Study of nuclear fission by spectrometry of the prompt gamma rays

Michał Rąpała 1, 2
2 LEPH - Laboratoire d'Etudes de PHysique
SPRC - Service de Physique des Réacteurs et du Cycle : DEN/DER
Abstract : The desire to improve the fuel efficiency of nuclear reactors has motivated new solutions in their design. One of them is the heavy reflector used in the generation III+ and in the future generation IV reactors. γ-rays passing through matter cause its excitation and temperature rise. It is a process called γ-heating, and it is responsible for more than 90% of the heat production in the non-fuel region of the nuclear reactor. This is also the case of the heavy reflector. To simulate the γ-heating effect in every state of the nuclear reactor it is necessary to have precise data on the prompt γ-rays emitted by different fission fragments produced in the course of the nuclear chain reaction. In 2012, at the research reactor of the ILL, an innovative experiment, called EXILL, was conducted. It produced a large amount of useful data on the de-excitation of the fission fragments. A large number of HPGe detectors were used to study the neutron induced fission process by measuring the emitted γ-rays. Fissile targets were irradiated by an intense cold neutron beam. In this work we analyzed the ²³⁵U targets. We studied several fission fragments and more generally the fission process by using high-resolution γ-ray spectroscopy. At the beginning, we used the standard γ-γ-γ coincidence analysis method. We were able to filter experimental data, identify the well produced γ-rays, and calculate their relative intensities. The problems we have encountered are related to the background. The results obtained with this method were background dependent and thus presented some problems with reproducibility. We therefore developed and tested a new analysis methodology. Its crucial feature is a coincidence gates scanning in three directions which helps to find the most suitable background. The idea was to move from a “spectroscopic” method, which main purpose is finding new transitions and excited states in a nucleus, to a “spectrometric” method, which allows us to obtain more precise γ-ray intensities. We developed a semi-automatic analysis software which facilitates fitting of the chosen γ-ray peak, the contamination and the background. Various γ-ray intensity calculation schemes were derived to take into account different contamination strengths and placements. The results of the analysis with the new technique are reproducible and more reliable. The standard and the new analysis method were compared in the ¹⁴²Ba analysis. In this work, we also compared our experimental results on some nuclei, such as ¹⁰⁰Zr, with the simulation results performed with the FIFRELIN code. It is a Monte-Carlo code which simulates the fission process and the de-excitation of the fission fragments. It uses various models to describe these processes. We were able to test the behavior of different models implemented in FIFRELIN to find the optimal simulation parameter values and to test how well these setups reproduce the experimental results. FIFRELIN was unable to simultaneously reproduce the γ-ray intensities of ¹⁰⁰Zr and the prompt-neutron multiplicity averaged over all fission fragments. However, with modified simulation parameters, FIFRELIN locally provided correct prompt-neutron multiplicity for the fission fragment with the atomic mass A=100 and well reproduced γ-ray intensities of ¹⁰⁰Zr. We also compared our experimental results on ¹⁰⁰Zr coming from the ²³⁵U(n,f) process with the other available experimental data coming from the experiments on ²⁴⁸Cm(sf) and ²⁵²Cf(sf), and another experiment on ²³⁵U(n,f).
Liste complète des métadonnées

https://tel.archives-ouvertes.fr/tel-01988955
Contributor : Abes Star <>
Submitted on : Tuesday, January 22, 2019 - 10:44:23 AM
Last modification on : Thursday, April 11, 2019 - 8:48:10 AM

File

70990_RAPALA_2018_archivage.pd...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01988955, version 1

Citation

Michał Rąpała. Study of nuclear fission by spectrometry of the prompt gamma rays. Nuclear Experiment [nucl-ex]. Université Paris-Saclay, 2018. English. ⟨NNT : 2018SACLS390⟩. ⟨tel-01988955⟩

Share

Metrics

Record views

102

Files downloads

21