
inference is then straightforward at a reasonable time cost. For an increased
effectiveness, the sampling procedure could be optimized. Convergence could
be monitored through comparison of within- and between-variances of parallel
chains as proposed in [21].

In this framework, increasing the model complexity can easily be performed.
As a matter of fact, the proposed model can already be seen as an improvement
of the simpler one-HRF, one-session DAG structure. Now, consideration of local
spatial information, as in [11], could be achieved by gathering of all independent
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voxel graphical models and addition of relationships between h, ;’s. As more
and more information is incorporated into the model, the corresponding graph
will become more and more complex. However, tools have been developed to
deal with them. A general procedure is proposed in [22] to sample from pdfs
that have the structure implied by Equation (3) using rejection sampling. For
huge graphs, [23] proposed an efficient variant of Gibbs sampling. Last, but not
least, parallel processing of Gibbs sampling can be implemented. To avoid the
problem of simultaneous updating of neighboring variables, one has to apply
the so-called “edge reversal” control policy: Initially, the links of the graph are
assigned arbitrary acyclic orientation of arrows (independently of the model
graph). Each processor inspects the orientation of the arrows on its incident
links and waits until all arrows point inward, in which case it becomes activated.
When it completes the computation, it reverses the direction of all its incident
arrows. This strategy has very interesting features, as detailled in [20].

We finally believe that this novel approach has a much broader application
range than just fMRI data analysis. Indeed, we are confident in the fact that
any Bayesian model can be embedded in a graphical framework, allowing for
efficient and automated inference.

7 Conclusion

In this paper, we proposed a novel Bayesian inference framework for HRF esti-
mation in fMRI data analysis, based on translating the existing Bayesian model
into a DAG to combine the features of graphical modeling and Bayesian analysis.
This approach makes extensive use of directed acyclic graphs to 1/ represent the
model in a compact, yet efficient way, and 2/ lead probabilistic inference through
Gibbs sampling. This technique takes advantage of Markov properties of DAGs.
Models can easily be designed, and both structural (i.e., of independence) and
functional relationships are clearly presented. Moreover, the local properties of
structural relationships renders the model graph very simple to structurally or
functionaly modify, either because it does not correctly explain the phenomenom
under interest, or because a model that is more complex is sought. Using Gibbs
sampling on the DAG, fully probabilistic, numerical inference is straightforward.
Further research includes integration of spatial constraint and of relevant phys-
iological information.
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