Longitudinal spin relaxation time of donor-bound electrons in a CdTe quantum well - Tout INSP Accéder directement au contenu
Article Dans Une Revue Physical Review B Année : 2020

Longitudinal spin relaxation time of donor-bound electrons in a CdTe quantum well

Résumé

We study the magnetic-field dependence of the longitudinal spin relaxation time T 1 of donor-bound electrons placed in the middle of an 8-nm CdTe quantum well with different doping concentrations in the range from 1 × 10 9 to 2.9 × 10 11 cm −2 and at low temperature. We use an extended photoinduced Faraday rotation technique, which expands the usual domain of the measured decays from tens of ns to μs. As in high-purity bulk semiconductors, a maximum relaxation time of around T 1 ∼ 10 μs is observed for a residually doped sample at low magnetic field of B = 0.08 T. For higher doping concentrations, the magnetic-field dependence of T 1 shows a nonmonotonic behavior: first a rapid increase, followed by a plateau or a decrease of T 1. The fast increase of T 1 at low magnetic fields is explained by the inhibition of the mechanisms identified at zero field-hyperfine and anisotropic exchange interactions-while the behavior at high magnetic field can be succesfully explained by a mechanism proposed by Lyubinskiy and associated to electron hops [I. S. Lyubinskiy, JETP Lett. 88, 814 (2008)]. A good agreement between experiment and theory is found for samples below the metal-insulator transition, when Dresselhaus terms of spin-orbit coupling are considered to be the dominant ones in the Hamiltonian describing the system.
Fichier principal
Vignette du fichier
PRB102-Garcia-Arellano.pdf (442.08 Ko) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03095950 , version 1 (04-01-2021)

Identifiants

Citer

G. Garcia-Arellano, C. Testelin, Frédéric Bernardot, Maria Chamarro, Karczewski G.. Longitudinal spin relaxation time of donor-bound electrons in a CdTe quantum well. Physical Review B, 2020, 102 (16), ⟨10.1103/PhysRevB.102.165314⟩. ⟨hal-03095950⟩
43 Consultations
92 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More