A. Agouzal and F. Oudin, A posteriori error estimator for finite volume methods, Applied Mathematics and Computation, vol.110, issue.2-3, pp.239-250, 2000.
DOI : 10.1016/S0096-3003(99)00118-6

M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis, Computer Methods in Applied Mechanics and Engineering, vol.142, issue.1-2, 2000.
DOI : 10.1016/S0045-7825(96)01107-3

M. Ainsworth, Robust A Posteriori Error Estimation for Nonconforming Finite Element Approximation, SIAM Journal on Numerical Analysis, vol.42, issue.6, pp.2320-2341, 2005.
DOI : 10.1137/S0036142903425112

B. Andreianov, F. Boyer, and F. Hubert, Discrete duality finite volume schemes for Leray???Lions???type elliptic problems on general 2D meshes, Numerical Methods for Partial Differential Equations, vol.152, issue.1, pp.145-195, 2007.
DOI : 10.1002/num.20170

URL : https://hal.archives-ouvertes.fr/hal-00005779

I. Babuska and T. Strouboulis, The finite element methods and its reliability, 2001.

A. Bergam, Z. Mghazli, and R. Verfürth, Estimations a posteriori d'un schéma de volumes finis pour unprobì eme non linéaire, Numer. Math, pp.95-599, 2003.

C. Carstensen and S. Funken, Constants in Clment-interpolation error and residual based a posteriori estimates in finite element methods, East-West J. Numer. Math, vol.8, pp.153-175, 2000.

C. Carstensen and S. Funken, Fully Reliable Localized Error Control in the FEM, SIAM Journal on Scientific Computing, vol.21, issue.4, pp.1465-1484, 2000.
DOI : 10.1137/S1064827597327486

C. Carstensen, R. Lazarov, and S. Tomov, Explicit and Averaging A Posteriori Error Estimates for Adaptive Finite Volume Methods, SIAM Journal on Numerical Analysis, vol.42, issue.6, pp.2496-2521, 2005.
DOI : 10.1137/S0036142903425422

Y. Coudì-ere, J. Vila, and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem, ESAIM:M2AN, pp.493-516, 1999.

E. Dari, R. Duran, C. Padra, and V. Vampa, A posteriori error estimators for nonconforming finite element methods, ESAIM:M2AN, pp.385-400, 1996.
DOI : 10.1051/m2an/1996300403851

URL : http://archive.numdam.org/article/M2AN_1996__30_4_385_0.pdf

S. Delcourte, K. Domelevo, and P. Omnes, A Discrete Duality Finite Volume Approach to Hodge Decomposition and div???curl Problems on Almost Arbitrary Two???Dimensional Meshes, SIAM Journal on Numerical Analysis, vol.45, issue.3, pp.1142-1174, 2007.
DOI : 10.1137/060655031

URL : https://hal.archives-ouvertes.fr/hal-00635633

K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids, ESAIM:M2AN, pp.1203-1249, 2005.

R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, Handbook of numerical analysis, vol.7, pp.713-1020, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00346077

R. Glowinski, J. He, J. Rappaz, and J. Wagner, A multi-domain method for solving numerically multi-scale elliptic problems, Comptes Rendus Mathematique, vol.338, issue.9, pp.338-741, 2004.
DOI : 10.1016/j.crma.2004.02.014

R. Herbin, An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh, Numerical Methods for Partial Differential Equations, vol.28, issue.2, pp.165-173, 1995.
DOI : 10.1002/num.1690110205

F. Hermeline, A Finite Volume Method for the Approximation of Diffusion Operators on Distorted Meshes, Journal of Computational Physics, vol.160, issue.2, pp.481-499, 2000.
DOI : 10.1006/jcph.2000.6466

F. Hermeline, Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.16-18, pp.1939-1959, 2003.
DOI : 10.1016/S0045-7825(02)00644-8

R. Lazarov and S. Tomov, A posteriori error estimates for finite volume element approximations of convection-diffusion-reaction equations, Computational Geosciences, vol.6, issue.3/4, pp.483-503, 2002.
DOI : 10.1023/A:1021247300362

S. Nicaise, A posteriori residual error estimation of a cell-centered finite volume method, Comptes Rendus Mathematique, vol.338, issue.5, pp.419-424, 2004.
DOI : 10.1016/j.crma.2003.10.040

S. Nicaise, A posteriori error estimations of some cell-centered finite volume methods, SIAM Journal on Numerical Analysis, vol.43, issue.4, pp.1481-1503, 2005.
DOI : 10.1137/S0036142903437787

S. Nicaise, A Posteriori Error Estimations of Some Cell Centered Finite Volume Methods for Diffusion-Convection-Reaction Problems, SIAM Journal on Numerical Analysis, vol.44, issue.3, pp.949-978, 2006.
DOI : 10.1137/040611483

M. Ohlberger, A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations, ESAIM:M2AN, pp.355-387, 2001.

M. Ohlberger, Higher order finite volume methods on selfadaptive grids for convection dominated reactive transport problems in porous media, Computing and Visualization in Science, vol.11, issue.1, pp.41-51, 2004.
DOI : 10.1007/s00791-004-0128-1

M. Plexousakis and G. E. Zouraris, On the Construction and Analysis of High Order Locally Conservative Finite Volume-Type Methods for One-Dimensional Elliptic Problems, SIAM Journal on Numerical Analysis, vol.42, issue.3, pp.1226-1260, 2004.
DOI : 10.1137/S0036142902406302

J. R. Shewchuk, Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator, Lecture Notes in Computer Science, vol.1148, pp.203-222, 1996.
DOI : 10.1007/BFb0014497

R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques, 1996.

R. Verfürth, Error estimates for some quasi-interpolation operators, ESAIM:M2AN, pp.695-713, 1999.

M. Vohralík, A Posteriori Error Estimates for Lowest-Order Mixed Finite Element Discretizations of Convection-Diffusion-Reaction Equations, SIAM Journal on Numerical Analysis, vol.45, issue.4, pp.1570-1599, 2007.
DOI : 10.1137/060653184

M. Vohralík, A posteriori error estimation in the conforming finite element method based on its local conservativity and using local minimization, Comptes Rendus Mathematique, vol.346, issue.11-12, pp.346-687, 2008.
DOI : 10.1016/j.crma.2008.03.006

M. Vohralík, Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods, Numerische Mathematik, vol.59, issue.3, pp.121-158, 2008.
DOI : 10.1007/s00211-008-0168-4