Numerical prediction of elastic properties for alumina green parts printed by stereolithography process - Axe 1 : procédés céramiques Accéder directement au contenu
Article Dans Une Revue Journal of the European Ceramic Society Année : 2021

Numerical prediction of elastic properties for alumina green parts printed by stereolithography process

Résumé

Stereolithography is a process based on the photopolymerization of a UV-reactive system consisting of ceramic particles dispersion in a curable resin. A key issue of this process is the control of the rigidity of green parts, which are strongly related to UV light exposure. This work is focused on the numerical prediction of green part stiffness according to stereolithography manufacturing parameters. A first macroscopic approach, based on the modelling of ceramic suspension polymerization, makes it possible to establish a relationship between the exposure and the Young's modulus. A second microscopic approach, using a periodic homogenization technique based on the strain energy, is applied to a 2D finite element model to evaluate the effective elastic properties. Numerical results show that macroscopic model is able to provide a Young’s modulus with a good level of accuracy. The modelling results from the microscopic model demonstrate an acceptable convergence with the experimental Young’s modulus.
Fichier principal
Vignette du fichier
Numerical prediction of elastic properties for alumina green parts printed by stereolithography process (1).pdf (1.4 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03014723 , version 1 (03-05-2021)

Identifiants

Citer

Philippe Michaud, Vincent Pateloup, Justine Tarabeux, Arnaud Alzina, Damien André, et al.. Numerical prediction of elastic properties for alumina green parts printed by stereolithography process. Journal of the European Ceramic Society, 2021, 41 (3), pp.2002-2015. ⟨10.1016/j.jeurceramsoc.2020.10.068⟩. ⟨hal-03014723⟩
170 Consultations
289 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More