Accéder directement au contenu Accéder directement à la navigation
Bienvenue dans la collection du Laboratoire de Mathématiques
J.A. Dieudonné - UMR 7351




A partir de cette page, vous pouvez :

 

DERNIERS DÉPÔTS

Chargement de la page

 


 

NOMBRE DE DOCUMENTS

2 874

NOMBRE DE NOTICES

1 706

EVOLUTION DES DÉPÔTS

RÉPARTITION DES DÉPÔTS PAR TYPE DE DOCUMENT

Open Access LJAD

77 %

 

Mots clés

Optimisation Convergence analysis Hydrostatic reconstruction Convergence Numerical analysis EDP Game theory Workflows Plasma equilibrium Implicitization Operads Normal form Isogeometric analysis Level sets Source terms Inverse problem Finite element Gibbs distributions Finite volume methods Simulation Chaos Large deviations Shallow water equations Finite volume Scalar conservation laws NAVIER-STOKES EQUATIONS VOLUMES FINIS Finite volume method Optimization Seismic imaging Small divisors Harmonic numbers Nanophotonics Consistency Coextrusion Density estimation Maxwell equations Bifurcation theory Normal forms Hybridizable discontinuous Galerkin method Nonlinear water waves Blow-up Fractional BV spaces Maxwell's equations Parallel computing Shallow water Domain decomposition PDE Well-balanced scheme Tokamak Partial differential equations Solitary waves Finite volumes Operad Elastic waves Aerodynamics Optimal control Modélisation Chemotaxis Harmonic domain Stability Discontinuous Galerkin Stabilité Model selection Nonlinear vibrations Entropy solution Équations de Maxwell Shape optimization Hyperbolic systems Water waves Inverse problems Periodic solutions Friction Finite elements Domain decomposition methods Adaptive estimation Boundary conditions Complexity Rheology Descent direction Conservation laws CFD Wave propagation Interpolation Finite volume scheme Finite element method Discontinuous Galerkin method Dynamical systems Discontinuous Galerkin methods Nonlinear elliptic equations Bifurcations Finite volume schemes Segmentation Euler equations Data completion Electromagnetics Classification Turbulence Image segmentation Interacting particle systems