. Affyteam, Guide to probe logarithmic intensity error (plier) estimation, 2005.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate : a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society B, vol.57, pp.289-300, 1995.

Y. Benjamini and D. Yekutieli, Quantitative Trait Loci Analysis Using the False Discovery Rate, Genetics, vol.171, issue.2, pp.783-790, 2005.
DOI : 10.1534/genetics.104.036699

A. Boulesteix, PLS Dimension Reduction for Classification with Microarray Data, Statistical Applications in Genetics and Molecular Biology, vol.3, issue.1, p.33, 2004.
DOI : 10.2202/1544-6115.1075

S. De and J. , Simpls : An alternative approach to partial least squares regression, Chemometrics and Intelligent Laboratory Systems, pp.251-253, 1993.

J. M. Freudenberger, Comparison of background correction and normalization procedures for highdensity oligonucleotide microarrays, 2005.

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek et al., Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring, Science, vol.286, issue.5439, pp.531-537, 1999.
DOI : 10.1126/science.286.5439.531

I. Guyon and A. Elisseeff, An introduction to variable and feature selection, J. Mach. Learn. Res, vol.3, pp.1157-1182, 2003.

I. S. Helland, On the structure of partial least squares regression, Communications in Statistics - Simulation and Computation, vol.5, issue.2, pp.581-607, 1988.
DOI : 10.1137/0905052

A. Rafael, . Irizarry, M. Benjamin, F. Bolstad, . Collin et al., Summaries of Affymetrix GeneChip probe level data, Nucleic Acids Res, vol.31, issue.4, p.15, 2003.

R. Kohavi and G. H. John, Wrappers for feature subset selection, Artificial Intelligence, vol.97, issue.1-2, 1998.
DOI : 10.1016/S0004-3702(97)00043-X

R. Manne, Analysis of two partial-least-squares algorithms for multivariate calibration, Chemometrics and Intelligent Laboratory Systems, vol.2, issue.1-3, pp.187-197, 1987.
DOI : 10.1016/0169-7439(87)80096-5

R. Development and C. Team, R : A language and environment for statistical computing, 2007.

C. Saunders, A. Gammerman, and V. Vovk, Ridge regression learning algorithm in dual variables, 1998.

J. Schäfer and K. Strimmer, An empirical Bayes approach to inferring large-scale gene association networks, Bioinformatics, vol.21, issue.6, pp.754-764, 2005.
DOI : 10.1093/bioinformatics/bti062

M. Tenenhaus, Mthodes pour dcrire, expliquer et prvoir, 2007.

R. Tibshirani, Regression shrinkage and selection via the lasso, 1998.

H. Zou and T. Hastie, Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.5, issue.2, pp.301-320, 2005.
DOI : 10.1073/pnas.201162998