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Si les animaux n'existaient pas, ne serions-nous pas encore plus incompréhensibles a nous-

mémes ?

Georges-Louis Leclerc de Buffon
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Summary and aim of the thesis

Animal models are routinely used to mimic diseases in order to explore the impact
of pathological processes on brain networks or to measure the effect of a new therapy.
The mouse lemur (Microcebus murinus) is a primate that has attracted attention within
neuroscience research. This small animal is a model for studying cerebral aging and
various diseases such as diabetes-related encephalopathy, Parkinson's disease, or
Alzheimer's disease. It has a key position on the phylogenetic tree of primates and is
used to investigate primate brain evolution. Its cerebral anatomy is still poorly

described and its cerebral networks have never been investigated.

The first objective of this study was to develop new tools to develop a 3D digital
atlas of the brain of this model and to use this atlas to automatically follow-up brain
characteristics in cohorts of animals. A common question for the study of cohorts of
animals by MRI is the ability to register large series of images including images
recorded with different protocols. We developed a Python package called sammba-
MRI to generate specific cerebral templates and to coregister various images to this
template. This package offers an efficient integration of existing coregistration methods
(ANTS, AFNI). This package was used to create a template of mouse lemur brains to
create a digital atlas of the mouse lemur brain. This atlas and several other available
mammalian atlases have permitted to compare the regional brain volumes amongst
species. Measures from MRI atlases indicate that white matter to cerebral volume
index increased from rodents to small primates to macaques, reaching their highest

values in humans.

Studies of cerebral connectivity have contributed to many breakthroughs in the
understanding of brain function in normal as well as in pathological conditions such as
Alzheimer’'s or Parkinson’s diseases. The second objective of this work was to
characterize cerebral connectivity in mouse lemurs. This study was based on the
evaluation of mouse lemur brains after resting-state blood-oxygen level dependent
(BOLD) functional magnetic resonance imaging (fMRI). Patterns of low-frequency
signal oscillations recorded with this technique are similar in brain structures
functionally connected. Dedicated MR protocols were developed and sammba-mri was
used to coregister fMRI images. Then, we created a methodology to extract and
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characterize, for the first time, cerebral networks in the mouse lemur. We showed that
their brain is organised into local functional regions integrated into large scale
functional networks. They were classified as default-mode-like, control-executive-like,
motor, visual, basal ganglia and thalamic networks and compared to large scale
networks in humans. We highlighted common organisation rules but also

discrepancies between these two species.

The biological parameters associated to the organization of brain region into
networks are still poorly understood. In a last part of the study, we characterized the
relationship between resting-state fMRI and glutamate levels assessed by Chemical
Exchange Saturation Transfer imaging of glutamate (gluCEST). We highlighted a
relationship between the amplitude of low-frequency fluctuations (ALFF), a measure of
cerebral activity issued from rsfMRI as well as hubness and glutamate level, which
suggests that glutamate has a critical role on organization and regulation of brain
function. A relationship between hubness, local neuronal activity and an index of
glutamate level in the brain is consistent with the well-established role of glutamate as
an excitatory neurotransmitter. More precisely we found that glutamate is strongly
associated to ALFF in the cortical and subcortical brain regions. In the cortex,
glutamate is also associated to functional connectivity (hubness). We also highlighted
age-related changes for these parameters. They concern alterations of ALFF in the
default mode network and reduction of glutamate in the globus pallidus. We also
highlighted an age-related reorganization of the cortical/subcortical relationships

between ALFF and functional connectivity.
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Introduction

I.1. Overview of the mouse lemur primate

The mouse lemur (Microcebus murinus; Figure 1) or gray mouse lemur is a
prosimian non-human primate (NHP). It was first described in 1777 by the English
illustrator John Frederick Miller. Phylogenetically the mouse lemur is classified in the
Primate order, the Strepsirrhini sub-order, the infra order of the Lemuriforms and the
family of the Cheirogaleidae. The Lemuriforms infra order is entirely endemic to
Madagascar. The Cheirogaleidae are composed of 5 genera Microcebus, Mirza,
Allocebus, Cheirogaleus, and Phaner weighing from 30g to 600g. They are all
quadrupeds and mostly have an elongated body and short legs. They are nocturnal
species and sleep in small nests or holes in a tree (Mittermeier et al., 2008). Although
the mouse lemur is probably the most abundant mammalian species native to
Madagascar, its trade for commercial purposes has been prohibited since 1975 by the

Convention on International Trade of Endangered Species (CITES).

Figure 1 | Mouse lemur.

Morphologically the mouse lemur is characterized by its small size, around 25 to
28 centimetres including a tail length of 13 to 14.5 centimetres. Its body mass varies
during the seasons (summer = 75 grams, winter = 120 grams). Seasonal variations
can be reproduced in captivity by changing the photoperiod: long days (light >12h/day)
correspond to summer i.e. the dry season and a short day (light <12h/day) correspond
to winter i.e. the rainy season. These physiological variations are also characterized
by torpor, a lower temperature and a hypometabolism in winter which facilitates the
accumulation of fat reserves (Kobbe et al., 2014). These physiological modifications

are uncommon in a primate species. The mouse lemur’s diet in the wild is composed
14



of leaves, flowers, nectar, fruits and insects. In captivity it is composed of gingerbread,
fruits (such as banana and apple), eggs and concentrated milk. Like many mammalian
species, the mouse lemur has seasonal breeding (end of the dry season) with at most
3 estrus lasting 1 to 5 days for the females. The gestation latency (60 days) results in
1 to 4 progenies weighing around 5 grams. Young mouse lemurs reach maturity quickly
(= 6 to 8 months).

The mouse lemur has a short lifespan in comparison to homologous primates, but
has a remarkable longevity for a mammal of its size. The lifespan of the mouse lemur
is around 4 years in the wild, due to high predation, but can reach 12 years in captivity
(Perret, 1997). Interestingly, the mouse lemur is considered old at around 6 years and
displays age-related alterations. As it ages, a decrease in its sensory function (hearing,
olfaction, visual acuity) and motor activity are observed (Beltran et al., 2007) (Nemoz-
Bertholet et Aujard, 2003) (Languille et al., 2012). MRI studies also described important
cerebral atrophies linked to an increase of the cerebro-spinal fluid (CSF) surrounding
the brain and within the ventricles (Dhenain et al., 2000)(Figure 2). This atrophy occurs
in 60% of the aged lemurs (Kraska et al., 2011) with an important variability of atrophy

patterns.

Figure 2 | Aged related atrophy in the mouse Ilemur brain.
Anatomical MRI images of a non-atrophied (5.5 years, a) and atrophied (8.8 years, b) mouse
lemur brain. The arrow shows CSF inclusion surrounding the cerebral cortex. Adapted from
(Kraska et al., 2011).

Cognitive alterations related to the atrophy severity in the hippocampus and the
entorhinal cortex are reported in the aged mouse lemur (Picq et al., 2012). Numerous
studies have explored Alzheimer-like pathology (N. Bons et al., 2006; Kraska et al.,

2011) while aging in the mouse lemur. The Alzheimer's disease-like pathological
15



changes were mainly defined by the accumulation of amyloid plaques occurring in
about 20% of the aged lemurs (Noélle Bons et al., 1992) and some rare tauopathy
(Giannakopoulos et al., 1997). More recently, mouse lemurs were used to artificially
induce Parkinson's (Mestre-Frances et al., 2018) or Alzheimer's diseases (Gary et
al., 2015). Mouse lemurs were also used to evaluate different therapies. Pifferi et al.
found that an Omega-3 fatty acid supplementation (Fish oil) enhances the resting-state
glucose consumption of the lemur’s brain (Pifferi et al., 2015). Another recent study
found that caloric restriction increases lifespan of the lemurs but affects their brain
integrity (Pifferi et al., 2018). Moreover, the key position of mouse lemurs on the
phylogenetic trees of primates, makes this animal an important model to investigate

primates’ brain evolution (Montgomery et al., 2010).

Despite its use to evaluate physio-pathological changes, several improvements
remain to be performed to characterize this animal. First, its brain was characterized
using 2D anatomical atlas (N. Bons et al., 1998) (Zilles et al., 1979) (Le Gros Clark,
1931). New digital atlases are required to improve the possible use of this animal.
Cerebral function is also poorly assessed in mouse lemurs. Here, we developed
dedicated tools to create a 3D digital atlas of its brain. We also developed new
protocols to characterize cerebral connectivity in mouse lemurs. We finally
characterized glutamate-based mechanisms associated to the organization of their
brains in neuronal networks and reported age-related changes modulating their
cerebral function. Further presentation of the rationale leading to each study is

presented before the presentation of an article focusing on each study.

|.2. Magnetic resonance imaging: from anatomy to brain networks
1.2.1. Magnetic resonance imaging: basics

Magnetic resonance imaging (MRI) is a non-invasive and non-ionizing technique
that is used to create images of the body. It is routinely used in the clinic for diagnosis
and in preclinical research to explore different tissue characteristics/contrasts. In
addition to anatomy, MRI permits the detection of several physiological properties such

as, spatial diffusion of water, metabolite concentration or blood flow and oxygenation.

Nuclear magnetic resonance was discovered by Bloch and Purcell in 1946 (Bloch,

1946) (Purcell et al., 1946). The theory is that most atomic nuclei such as hydrogen or
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phosphorus have a property called “spin” or spin angular momentum. Spin can be
orientated when absorbing the energy produced by a magnetic field. Thus, applying a
magnetic field (Bo) upon nuclei polarize and align their spin parallel (low-energy state)
or perpendicular (high-energy state) to this field (Grover et al., 2015). However, not all
nuclei are aligned to Bo and the proportion of the aligned nuclei results in a net
magnetization (M). The higher the magnetic field of the MRI, the higher the net
magnetization. The energy state of a nucleus can be changed by applying a
radiofrequency field (B1). These radiofrequencies are commonly applied in pulses
lasting microseconds that cause energy transition of the nucleus from low to high. The
absorbed energy is subsequently emitted by the nucleus, generating an oscillating
current within a reception coil and this process is called “free-induction decay” (FID).
The resonance frequency needed to induce a transition of energy can be calculated

by the equation of Larmor. The Larmor frequency (wo) is dependent on a constant for

each nucleus (yn) and the strength of the magnetic field (Bo).

wo = Yn-Bo

Thus, the frequency required to resonate a nucleus in a given magnetic field can be
established for each magnetic field. The localization of MR signal is performed using
gradient to create Bo field strength variations. The signal is encoded into two
dimensions (frequency and phase) to create a 2D image or slice using the Fourier
transform equation. The combination of this principle with the slice selective excitation

pulse allows the spatial localization of the signal within a three-dimensional (3D) space.

Differentiating two tissues with anatomical MRI is often based on their relaxation
properties that modify the signal intensity. The hydrogen nucleus (single proton) is the
most studied nucleus because of its abundance in fat and water. A difference in
relaxation properties between two tissues, changes the rate at which each nucleus
returns to its thermal equilibrium. This process is called T1 relaxation or longitudinal
relaxation and measures the time until the magnetization returns to its thermal
equilibrium. The transverse relaxation (T2) is the disappearance of the transverse
magnetization. It is due to the energy exchange between spins, which induces a loss
of phase coherence in the transverse plane and therefore a progressive disappearance
of the transverse magnetization. The T2 is referred to as T2 but also considers local

inhomogeneity of the magnetic field and the tissue susceptibility. Modifying several
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parameters in a sequence such as the time between two excitatory radiofrequency
pulses (repetition time) and time between the excitation pulse and the signal peak
(echo time) “weights” the image toward a contrast T1 or T2. As an example, using T+
contrast, brain tissues can be separated based on their distinctive contrasts producing
low signal intensity within the brain ventricles (dark), medium intensity within the gray
matter, and high intensity within the white matter (bright). This T1/T2 difference is one

of the mechanisms that provide contrast by MRI.

Practically, acquisition of MR images reposes on the use of dedicated acquisition
sequences that are particular setting of pulse sequences and pulsed field gradients
that allow to record spins in a particular state. The two basic sequences are spin-echo
and gradient echo sequences. The spin echo-sequence is based on the application of
a 90° pulse followed up by a 180° pulse, prior to acquisition of the signal from an echo.
This sequence can be adjusted to give T1-weighted, proton density, and T2-weighted
images. Gradient echo sequences were initially based on a single pulse varying from
5 to 90 degrees followed-up by an echo that is recorded. This sequence provides T1-
weighted, proton density, and T2*-weighted images. Larger flip angles give more T1
weighting to the image and the smaller flip angles give more T2* weighting to the
images. These basic sequences have been largely complexified to provide new

contrasts and faster imaging schemes.

1.2.2. BOLD signal

Blood oxygenation level dependent (BOLD) imaging is the standard technique used
to generate images in functional MRI (fMRI) studies. It relies on the measure of
cerebral blood flow and oxyhemoglobin/deoxyhemoglobin state of haemoglobin that
evolve when neurons from a brain region are activated (Boniface, 2002). The reason
fMRI is able to detect this change is due to a fundamental difference in the
paramagnetic properties of oxyhemoglobin and deoxyhemoglobin. Deoxygenated
hemoglobin is paramagnetic whereas oxygenated hemoglobin is not leading to
different signal in images (Figure 3). Heavily T2* weighted sequences are used to
detect this change, which is in the order of 1-5% (Gore, 2003).
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Figure 3 | BOLD signal: magnetic susceptibility to vascular oxygenation.

The MRI signal within the deoxygenated tissue is lower because of the field inhomogeneity
generated by the deoxyhemoglobin paramagnetic properties. The field inhomogeneity lead to

a faster decay of the signal. From (Gore, 2003)

BOLD signal was discovered in 1990 by Ogawa et al. (Seiji Ogawa et al., 1990).
They described tubular hypo-intensities in the rodent cortex that were visible with a
T2*-weighted sequence but not with a T2-weighted (Figure 4)Erreur ! Source du renvoi
introuvable.. They also highlighted for the first time, the paramagnetic effect of the

deoxygenated blood on the MRI contrast (S. Ogawa et al., 1990).

Figure 4 | Blood vessel detection with a gradient echo sequence in the rat brain.
Gradient echo epi (a) and spin echo epi (b) image acquired in an anoxic mouse brain. Tubular
intensities corresponding to blood vessels can be detected with gradient echo epi sequence.

From (Seiji Ogawa et al., 1990)
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Following the initial work by Ogawa et al., several groups characterized the
relationships between neuronal activation by a task and evolution of the BOLD signal.
They showed that following a stimulus, the BOLD signal show a small initial dip,
followed by a tall peak, and then a variable post-stimulus undershoot (Barth et Poser,
2011) (Figure 5).
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Figure 5 | BOLD hemodynamic response function following a single brief stimulus.
From (Barth et Poser, 2011).

The initial dip origin remains highly debated. It might reflect a quick extraction of the
blood oxygen prior to any cerebral blood flow increase. The initial dip is found in many
non-human species such as rats, cats and monkeys and is specific towards neuronal
activity (K.-S. Hong et Zafar, 2018). The main response or peak is usually delayed by
approximately 2 seconds. This interval could correspond to the time in which the blood
travels from arteries to draining veins and capillaries (Logothetis, 2003). The bulk of
the BOLD response is mediated by a variety of biological mechanisms contributing to
the hemodynamic response such as: blood flow, blood volume, increases in
deoxyhemoglobin concentration and oxygen metabolism. After the stimulus, a
decrease of the BOLD signal is typically observed and called undershoot. The
undershoot origin is also disputed and supposedly reflects an increase of the cerebral

blood flow overcompensating for the oxygen increase (Logothetis, 2003).

Thus, the BOLD signal is assumed to indirectly measure the neuronal activity in a

process called neurovascular coupling (Murakami et al., 2018).
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1.2.3. From BOLD signal to evoked functional MRI

BOLD signal is largely used to characterize cerebral activity following activation with
various stimuli (i.e. motor (Bandettini et al., 1994), speech (Hinke et al., 1993) or
cognitive tasks (Buckner et al., 1996). The use of this technique to infer on brain
function relies on block task paradigm. It corresponds to a series of trials (i.e resting
and activity task) performed during a period of time. The signal acquired during these
two blocks can be compared statistically. Blamire et al. was one of the first studies
detecting a BOLD signal increase in the visual cortex in response to an external

stimulus (flashing checkerboard) (Blamire et al., 1992) (Figure 6).
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Figure 6 | BOLD response to stimuli in the visual cortex.

BOLD signal total response from voxels extracted in the visual cortex. The BOLD signal peak
exhibits a delay between the task (ON = 2 seconds) and its response. From (Blamire et al.,
1992).

One of the major steps toward the wide use of BOLD fMRI was the development of
fast imaging sequences permitting the acquisition of multiple images during a resolute
period of time (Cohen et Weisskoff, 1991) in order to perform efficient blocked task

paradigms.

1.2.4. From BOLD signal to resting-state functional MRI

Further analyses of BOLD-fMRI signal have also led to another major discovery, i.e.
the existence of spontaneous and elaborated patterns of neuronal activity in the human
brain at rest (B. Biswal et al., 1995). By exploring the correlated activity of the motor
cortex for a finger-tapping experiment, Biswal et al. found during a baseline session
that interhemispheric coordinated activity occurs even in the absence of stimuli (B.
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Biswal et al., 1995)(Figure 7). Rapidly, this technique is coming to be used to describe
a large set of brain areas connected by spontaneously coordinated activities at rest.
These connected areas are defined as resting-state networks (Guye et al., 2008). The
default-mode network, salience network, sensory motor network, visual networks are
amongst the most widely described networks. We will focus on the description of
cerebral networks characterized in humans (“.4.1. Organization and function of
cerebral networks in humans”) and in animals (“.4.2. Organization and function of
cerebral networks in non-human primates”). The analysis of resting-state networks is

based on image processing algorithms that will be described in the following paragraph

Figure 7 | BOLD correlation in the motor cortex under activation and at rest.
This figure displays on the left (a) the correlated voxel corresponding to the activation paradigm
(finger tapping). Coordinated activity is observed in the right and the left hemisphere of the
motor cortex. Similar coordinated activity was observed at rest (b) and in similar areas. From
(B. Biswal et al., 1995).

1.3. Overview of the methods used to characterize cerebral networks by resting-
state fMRI

1.3.1. Overview of image acquisition schemes for rsfMRI

fMRI technique is based on the images acquisition at low spatial resolution. Thanks

to this low spatial resolution, it is possible to obtain an excellent temporal resolution
which produces images of the whole brain every 1 to 5 seconds. The total acquisition
time of an fMRI scan can last a few minutes (usually between 5 and 15 minutes)
resulting in hundreds of images covering the entire brain (or one 4D image with three
spatial dimensions and one temporal dimension). The different slices of a single brain
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image are not acquired at the same time. An interleaved acquisition (1, 3, 5...) is
commonly used to reduce the “slice cross-talk artefacts”. The intensity of the voxels of
a 4D fMRI image varies by a low percentage over time. However, this small variation

can be detected with the algorithms described in the following paragraphs.

1.3.2. From signal to functional connectivity analysis

Functional connectivity is the connectivity between brain regions that share
functional properties. More specifically, it can be defined as the temporal correlation
between spatially remote neurophysiological events, expressed as deviation from
statistical independence across these events in distributed neuronal groups and areas
(B. B. Biswal et al., 1997). Several algorithms have been implemented to analyze this

connectivity. We will present the most widely used algorithms.

1.3.2.1. Seed-based correlation analysis

Seed-based correlation analysis is one of the most common methodologies for
functional network characterization (Greicius et al., 2003) (Figure 8). This method was
first adopted by Biswal et al. to explore Pearson's correlation coefficients between
voxelwise signals and ROls or “seeds” (B. Biswal et al., 1995). The seed is a small
area, used to extract and average the BOLD signal. It can be defined by creating either
a sphere corresponding to the coordinates of brain regions or by using regions
predetermined by a brain atlas. The Pearson's correlation coefficients can be
measured between the signal extracted within the seed and the voxelwise signals. The
reconstruction of the Pearson's correlation coefficients corresponding to each voxel in

the 3D space of the brain image highlights areas connected to the seed.
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Figure 8 | Human default mode network characterized by seed-based correlation

analysis.

Map of the resting-state default mode networks highlighted by the voxels connected to the
posterior cingulate cortex (seed, blue arrow). Significant clusters are found in (A&C) inferior
parietal cortex, (B) orbitofrontal cortex, ventral anterior cingulate cortex, (D&G) medial
prefrontal cortex, (E) dorsolateral prefrontal cortex, (F) parahippocampal gyrus, (H)

inferolateral temporal cortex. From (Greicius et al., 2003).

1.3.2.2.  Analyses based on BOLD signal spatial decomposition

Network organization can also be explored by using spatial decomposition
algorithms. Two main algorithms were developed in order to extract brain networks on
raw images: (1) independent component analysis (ICA) and (2) dictionary learning.
Both produce a set of activation 3D maps that permit the characterization of the
cerebral networks. Although these algorithms are more complex than the seed based
correlation analysis, the identification of co-activated areas remains based on the same

basic principle.

(1) ICA was the first algorithm developed and adapted for fMRI images. This
computational algorithm assumes that several areas of the brain can be
separated into different spatially or temporally independent sources of signal
called components. One of the assumptions of ICA is that the components
display a non-Gaussian signal. The two broadest definitions of independence for
ICA are the maximization of the non-Gaussianity and the minimization of mutual

information.
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(2) The dictionary learning method identifies a sparse representation
(component) of an array that can form a linear combination. The array or 2D
matrix is extracted using an fMRI image (column = brain voxels; rows = time
points). One advantage to dictionary learning is that it allows repeated use of
brain voxels, meaning that the same voxel could be included in different

components. This property provides an improved flexibility of decomposition.

Both methods have succeeded in separating functional regions from rsfMRI
datasets. Their limitation is that the number of components has to be estimated prior
to the analysis and this assumption greatly affects the ICA or dictionary learning results
(Figure 9). Clear segmentation differences between two similar components could
appear. For example, the components of Figure 9 (A; 24) and (B; 69) define the same
network (executive) and are characterized by the anterior cingulate cortex. Their
extraction using 27 (A) and 70 (B) components leads to the non-detection of several
co-activated areas in (A; 24) compared to (B; 69). The other limitation specific to ICA,
is that this algorithm struggles to reveal networks with partly neuro-anatomical overlaps
(W. Zhang et al., 2019). This issue is a limitation for ICA since brain networks are not
segregated in space but interact with each other. Indeed, the brain is a heterogeneous

entity with intermixed neurons and various axonal projections within the same region.

25



Figure 9 | Group-ICA analysis at rest: Assumption of the number of components.

Group-ICA in humans based on 27 components (A) where 16 were found non-artefactual and

70 components (B) where 12 were found non-artefactual. From (Tian et al., 2013).
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1.3.2.3. Analyses based on graph analysis and hub identification

Graph theory is another technique to characterize local functional regions as well
as large-scale networks. With graph theory, whole brain networks (graph) are defined
as a set of nodes (basic elements of the system) and edges (allowing relationships
between nodes). The correlations of the BOLD fMRI signal between the different nodes
provides an index of functional connectivity (FC) (C. F. Beckmann et al., 2005; J. S.

Damoiseaux et al., 2006) and are represented by the edges of the network.

In graph theory, large scale networks can be defined as modules or communities,
which are groups of nodes densely connected by edges and sparsely connected with
nodes from other modules. One of the most common methods to divide a network into
communities is called modularity maximization. Modularity is a metric comparing the
number of edges of a community and evaluating their differences with equivalent
random communities (M. E. Newman, 2006). High modularity means dense connection
within a module and sparse connection between nodes of different modules.
Modularity maximization assigns a different community to each node and evaluates
the gain of modularity if node A is removed from its community and placed in
community X (D. B. Vincent et al., 2008). The community detection is useful for the
automatic partition of a network into distinct communities that are relevant to the
neurological organization of the brain (Figure 10). However, modularity maximization
suffers from methodological limitations such as the existence of partitions that are
equally optimal. Also, this algorithm cannot classify nodes in different modules
(overlapping nodes) which is a problem for biological relevance (see chapter: 1.3.2.2.

Analyses based on BOLD signal spatial decomposition).
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Figure 10 | Four modules detected in the human brain.
The detected modules were based on a network in which each voxel represents a node. These
four networks are consistent with the current knowledge of the human brain organization

explored with other techniques. From (Moussa et al., 2012).

Whole brain networks can also be characterized using various descriptors of
topological properties. For example, "hubness" describes the degree of node
centrality or its influence in the network which is supposedly related to its importance
for brain function. Eigenvector centrality was used as a hubness descriptor in our
studies. However, a wide variety of descriptors exist, representing different hubness
features in a given graph. Standard hubness metrics are:

- Eigenvector centrality that detects nodes highly connected to other highly
connected nodes (Lohmann et al., 2010). Eigenvector centrality measures the
centrality of a node according to the number of links it has with other nodes in
the network. Eigenvector centrality also considers the connection quality of a
node, the number of links it has, and so on for the whole network. Eigenvector
centrality calculates the extended connections of a node, so it favors nodes that
influence the entire network and is not limited to direct connections.
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- Degree centrality simply represents the number of edges of a node (or the
mean of their value on a weighted graph). Degree centrality find highly
connected nodes that are likely to hold most of the information which can

connect quickly with the larger network.

- Closeness centrality identifies the shortest path between two nodes and
calculates the sum of its edges. It is estimated for a given node, by averaging
the sum of the edges of the shortest path between the node and all other nodes

in the graph (van den Heuvel et al., 2010).

- Betweenness centrality detects the amount of times a node appears on the
shortest path along other nodes. It considers the influence of a node as its
"bridges" property. To do this, it detects the shortest paths of the entire network
and counts number of times a given node lie into it (van den Heuvel et al., 2010).

This metric is probably the most commonly used to characterize hubness.

- Current flow betweenness centrality is a betweenness centrality measure
that also considers the influence from all the paths across nodes. This algorithm
provides more weight to the shortest path but also considers the other
connections. Interestingly, the information is considered to spread as an

electrical current (M. E. J. Newman, 2005).

To our knowledge, there is no consensus for the best hub metric to characterize

brain networks.

Small-worldness is another index of topological properties of the network. It
defines large scale specialization and global information transfer efficacy. It can be
characterized using two small-world coefficients (o and w) (NetworkX (Hagberg et al.,
2008))(Figure 11).

C/Crand

o is definedaso = T/rand (Watts et Strogatz, 1998)

L Cc

Lrand Crand

w is defined as w = (Telesford et al., 2011).

With C and L being, respectively, the average clustering coefficient (a measure of
network segregation) and the average shortest path length (a measure of integration)
of the network. Crand and Lrand are their equivalent derived random networks. Small-
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world networks have ¢ values superior to 1 and w values close to 0 (Telesford et al.,
2011). The small-world coefficients are disrupted in several neuropathologies such as
Alzheimer’s disease (X. Zhao et al., 2012) or schizophrenia (Anderson et Cohen,
2013).

AT
3

Lattice Network Real Network Random Network
o=349 0=467 o=0.96
w =-0.60 w=0.29 w=0.89

Figure 11 | Comparison of different networks based on their large scale topological

properties.

Equivalent lattice (A), real (B), random (C) networks. The networks that are considered as

small-world are the lattice (0= 3.49) and the real world (o= 4.67). From (Telesford et al., 2011).
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[.4. Functional connectivity in mammalian species
[.4.1. Organization and function of cerebral networks in humans

Resting-state networks have been largely described in humans (Figure 12) (B. Biswal
etal., 1995; B. B. Biswal et al., 2010; Fox et Raichle, 2007). Their study has contributed
to many breakthroughs in understanding the relationship between human cognition

and brain architecture (Mather et al., 2013).

The most studied resting-state network is the DMN (Figure 12 ; Figure 26 ; Figure 8).
It was first described by Raichle et al. (Raichle et al., 2001) using positron emission
tomography (PET). This network is particularly engaged during rest and is
suspended/deactivativated during stimulated brain activity (Hampson et al., 2006;
Tambini et al., 2010). The main regions implicated in the DMN are posterior cingulate
cortex, medial prefrontal cortex, and medial, lateral, and inferior parietal cortices. The
DMN is possibly involved in memory consolidation (Huo et al., 2018) or other cognitive
functions such as mindfulness (Doll et al., 2015), self-referential and introspective state
(Greicius et al., 2003). The DMN is often divided into two major networks (anterior and
posterior DMN). The anterior DMN is more active during self-directed thoughts and the
posterior DMN during passive rest (C. G. Davey et Harrison, 2018). Also, Davey et al.
investigated the DMN during self-related processes and found that the posterior
cingulate cortex is mainly implicated in the coordination of the mental representations.
The medial prefrontal cortex is a regulator or ‘gateway’ function of self-representations
(C. G. Davey et al., 2016). Furthermore, the DMN may prove to be implicated in and/or
be an indicator of healthy and non-healthy brain aging including several pathological
processes such as Alzheimer’s or Parkinson’s diseases (Buckner et al., 2005; Gao et
Wu, 2016). Moreover, the pattern of deposition of one the major lesions in Alzheimer’s

disease (amyloid plaques), co-localizes with the DMN (Buckner et al., 2005).
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Figure 12 | Major resting-state networks of the human brain.

Adapted from (Raichle, 2011)

The executive-control network (Figure 12) embeds regions from the superior and
middle prefrontal cortex, anterior cingulate cortex, paracingulate gyri, ventrolateral
prefrontal cortex and subcortical regions of the thalamus (Christian F. Beckmann et al.,
2005; Mazoyer et al., 2001). The executive network is especially active during tasks
involving target-directed, intellectual activities and participation in cognitive control.
Anti-correlated activity is reported in this network at rest (Seeley et al., 2007a). Patients
with attention-deficit/hyperactivity display a higher functional connectivity within the

anterior cingulate cortex related to a decrease in their symptoms (Francx et al., 2015).

The attention network (Figure 12) is commonly divided into two separate fronto-
parietal networks (dorsal and ventral) that both involve different areas of the frontal
cortex (Vossel et al.,, 2014). The dorsal attention network embeds the intraparietal
sulcus, as well as the frontal eye field. This network is implicated in attention processes

such as the selection of stimuli (spatial cueing of color, shape, motion direction). Also,
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this network is involved in the control of appropriate response, potentially mediated by
a selection (top-down) of the cognitive stimuli and actions (Hopfinger et al., 2000). The
ventral attention network involves the ventral frontal cortex and the temporo-parietal
junction (Vossel et al., 2014). This network seems dedicated to the spatial attention of
new stimuli (visual, sound and tactile) (Vossel et al., 2006). Therefore, the main
function evoked for this network is the reorientation of the attention to relevant stimuli
(Stevens et al., 2005).

The salience network (Figure 12) includes regions in the dorso-medial prefrontal
cortex, anterior cingulate cortex, insula, and temporo-parietal junction. This network is
associated with mindfulness and the regulation of the dynamic changes with other
networks implicated in mindfulness (DMN or the control-executive) (Doll et al., 2015).
The main function of the salience network is probably to regulate the switch between
networks. It participates in answering to salient events by facilitating the access to
working memory, attention or motor systems (Menon et Uddin, 2010). Other roles of
this network are related to moral reasoning (Chiong et al., 2013), resistance to
temptation (Steimke et al., 2017) and more global emotional and empathic functions
(Seeley et al., 2007b). Dysfunctions of the network are associated with
neuropsychiatric disorders such as autism, schizophrenia and frontotemporal
dementia (Uddin, 2014).

The visual network (Figure 12) was divided into two main large- scale networks (J.
S. Damoiseaux et al., 2006): (1) medial visual cortical areas composed of the primary
visual area located in the calcarine sulcus, medial extrastriate nucleus and lingual
gyrus (Christian F. Beckmann et al., 2005) as well as co-activated areas in the lateral
geniculate nucleus precuneus regions. The thalamus is proposed as a “relay station”
from the visual input to the primary visual cortex (Christian F. Beckmann et al., 2005).
(2) lateral visual cortical areas including mainly non-primary visual areas such as the
occipital pole and the occipito-temporal cortex as well as superior parietal regions. This
set of regions is assumed to have a role in visuo-spatial attention or visual attention
(Christian F. Beckmann et al., 2005). Some studies have demonstrated that lesions

within the parietal regions can disturb spatial attention (Nachev et Husain, 2006).

The sensory-motor network (Figure 12; Figure 7) was the first rsfMRI found by
Biswal et al. (B. Biswal et al., 1995) using seed-based analysis. This network is mainly
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composed of regions from the pre and postcentral gyri (Brodmann areas 1, 2 and 3)
and the supplementary motor area. The sensory-motor network display high
interhemispheric correlations (Bharat B. Biswal, 2012). The primary sensory cortex and
the primary motor cortex can be subdivided into areas responsible for the processing
of sensory and motor information dedicated to specific areas of the body such as the

nose, eyes, toes, etc. (Grodd et al., 2001).

The auditory network (Figure 12) involves the primary and secondary auditory
cortices and is dedicated to the process of auditory stimuli. An asymmetry of this
network is highly debated (Andoh et al., 2015).

The basal ganglia network is mainly composed of the caudate nucleus, putamen,
pallidum, substantia nigra and subthalamic nucleus (Afifi, 2003). This network is
associated with a variety of functions such as motivational, emotional, motor and
cognitive processes (Bednark et al.,, 2015). This network is highly damaged in
Parkinson's disease and Huntington's disease (Wen et al., 2012) and the functional
connectivity matrix of this network was used to classify Parkinson's disease patients

versus healthy controls with 81% accuracy (Rolinski et al., 2015).

This list of networks is not exclusive and other major networks have been described

in humans. We cannot describe all these networks here.
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1.4.2. Organization and function of cerebral networks in non-human primates

Cerebral networks have been described in non-human primates as in humans. The
first characterization of cerebral networks in anesthetized non-human primates at rest
found four large scale networks (J. L. Vincent et al., 2007) classified as the DMN,
oculomotor, somatomotor and visual. They were anatomically close to those previously
described in humans. This major discovery highlighted that the brain functional
organization transcends the consciousness and reflects an evolutionarily conserved

property of the primate brain.

Figure 13 | Default mode network discovered for the first time in the macaque

brain.

Significant voxels correlated to the posterior cingulate cortex (seed-based analysis) in
anesthetized macaque using BOLD fMRI. Adapted from (J. L. Vincent et al., 2007).

These results were quickly confirmed by Riling et al. using ['"F]-
fluorodeoxyglucose PET on awake chimpanzees at rest (Rilling et al., 2007) and later
with ['®0O]H20 PET in macaques (Kojima et al., 2009). In 2009, the posterior cingulate
cortex activity measured by electrophysiology was found to be suppressed during task
performance and returned to a higher resting baseline at rest in macaques (Hayden et
al., 2009). Hutchison et al. was the first to analyze fMRI images with ICA (20
components) on the macaque (Macaca fascicularis) cortex and found 11 relevant
components ((R. M. Hutchison et al., 2011); Figure 14)
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Figure 14 | Eleven independent components extracted from fMRI images of the macaque

brain.

The ICA was performed using 20 components, 11 were selected as relevant and named as
follows: A: precentral-temporal; B: fronto-parietal; C: posterior-parietal; D: occipito-temporal;
E: frontal; F: superior-temporal; G: cingulo-insular; H: paracentral; |: parieto-occipital; J:
postcentral; K: hippocampal. From (R. M. Hutchison et al., 2011)
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A meta-analysis of macaque fMRI images has allowed a comparison of the
reduction of activity during goal-directed behavior within the DMN rather than the
functional connectivity analysis at rest or under anaesthesia (D. Mantini et al., 2011).
This publication was followed by a meta-analysis synthesizing all the DMN
organization descriptions of macaques published before 2012 (R. M. Hutchison et
Everling, 2012). This article found a diversity of anatomical clusters included in this

network (Figure 15).

Margulies et al., 2009

Vincent et al., 2010

8 >
7

Teichert et al., 2010 Mantini et al,, 2011

Figure 15 | Synthesis of the macaque DMNs observed in rsfMRI literature.

(A) (J. L. Vincent et al., 2007), (B) (Margulies et al., 2009), (C) (J. L. Vincent et al.,
2010), (D) (Teichert et al., 2010), (E, F) (R. M. Hutchison et al., 2011), (G, H) (D.
Mantini et al., 2011). From (R. M. Hutchison et Everling, 2012).
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Different articles reported common features as well as discrepancies between the
macaque DMN. (J. L. Vincent et al., 2007) and (Margulies et al., 2009) found similar
correlated activity (seed-based analysis) in the lateral temporoparietal cortex, the
posterior parahippocampal cortex, the dorsal medial prefrontal cortex and the anterior
cingulate cortex; (D. Mantini et al., 2011) and (J. L. Vincent et al., 2010) found similar
correlated activity in the dorsal medial prefrontal cortex and in the inferior parietal
lobule. However, the lateral temporoparietal cortex and the posterior parahippocampal
cortex were absent; (Teichert et al., 2010) and (R. M. Hutchison et al., 2011) did not
find medial and dorsal frontal and hippocampal regions. Differences features of the
macaque DMN were explained by the limitations of seed-based analyses and by the
use of different seeds in various studies. Indeed, different seeds locations or sizes
could potentially impact the reproducibility of the features (R. M. Hutchison et Everling,

2012). The use of ICA was proposed as a solution to provide more reproducible results.

In chimpanzees, DMN regions similar to those reported in humans were proposed
(medial prefrontal cortex, posterior cingulate cortex and precuneus) (Barks et al.,
2015). The DMN is also found in awake marmosets, recruiting the retrosplenial and
posterior cingulate cortices, medial parietal area, premotor and posterior parietal areas

and areas surrounding the intraparietal sulcus (Belcher et al., 2013).

Other large scale networks similar to those detected in humans are observed in
the non-human primates at rest. For example, using different seeds in the cingulate
cortex Hutchison et al. identified four large scale networks (somatomotor, executive,

attention-orienting and limbic) ((R. M. Hutchison et al., 2012); Figure 16).
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Executive

Figure 16 | Four large scale networks extracted from the macaque brain using various

seeds in the cingulate cortex. From (R. M. Hutchison et al., 2012)

The salience network has also been described in the macaque brain but its

identification is not justified on a behavioral/functional basis (Touroutoglou et al., 2016).

In the awake marmoset, the diversity and the number of networks extracted with
ICA (eleven) was exceptionally high (higher-order visual, basal ganglia, primary visual,
dorsal (medial) somatomotor, higher-order visual, higher-order midline visual, default
mode, salience, orbitofrontal, cerebellar, ventral (lateral) somatomotor, frontal pole).
The frontal-parietal network was recently described in the marmoset brain and is

characterized as a major network (high hubness score) (Ghahremani et al., 2016).

As evoked for the DMN and other networks, difficulties occurred in describing the
spatial limits between distinct networks and in identifying their functions. These
difficulties generated different conclusions concerning the identifications of several
large scale networks. A standardized methodology will be necessary in order to obtain

reproducible results across laboratories.
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1.4.3. Organization and function of cerebral networks in rats

As in non-human primates, rat cerebral networks were first discovered under
anaesthesia. One of the first studies to observe correlated areas with fMRI signals in
rats was performed with a 9.4T MRI. It found two networks corresponding to the
sensorimotor and visual networks (Pawela et al., 2008). One year after this discovery,
Zhao discovered a caudate/putamen network in rats (F. Zhao et al., 2008). Later, a
large list of reproducible networks that were extracted with ICA was proposed by
Hutchiston et al. under two types of anaesthesia ((R. M. Hutchison et al., 2010); Figure
17).

Isoflurane

Medial

Posterior
frontal cingulate
cortex cortex
Lateral Anterior
frontal cingulate
cortex cortex
Parietal Caudate-
cortex putamen [
Temporo- §
parietal Hippo-
cortex campus
Medial
occipital Thalamus
cortex
Lateral
occipital Hypo-
cortex thalamus

Figure 17 | Reproducible cerebral networks in rats under two types of anaesthesia.
Rat networks were extracted from rsfMRI images using an ICA with 40 components. From (R.
M. Hutchison et al., 2010).
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Modularity algorithms have also been used to describe the rat cerebral network
organization. Using partial correlations, with 36 anatomical regions D'Souza et al.
found two pure cortical (frontal, somato-motor) and four mixed large scale networks
(hippocampal and perihippocampal cortices, basal ganglia, thalamic nuclei and pons,
Q=0.39) (D'Souza et al., 2014).

A similar organization was found in awake rats (N. Zhang et al., 2010) (Becerra et
al., 2011) including a network analogous to the human DMN. The rat DMN was
described in several publications (Upadhyay et al., 2011) (Lu et al., 2012). According
to Lu et al., the co-activated clusters of the rat DMN are the orbital cortex, prelimbic
cortex, cingulate cortex, auditory/temporal association cortex, posterior parietal cortex,
retrosplenial cortex (corresponding to the posterior cingulate cortex in humans) and
the hippocampus (Lu et al., 2012). As in non-human primates, rsfMRI networks have
been compared to humans. Sierakowiak et al. (Sierakowiak et al., 2015) found four
remarkable similarities between rat rsfMRI networks and human networks (DMN,
motor, dorsal basal ganglia and ventral basal ganglia). These results are particularly
interesting for the development of translational experiments to validate animal models
of brain disorders. However, the DMN regions extracted from this study were different
when compared to the study of Lu et al. This difficulty to identify a reproducible pattern
of network organization is probably due to the multiple levels of systems and
subsystems that may support distinct functions, as suggested by Hsu et al. and Smith
et al. (Hsu et al., 2016) (Smith et al., 2009).

The advantage of using rats is that numerous pathological models of brain disorders
have been developed. As a consequence, alterations of the rat functional connectivity
or of network organization are studied in various neuropathological models such as
Alzheimer’s disease (Sanganahalli et al., 2013), Parkinson's disease (Westphal et al.,
2017), stress (Henckens et al., 2015) and aging (Ash et al., 2016).
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I.4.4. Organization and function of cerebral networks in mice

One of the first publications describing and comparing rat and mouse rsfMRI
network organization highlighted the difficulties of cross-species comparison. The
extracted maps remain highly dependent on the ICA components number that can
skew the results (Jonckers et al., 2011). However, comparing two species with the
same number of components remains potentially more accurate than using seed
based-analysis. As for primates ((R. M. Hutchison et al., 2012); Figure 16) the
localization of a seed within the same region could totally change the type of network
detected. As a consequence, in order to accurately compare two equivalent networks
across species, the anatomical correspondence of the seeds has to be known prior to
the analysis. To our knowledge, these criteria are rarely met. The methodological
strength of the study by Jonckers et al. was the use of two ICA component numbers
which allowed them to evaluate the stability of the extracted maps across the two
species and to identify that the components of the mouse brain are more unilateral
than rats (Jonckers et al., 2011)(Figure 18).

Rat Mouse

15 40 15 40
motorcortex 1 component 1 component 1 component 1 component
Somatosensory cortex (SSC) 1 component 1 component 2 unilateral components (left + right) 2 components (left + right)

covering SSC, AC and VC

auditory cortex (AC) 1 component 1 component 2 unilateral components (left + right) 2 components (left + right)
covering SSC, AC and VC

Retrosplenial (dys)granular 1 component 1 component 1 component covering RC and CC 1 component
cortex (RC)
hippocampus 1 component 1 component 1 component 2 components (dorsal + ventral)
striatum 1 component 2 components / /
cingulate cortex (CC) 1 component 3 components 1 component covering RC and CC 1 component
visual cortex 1 component 2 components 2 unilateral components covering SSC, 2 components (left + right)
AC and VC
inferior colliculus 1 component 6 components / /
piriform cortex / 1 component 1 component Tcomponent

entorhinal cortex / / entorhinal cortex 1 component (right) 4 component left medial and
lateral + Right medial and
lateral)

Figure 18 | Similar components are extracted in rats and mice.
ICA applied to rat and mouse rsfMRI with 15 and 40 components. The components in the

mouse brain seem to be more unilateral than in rats. From (Jonckers et al., 2011).

These two levels of ICA (low and high number of components) have also been
studied in several studies in humans (Smith et al., 2009), and mice (F. Sforazzini et al.,
2014). Sforazzini et al. explored the functional brain of mice by varying the number at

a high level (20 components; Figure 19) and low level (5 components; Figure 20) (F.
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Sforazzini et al., 2014). The ICA using 20 components resulted in maps encompassing

several established neuro-anatomical systems of the mouse brain (Figure 19).

ICA - BOLD ICA - BOLD

Figure 19 | Functional regions identified via ICA in the mouse brain using twenty

components.

The ICA was performed on BOLD images. IC1: pre-frontal cortex, IC2, cingulate/retrosplenial
cortex, IC3 and IC4, anterior and posterior parietal (somatosensory) cortex; IC5, anterior motor
cortex, 1C6, posterior motor cortex, IC7, thalamus, IC8, caudate putamen, IC9, dorsal
hippocampus, 1C10, cerebellum and brain stem. Abbreviations: aMc, anterior motor cortex;
aPc, anterior parietal cortex; Cb, cerebellum; Cg, cingulate cortex; CPu, caudate-putamen; Hc,
dorsal hippocampus; PFc, prefrontal cortex; pMc, posteriormotor cortex; pPc, posterior parietal

cortex; Rs, retrosplenial cortex; Th, thalamus. From (F. Sforazzini et al., 2014).
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Interestingly, the low level ICA applied to BOLD images (Figure 20; left)
highlighted a putative DMN in mice that was very similar to the DMN-like network
observed in the same study with a seed-based approach and CBV weighted images
(Figure 20; right)

ICA-BOLD ICA - CBV

Rs - Rs H

@&, O @

H -

Pl Prl

Cag

Ca Cg Cg
OFc . ' ;

Figure 20 | DMN identified with ICA in the mouse brain using five components.

The ICA was performed on BOLD and CBV weighted images. Abbreviations: Acb, nucleus
accumbens; Cg, cingulate cortex; OFc, orbitofrontal cortex; Pc, parietal cortex; Prl, prelimbic

cortex; Rs, retrosplenial cortex. From (F. Sforazzini et al., 2014).

This study also observed anti-correlations between the mouse DMN and the
neighboring fronto-parietal regions which is consistent with literature based on human
studies. However, as in rat and non-human primates, the regions thought to be
involved in the DMN are highly debated. Sforazzini et al. found that the DMN includes
the nucleus accumbens, cingulate cortex, orbitofrontal cortex, parietal cortex, prelimbic
cortex and the retrosplenial cortex (F. Sforazzini et al., 2014). Stafford et al. found a
DMN encompassing the parietal cortex, the lateral/medial orbital cortex and the
cingulate area (Stafford et al., 2014). For Zerbi et al. this network covers the
caudomedial entothinal cortex, cingulate cortex area, caudate putamen, medial
entorhinal cortex, medial orbital cortex, parasubiculum, prelimbic cortex, retrosplenial

dysgranular and granular cortex and the thalamus (Zerbi et al., 2015).

As previously discussed for other species, these studies have clearly highlighed the
difficulty in identifying reproducible cerebral networks. Morever, this difficulty is

accentuated by the extremly small size of the mouse brain (around 400 mm3). Other
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techniques such as the mesoscale structural connectome (i.e., an anterograde tracer
mapping axonal projections) provides evidence towards the existence of a DMN in
mice (Stafford et al., 2014). However, not all networks have been validated using
tracers. In a similar study, Grandjean et al. found that interhemispheric homotopic
cortical, hippocampal and cortico-striatal networks displayed direct neuronal
connections. However, interhemispheric striatum functional connectivity exhibited
indirect neuronal connections. In contrast, limited functional connectivity involved in
the cortico-thalamic pathways was observed when direct anatomical connection was

identified (probably due to anaesthesia) (J. Grandjean, Zerbi, et al., 2017).

The small world property of the mouse brain has been added to the list of the
similarities of brain organization with humans and other mammals (Mechling et al.,
2014). As in humans, the dynamic organization of intrinsic functional networks in the
mouse brain was demonstrated in healthy animals and fluctuates to different degrees,
depending the anaesthesia duration (J. Grandjean, Preti, et al., 2017). Moreover, the
dynamic functional states of the networks were affected in animal models of chronic

psychosocial stress (J. Grandjean, Preti, et al., 2017).

The study of pathological models is probably one of the major applications for the
study of the mouse fMRI networks. Several studies have already proved that
alterations of functional connectivity can be measured in Alzheimer’s disease-like
models (J. Grandjean, Schroeter, He, et al., 2014) (D. Shah et al., 2018) or in models
of Huntington's disease (Q. Li et al., 2017).

1.4.5. Organization and function of cerebral networks in other mammalian

species

Individually, resting-state network organization is characterized in several other
mammalian species including ferrets (Zhou et al., 2016), rabbits (Schroeder et al.,
2016), dogs (Kyathanahally et al., 2015) and the prairie vole (Ortiz et al., 2018). It
seems that all the mammalian species studied so far, possess a brain that can be

spatially organized by their spontaneous neuronal activity.
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[.4.6. Comparison of the resting-state organization between mammals
1.4.6.1. Homologous resting-state organization in mammals

Throughout evolution, brain regions could have been duplicated, fused,
reorganized or expanded (R. M. Hutchison et Everling, 2012). Improving the accuracy
of resting-state network identification and comparison of networks between species is
critical to assess their evolution during species evolution. The description of functional
architecture of each species is based on a variety of acquisitions, analyses, and
anaesthesia (or awake) protocols. This lack of standardization is justified by the variety
of brain sizes and anatomical organizations observed within mammals. For these
reasons only, a few studies have compared the connectivity between different species

and with similar approaches.

To compare human and macaque resting-state networks, Mantani et al. developed
a projection of the macaque brain to human space (Dante Mantini et al., 2013). Based
on this technique, they described common and specific resting-state networks to each
species. They suggested that resting-state networks common to macaques and
humans concern ventral somatomotor, dorsal somatomotor, parafoveal visual,
peripheral visual, early auditory, ventral attention, medial prefrontal, dorsal attention,
default mode, lateral prefrontal and language regions. Resting-state networks
specific to humans concern the left fronto-parietal, right fronto-parietal and cingulo-
insular. Resting-state networks specific to monkeys concern the caudate/putamen.
However, the caudate/putamen has been found numerous times in humans (Afifi,
2003).

The identification of similar large scale networks between species has also been
carried out in a large number primate species (Wey et al., 2014). This study identified
five common networks in the capuchin, baboon, chimpanzee, and human: visual,
sensory-motor, auditory, cerebellum and DMN. This study also quantified the strength
of the interhemispheric connectivity in the fronto-parietal network of these four species.
They highlighted that the intra-hemispheric connectivity is much higher in humans than
in non-human primates. This result was supported by a measure of the inter-
hemispheric response of the fronto-parietal network during a working-memory
oculomotor task which was more pronounced in macaques than in humans (Kagan et

al., 2010). A strong interhemispheric functional connectivity between homologous
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regions is always present in humans and primates suggesting a phylogenetically
preserved mammalian characteristic (R. Matthew Hutchison et al., 2012). However,
lateralized networks (i.e. fronto-parietal resting-state network) have only been

demonstrated in humans.

According to the few studies on functional organization in mammals, humans seem
to display the largest variety of functional networks. The complexity and diversity of the
behaviors is probably related to this large repertoire of networks. This complexity is
also reflected by the volume of the white matter fiber tracts network (Nadkarni et al.,
2018). Moreover, direct evidence is in favor of a close relationship between the
structural and functional organization in humans (Jessica S. Damoiseaux et Greicius,
2009), in primates (Miranda-Dominguez et al., 2014) and in mice (J. Grandjean, Zerbi,
et al., 2017).

Determining the topologies, the critical regions or the network organizations that are
conserved across species throughout evolution could indicate patterns that have
essential, basic and/or developmental functions. Despite the lack of consensus
concerning a standardized methodology in mammal fMRI, cross-species studies could

provide essential clues towards understanding brain physiology.
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Studies performed during this thesis
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Overview and objectives

I. Develop a pipeline to register large series of images including images

recorded with different protocols and species

ii. Develop a robust methodology to extract and characterise cerebral networks

in the mouse lemur that can be adapted for other species

iii. Evaluate the ability of the fMRI to differentiate young and aged lemurs

iv. Evaluate a possible association between highly connected regions, local

neuronal activity and an excitatory neurotransmitter
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I.1. Study 1: 3D digital atlas of mouse lemur brain: Tool

development and applications

A first objective of this thesis was to develop a 3D digital atlas of the brain of mouse
lemurs. This atlas was based on the use of MR images from a cohort of 34 mouse
lemurs. A common question for the study of cohorts of animals by MRI is the ability to
register large series of images including images recorded with different protocols. In
clinical research, image coregistration to a standardize space is commonly performed
by using tools such has SPM (K.J. Friston et al., 2007), FSL (Jenkinson et al., 2012),
AFNI (Cox, 1996), ANTS (Tustison et al., 2014). Most of the fMRI studies in animals
use in-house pipelines that are often adapted from humans. Here, we developed a
Python package called sammba-MRI designed to generate specific cerebral templates
and to coregister various images to this template. My work was dedicated to test the
co-registration robustness of sammba-mri on various anatomical MR images, on
various species and to develop its use. Here, we present the tools that we developed
to create and use the atlas and then present the article that has been published in

Neurolmage.
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[1.1.1. Atlas of the mouse lemur brain

The brain of the mouse lemur was first described in 1931 by Le Gros Clark (Figure 21)
(Le Gros Clark, 1931).

Figure 21 | The mouse lemur brain

Lateral view of the mouse lemur brain (A). Segmentation of the cortex of the mouse lemur

based on its histological features (B). From (Le Gros Clark, 1931).

Le Gros Clark segmented 19 cortical structures and found that the mouse lemur
brain is characterized by a marked and deep Sylvian fissure. Le Gros Clark also
observed that the differentiation of cortical structures was more pronounced than in
non-primate species. However, the segmentation of the temporal cortex by Le Gros
Clark was disapproved by Zilles (Zilles et al., 1979). Zilles produced a detailed
description and another segmentation of the mouse lemur brain based on
cytoarchitectonics. More recently, the first stereotaxic atlas of the mouse lemur brain
was produced by Bons (N. Bons et al., 1998). This atlas provided more detail of the

different anatomical structures and specified landmarks for stereotaxic injections.

The main disadvantage of histological atlases is that they only offer two-
dimensions which limits the spectrum of analysis. The method commonly used to
extract a signal from 3D MRI or histology image is manual segmentation guided by an
atlas paper. This method is based on drawing regions of interest upon each slice of a
3D image. It requires an expertise in biology to identify and extract relevant information.
This work is also fastidious and limits the amount of data extracted as well as the
number of anatomical regions segmented. It leaves a large amount of information
untapped. Moreover, the manual extraction is dependent upon the operator, leading to

an increase in variability of the extracted results. To overcome these disadvantages,
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an automatic extraction of the signal of interest based on a 3D digital atlas can be
performed. In humans, several atlases registered on standardized template spaces
already exists such as MNI (Fan et al., 2016) and Talairach (Brett et al., 2002). MR
images recorded during biological studies can be registered on the standardized
templates, which allows to indirectly register them to an abundant repertoire of 3D MRI
brain atlases already available within these spaces. Note that the diversity of the
human 3D digital brain atlases is important and is dependent on which method is used
to segment the brain. The manual segmentation of atlases is often based on a paper
atlas and is carried out by expert on an anatomical image template. Automatic
segmentations can also be performed on various 3D images (anatomical, diffusion
tensor imaging (connectome), fMRI, etc.) by different algorithms. As an example, if we
reviewed several cortical atlas parcellations in MNI space (downloadable at

http://www.lead-dbs.org/helpsupport/knowledge-base/atlasesresources/cortical-atlas-

parcellations-mni-space/), the number of structures varies from about ten to several

thousand. This diversity calls for caution concerning the use of these different atlases.
Two main questions before starting any study would be 1) what is the biological
significance of the segmented regions? and 2) at what level of detail they are defined
by?

In mammals, atlases were also created for various purposes such as the
segmentation and the quantification of stained tissue originating from 2D or 3D
histology (Lebenberg et al.,, 2011) (Vandenberghe et al.,, 2016). MRI digital brain
atlases of primates (Balbastre et al., 2017) or rodents (Dorr et al., 2008) in standardized
space (templates) can also be downloaded easily on specific websites. MRI atlases
can further be used to extract any signal as well as quantify the volume of different
brain regions. However, such an atlas did not exist for the mouse lemur. For this
purpose, an anatomical atlas of the mouse lemur brain was created in our first
publication (Nadkarni et al., 2018).
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[1.1.2. Overview of the developed methodology

Aligning MR images together or to a standardized space is an important step for
many studies in humans or animals. This alignment is used to correct subject motion
in the scanner, to compare data from longitudinal studies and data from different
scanners. Also, this step is necessary to use digital atlases and to extract information
of interest. The methodology developed here, is an adaptation for small mammals of
different tools and algorithms commonly used to coregister human MR images. Our
methodology was mainly based on AFNI algorithms (Cox, 1996).

Image coregistration is based on the geometrical alignment of different images. The
purpose is to superpose two voxels that correspond to the same anatomical structure.
As an example, if we considered image A(x) and the target image (template) B(x),
aligning voxels is finding a geometrical transformation T[x] so that A(T[x]) = B(x). Note
that all the transformations are registered and saved in the image header. The different
geometrical transformations or movements can be classified based on their degrees
of freedom (Figure 22). The rigid-body is a transformation comprising of translations
and rotations (6 degrees of freedom). A coregistration based only on this
transformation, assumes that the source and the target images display the same
volumes and shapes. The diversity of the brain volumes and shapes forces an increase
in the number of degrees of freedom. Affine is a transformation (12 degrees of
freedom) that can distort voxels (scale, skew) and realign brain images with different
sizes and shapes. Nonlinear transformation allows voxels to move in any direction
(elastic transformations). However, if important transformations have to be made for
the coregistration, the use of an excessive amount of the degrees of freedom
maximizes the risk of errors. The common way to fix this issue is to apply the different

movement parameters from low to high degrees of freedom.
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Figure 22 | Voxel movement parameters

Restraining the coregistration space in the brain (in comparison to the head) is
another standard way to increase the accuracy of the coregistration. It limits the voxel
movements in a more homogenous and within a smaller space that decreases the
amount of coregistration errors. For this purpose, we use a mask that is an image
composed of 0 (outside of the structure of interest) and 1 (inside the structure of
interest). Skull-stripping is the technique used to extract a brain mask from a brain
anatomical image (Figure 23). The brain is a relatively easy structure to extract with a
good contrast to the surrounding tissue that can be extracted from the rodent’s head
using RATS (Oguz et al., 2014) or the human’s head with AFNI (Cox, 1996). The skull

was used to identify the brain and proxy its position in space.

- & f
Anatomical ? Anatomical
Image HCFON Image
(brain)

Figure 23 | Extracting the brain from anatomical images.
As a first step a mask of the brain is produced using AFNI or RATS. Then, by using only the

voxels within the mask, the brain can also be extracted from the first anatomical image.

Voxels of a head image that overlap the brain mask can be extracted to create an
anatomical brain image. Then, the brain anatomical image can be coregistered to a

brain template by applying the different movement parameters in the correct order. The
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complete process to which one might create a study template will be explained in this
first publication. The creation of a template based on the anatomical images of our
cohort presents the advantage to increase the quality of the coregistration. This can
be explained by the contrast similarity between the study template and the anatomical
images. The application of the whole process was developed to be scalable to many

other mammalian species.
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11.1.3. Published article: Nadkarni, N. A., Bougacha, S., Garin, C., Dhenain,
M., & Picq, J. L. (2019). A 3D population-based brain atlas of the mouse
lemur primate with examples of applications in aging studies and

comparative anatomy. Neuroimage, 185, 85-95.
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Abstract

The gray mouse lemur (Microcebus murinus) is a small prosimian of growing interest for
studies of primate biology and evolution, and notably as a model organism of brain aging. As
brain atlases are essential tools for brain investigation, the objective of the current work was
to create the first 3D digital atlas of the mouse lemur brain. For this, a template image was
constructed from in vivo magnetic resonance imaging (MRI) data of 34 animals. This template
was then manually segmented into 40 cortical, 74 subcortical and 6 cerebro-spinal fluid
regions. Additionally, we generated probability maps of gray matter, white matter and CSF.
The template, manual segmentation and probability maps, as well as imaging tools used to
create and manipulate the template, can all be freely downloaded. The atlas was first used to
automatically assess regional age-associated cerebral atrophy in a cohort of mouse lemurs
previously studied by voxel based morphometry (VBM). Results based on the atlas were in
good agreement with the VBM ones, showing age-associated atrophy in the same brain
regions such as the insular, parietal or occipital cortices as well as the thalamus or
hypothalamus. The atlas was also used as a tool for comparative neuroanatomy. To begin
with, we compared measurements of brain regions in our MRI data with histology-based
measures from a reference article largely used in previous comparative neuroanatomy studies.
We found large discrepancies between our MRI-based data and those of the reference
histology-based article. Next, regional brain volumes were compared amongst the mouse
lemur and several other mammalian species where high quality volumetric MRI brain atlases
were available, including rodents (mouse, rat) and primates (marmoset, macaque, and
human). Unlike those based on histological atlases, measures from MRI atlases indicated
similar cortical to cerebral volume indices in all primates, including in mouse lemurs, and lower
values in mice. On the other hand, white matter to cerebral volume index increased from
rodents to small primates (mouse lemurs and marmosets) to macaque, reaching their highest

values in humans.
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Graphical abstract

Examples of applications:
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Highlights
» The mouse lemur primate is an original model for neuroscience studies and comparative
anatomy.

* We present an anatomical brain template, constructed from in vivo MRI scans of 34 mouse

lemurs.

» We created the first high resolution 3D atlas of the mouse lemur brain by delineating 120

regions encompassing each voxel of the template.

» The template, code developed to create and manipulate the template as well as

segmentation maps are freely available.

» The atlas was used to characterize age-related atrophy and to compare the mouse lemur

brain with brains from other mammals.
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1. Introduction

The gray mouse lemur (Microcebus murinus) is one of the smallest non-human primates
(NHPs). Its small size (typical length 12cm, 60-120g weight) and rapid maturity (puberty at 6-8
months) bring rodent-like practicality to primate experimentation. As a result, the mouse lemur
is used as an NHP model organism for primate and human biology (Ezran et al., 2017). It has
a life span of approximately 12 years, which is short for a primate, and displays age-associated
cerebral atrophy that is correlated with cognitive alterations (Picq et al., 2012) as well as
various neuropathological lesions (Kraska et al., 2011). As a consequence, it is used as a
model of aging and age-related diseases in the brain (Languille et al., 2012). In particular it
has been used to evaluate how cerebral aging is modulated by various biological factors or

diseases, such as chronic caloric restriction (Pifferi et al., 2018) or diabetes (Djelti et al., 2016).

Mouse lemurs can also be used to shed light on primate brain evolution (Montgomery et al.,
2010). Surprisingly, most studies of this (Barton and Harvey, 2000; Finlay and Darlington,
1995) rely on the analysis of the same set of volumetric measurements made on a large variety
of mammalian species by a single research group using perfused brains processed by
histology (Stephan et al., 1981). Because of the tediousness of the evaluation of brain region
volumes by histology, the experiments were not reproduced by other research groups, leaving

scientists with a single lone source of data to provide reference measures.

Given the importance of the mouse lemur for biomedical research and as a key species for
studying primate brain evolution, it is critical to have a 3D digital brain atlas and associated
template (standard image reflecting the population’s brain anatomy) for this species. However,
today, reference atlases available to study mouse lemurs are based on histological sections
(Le Gros Clark, 1931; Bons et al., 1998). Such atlases suffer from distortions caused by
histological processing and do not cover the whole brain. Also, they are very unsuited to use
with non-invasive imaging data from live individuals. A first MRI-based description of the mouse
lemur brain was developed in the 1990s, but it is mainly a partial annotation of MR images of
one post mortem brain sample (Ghosh et al., 1994). More recently, a population image based
on 30 mouse lemur brains including probabilistic gray matter (GM), white matter (WM) and
cerebro-spinal fluid (CSF) maps was developed, but it did not include annotated labels (Sawiak
et al., 2014). Here we present the first 3D digital brain atlas and associated template of the
mouse lemur. We used MR acquisitions from 34 young to middle-aged adult mouse lemurs to
create the template: scans were iteratively mutually registered and meaned through linear then

increasingly refined non-linear stages, a standard process that does not favor any one
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individual, but rather produces an unbiased average of the population used to create it
(Guimond et al., 1998; Guimond et al., 2000). The template was then segmented manually into
120 structures based on a previous histological atlas (Bons et al., 1998) and other previous
characterizations of mouse lemur brain anatomy (Le Gros Clark, 1931; Zilles et al., 1979). The
template was also used to create probability maps of mouse lemur GM, WM and CSF. The
template, atlas and probability maps are available for download in NIfTI-1 format at

https://www.nitrc.org/projects/mouselemuratlas. The code developed to create and manipulate

the template has been refined into general procedures for registering small mammal brain MR
images, available within a python module sammba-mri (SmAll-maMMals BrAin MRI;

https://sammba-mri.qgithub.io).

Two applications of the atlas are presented in this article. The first is an evaluation of age-
related regional cerebral atrophy in a mouse lemur cohort that was previously studied by voxel
based morphometry (VBM) (Sawiak et al., 2014). We show that atlas-based registration
detects age-related atrophy in regions very similar to those identified by VBM. The second
application is a comparative anatomy study. Initially, we highlight that reference published
histological reports of brain region volumes are very different to those found with our atlas.
More interestingly, using morphometric analysis and comparison of measures of the ratios
between various brain regions, we show that, despite its rodent-like size, the mouse lemur’s
cortex/cerebrum index does not differ from those of other primates, and that major differences

amongst primates concern more the WM/cerebrum indices.
2. Materials and Methods

2.1. Animals

This study was carried out in accordance with the recommendations of the European
Communities Council directive (2010/63/EU). The protocol was approved by the local ethics
committees CEtEA-CEA DSV IdF (authorizations 201506051 736524 VI (APAFIS#778)). 34
mouse lemurs (22 males and 12 females) were used for template creation. Age range was 15-
58 months, mean * standard deviation 36.8 + 9.2 months, so all were young to middle-aged
adults at scan time (Languille et al., 2012). All mouse lemurs were born in a laboratory breeding
colony (Brunoy, France, authorization n°E91-114-1), and maintained at steady ambient
temperature (24—26°C) and relative humidity (55%). Full demographic information is provided
in Table 1 in (Nadkarni et al, Submitted).
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2.2. MR acquisition

One T2-weighted in vivo MRI scan was recorded for each animal. After an overnight fast,
animals were immobilized for MRI by isoflurane anaesthesia (4% induction, 1-1.5%
maintenance). Breathing rate was monitored to ensure animal stability until the end of the
experiment. Body temperature was maintained by an air-heating system. Images were
acquired using a 7 Tesla (T) Agilent system using a four channel phased-array surface coll
(Rapid Biomedical, Rimpar, Germany) actively decoupled from the transmitting birdcage probe
(Rapid Biomedical, Rimpar, Germany). The sequence was a 2D T2-weighted fast spin echo
with a resolution of 230x230x230 um: TR/TE = 10000/17.4 msec, RARE factor = 4, field of
view (FOV) = 29.44 x 29.44 mm with a matrix (Mtx) = 128 x 128, 128 slices, number of

averages (NA) = 6, acquisition duration 32 mins.
2.3. Template creation and validation

Raw k-space slice data from the 34 mouse lemurs were zero-filled to 256 x 256 and
reconstructed to 3D NIfTI-1 format using custom python code. Images were then up-sampled
in the through-slice direction as well to 256 slices, thus giving a final matrix of 2563, 115 ym

isotropic resolution.

The template generation pipeline is diagrammed in Fig. 1, and has been developed into the

function anats_to_common available within the sammba-mri python module (https://sammba-

mri.github.io/generated/sammba.reqgistration.anats to common.html#sammba.registration.a

nats to common). All steps used tools from freely available AFNI software

(https://afni.nimh.nih.gov/ (Cox, 1996)), except for brain extraction, which was done with RATS
(Oguz et al., 2014; Yin et al., 2010). Head images were bias corrected (Fig. 1b), brain extracted
(Fig. 1c), and individual brain extracted image centers were shifted to the brain center of mass
(Fig. 1d). Brains were then all rigid body aligned to a digitized version of a previous histological
atlas (Bons et al., 1998) (Fig. 1e) and the transform was then applied to the original heads.
The aligned heads were meaned to produce a first brain template (Fig. 1f). The previous rigid
body registration step was performed a second time to align the 34 centered brains to the first
template leading to a template 2 (Fig. 1g). Then, the 34 centered brains were affine aligned to
template 2 leading to a template 3 (Fig. 1h). Finally, four cycles of non-linear registration were
executed, the first to affine template 3, the rest to templates of heads from the previous non-
linear cycle, including initialization using the concatenated transforms of the previous cycles,
and an adjustment after each cycle to correct for systematic biases in the non-linear transforms
(Fig. 1i) leading to the final template. Note that non-linear registration used the AFNI tool
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3dQwarp, which repeatedly composes incremental warps defined by Hermite cubic basis
functions, first over the entire volume, then over steadily shrinking and overlapping patches,
with the resulting final warp being a grid representation of a diffeomorphism between source
and target images. In the non-linear cycles above, final patch size was relatively large in the
first cycle and was reduced substantially with each subsequent cycle. The intermediate and

final templates were all means in intensity space of transformed images.

The contrast to noise ratio (CNR) was measured in the template and in raw images by
evaluating the difference between the mean intensity of GM (in the caudate nucleus, 1920
voxels, 1.45 mm?3) minus mean intensity of WM (splenium of the corpus callosum, 500 voxels,
0.38 mm?) divided by the standard deviation of the intensities in the tympanic bulla (1280

voxels, 0.96mm?3).

Finally, adopting procedures of template validation from previous studies, landmark distance
measures were used to validate the mouse lemur template (Black et al., 2001a; Black et al.,
2001b; Ella and Keller, 2015; Hikishima et al., 2011; McLaren et al., 2009; Quallo et al., 2010).
Landmarks were identified at the level of the middle of the anterior (AC) and posterior (PC)
commissures in the template, raw images and images normalized to the mouse lemur template
(Anatomist freeware; http://brainvisa.info/index_f.html). The 3D Euclidean distances (AC-PC)
between each of these landmarks and the equivalent landmarks in the mouse lemur template

were calculated.

Figure 1. Template generation pipeline. T2-weighted MRI scans of the brain were collected
from 34 mouse lemurs. (a) Head images were bias corrected (AFNI-3dUnifize), (b) brain
extracted (RATS), and (c) each individual head (and brain extracted images) center was shifted
to the brain center of mass (AFNI-3dCM). (d) Brains were then all rigid body aligned to a
digitized version of a previous histological template (Bons et al., 1998)(AFNI-3dAllineate) and
the 6 degrees of freedom (DOF) transforms were then applied to the centered heads. (e) The
aligned heads were averaged to produce a first template and similarly for the aligned brains.
(f) The rigid body registration was performed a second time to align the 34 centered heads to
the first created template leading to a template 2. (g) Then, the 34 centered brains were affine
aligned to brain template 2 and the 12 DOF transforms were applied to the centered heads
leading to template 3. (h) Finally, four cycles of non-linear registration were carried out, the
first to affine template 3, then subsequently to match templates of heads from the previous
cycle (AFNI-3dQwarp), including initialization by the concatenation of previous transforms, and

an adjustment after each cycle to correct for systematic biases in the non-linear transforms
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(AFNI-3dNwarpAdjust). These steps used a weight, created by using a mask of brain template
3 dilated by 5 voxels (AFNI-3dmask_tool).
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2.4. Segmentation of the MRI-based atlas

The template image was up-sampled to 91 um isotropic resolution, then segmented manually
by a single person (JLP) using ITK-SNAP software (http://www.itksnap.org; (Yushkevich et al.,
2006)). Brain structures, except cortical areas, were defined according to the histological atlas
of Bons (Bons et al.,, 1998) on the basis of the contrast in the anatomical images. Each
structure was segmented slice by slice along either the coronal, axial or sagittal orientations
depending on which orientation offered the best contrast for the structure. The boundaries of
each structure were then checked, corrected using all three orientations and continuously
updated until, after several iterations in each direction, the three-dimensional representation
of the labelled structure was found to be smooth and non-jagged. Due to insufficient contrast
within the cortex of the template image, the boundaries of cortical areas were approximated
from the histological atlas of Le Gros Clark (Le Gros Clark, 1931), and even then only on
coronal slices of the template because this histological atlas only contains some coronal
sections and a rough lateral view of the mouse lemur cortex parcellation. After the delineation
of the cortical areas on the coronal orientation was completed, the boundaries were carefully
adjusted using the axial and sagittal orientations until achieving internal coherence among the
three views. The study of the cytoarchitectonic structure of the mouse lemur cortex by Zilles et
al. (Zilles et al., 1979) was used to make three small changes to the Le Gros Clark-based
cortical parcellation: 1) the more rostral parts of the temporal pole were occupied by the
prepyriform and periamygdalar areas instead of area 28 (entorhinal cortex), 2) areas 26 and
29 were merged to form the retrosplenial area, 3) area 22 was identified as the whole auditory
cortex corresponding to areas 41, 42 and 22 of Brodmann (Brodmann, 1999 (original in 1909)).
In total, 120 regions were drawn. They included 40 cortical, 74 subcortical and 6 CSF regions.
Each structure was outlined bilaterally. The names of the structures were based on the
NeuroName ontology (http://www.braininfo.org; (Bowden et al., 2012)). Labels of all brain

regions are provided in Table 2 in (Nadkarni et al, Submitted).
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Table 1. List of brain structures and volumes (mm3, mean #*

standard deviation)

determined by transformation of atlas labels back to individual mouse lemurs. Animals’

age range was 15-58 months. Sex, age and identifier of individual animals is given in Suppl.

Table 1.
Region Structure All animals Male (n=22) Females (n=12)
(n=34)

Left Right Left Right Left Right
cerebral cortex 1-3 18.941.8 | 18.8+1.9 | 19.241.8 | 19.0+1.9 | 18.4+1.5 | 18.4+2.1
cerebral cortex 4 26+2.7 | 27.0+43 | 26.1+2.8 | 27.04¢3.4 | 25.7+2.5 | 26.9+2.1
cerebral cortex 5 23.843.6 | 24.942.9 | 24.543.5 | 25.3+2.9 | 22.343.7 | 23.9+2.8
cerebral cortex 6 34543 | 35.9+3 |34.743.2 | 34.242.6 | 36.043.1 | 35.5+2.8
cerebral cortex 7 58+1.1 | 5.7¢1 | 6.1#1.1 | 59+1.1 | 5.2#1.1 | 5.330.8
cerebral cortex 8 7.9+0.9 | 7.8#0.9 | 8.020.9 | 7.8+0.9 7.8+1 7.7+1
cerebral cortex 13-16 10.941.2 | 9.94#1.1 | 11.0+1.2 | 10.1#1.2 | 10.9+1.1 | 9.7#0.8
cerebral cortex 17 46.245 |47.145.1| 46.6%5.3 | 47.7+5 | 45.5%¢4.6 | 46.0¢5.5
cerebral cortex 18 17.942.8 | 18.643.2 | 18.242.9 | 18.6+3.3 | 17.3+2.3 | 18.643.2
cerebral cortex 20 2.620.6 | 2.6£0.5 | 2.520.4 | 2.530.4 | 2.9#0.9 | 2.9+0.5

Cortical cerebral cortex 21 28.8+3.4 | 28.142.9 | 28.5£2.8 | 27.942.6 | 29.5:4.5 | 28.543.5
gray cerebral cortex 22 (40-42) |32.8+3.7 | 34.5¢3.6 | 33.143.5 | 34.5¢3.9 | 32.2¢4.3 | 34.5+3.2
cerebral cortex 23 7.841.1 | 7.7#0.9 | 7.720.7 | 7.6x0.9 | 8.0£1.7 | 7.8+1.1
cerebral cortex 24 6.920.9 | 6.4+0.9 | 6.9+1 | 6.420.9 | 6.8+0.7 | 6.5:0.7
cerebral cortex 25 0.8+0.3 | 0.8#0.2 | 0.8+0.3 | 0.84¢0.2 | 0.7+0.2 | 0.8+0.2
cerebral cortex 26-29 8.7+1.2 | 8.9+1.2 | 8.8+1.3 | 9.1¢¥1.3 | 8.4+0.8 | 8.6:+0.9
cerebral cortex 27 2.120.5 | 2.0£0.4 | 2.120.4 | 2.020.4 | 2.2+0.6 | 1.9+0.4
cerebral cortex 28 19.142.1 | 18.5+1.8 | 19.4+2 | 18.8+1.7 | 18.442.1 | 17.8+2
cerebral cortex 30 2.520.5 | 2.4#0.4 | 2.520.5 | 2.4%0.4 | 2.5#0.6 | 2.3+0.5
cerebral cortex
prepyriform and 6.3+0.7 | 5.7#0.6 | 6.3#0.5 | 5.840.6 | 6.2+0.9 | 5.530.9
periamygdalar
Amygdala 12.6+41.1 | 13.5#1.2 | 12.741.1 | 13.621.2 | 12.5¢1.1 | 13.2+1.1
basal forebrain 3.6£0.6 | 3.720.6 | 3.620.5 | 3.7x0.6 | 3.5+0.6 | 3.6%0.6
basal forebrain nucleus 0.330.1 | 0.3#0.1 | 0.320.1 | 0.330.1 | 0.2#0.1 | 0.3#0.2
caudate nucleus 18.1+1.8 | 18.3+1.8 | 18.4+1.5 | 18.6+1.5 | 17.5¢2.1 | 17.6+2.3
Central claustrum 5.020.5 | 4.44#0.6 | 5.020.5 | 4.530.6 | 4.8#0.5 | 4.2+0.5
gray globus pallidus 8.9+1.1 | 8.4+2.2 | 9.3+0.9 | 8.8+0.9 | 8.2+1.2 | 7.5#1.1
habenula 0.530.2 | 0.5+0.1 | 0.530.2 | 0.530.1 | 0.5+0.2 | 0.5#0.1
hippocampal formation 36.643.3 | 36.1+#3.4 | 36.743.2 | 35.943.3 | 36.4+3.7 | 36.643.7
hypothalamus 12.440.7 | 12.7+0.9 | 12.4+0.6 | 12.7+0.8 | 12.2+0.9 | 12.6+1.2
mammillary body 0.44#0.1 | 0.440.1 | 0.4%0.1 | 0.4+0.05 | 0.4+0.1 | 0.4+0.03
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nucleus accumbens 4,0+0.7 | 3.9#0.6 | 3.9+07 | 3.840.6 | 4.1#0.6 | 4.0+0.7
putamen 18.0+2.7 | 18.3+2.3 | 18.1#2.6 | 18.5+2.2 | 17.7+3.0 | 18.0+2.6
thalamus 45.443.5|44.143.3 | 46.0+¢3. | 44.623.4 | 44.143.1 | 43.0¢3.1
septum 6.320.6 | 6.2+0.6 | 6.320.6 | 6.240.6 | 6.3+0.6 | 6.2+0.6
subthalamic nucleus 0.1+0.03 | 0.1£0.03 | 0.1#0.3 | 0.1#0.4 | 0.1+¥0.3 | 0.1+0.4
Anterior commissure 4.0%1.1 4.3+0.9 3.4+1.3
corpus callosum 139.4+25 148.5+17.3 120.4428.5
fasciculus retroflexus 0.6+0.2 | 0.5+0.1 | 0.620.1 | 0.630.1 | 0.5+0.2 | 0.5#0.1
fornix 4.6+0.5 | 4.8#0.5 | 4.7¢0.5 | 4.9+0.5 | 4.5+0.5 | 4.7+0.6
| internal capsule 12.742.5 | 12.642.4 | 13.6+1.5 | 13.241.6 | 11.043.2 | 11.243.1
\?viriisra mamillo-thalamic tract 0.4%0.2 | 0.420.1 | 0.4+0.1 | 0.5%0.1 | 0.3+0.2 | 0.4+0.1
optic chiasm 2.1+0.3 2.1+0.3 2.240.3
optic tract 4.2+0.6 | 43+0.5 | 4.330.5 | 4.440.6 | 3.9+0.5 | 4.1¥0.6
iig?amiSUIlar'SOfthe 0.9+0.1 | 1.1#0.2 | 1.020.1 | 1.1¢0.2 | 0.940.2 | 1.0¢0.1
stria terminalis 1.840.2 | 1.7¢0.2 | 1.8#0.2 | 1.8#0.2 | 1.7+0.2 | 1.7#0.2
olfactory bulb 28.242.5 | 28.3+2.8 | 28.622.3 | 2942.7 | 27.3%2.7 | 26.9+2.6
Olfactory olfactory tract 2.6+0.4 | 2.7#0.3 | 2.720.4 | 2.720.3 | 2.5+0.4 | 2.60.3
olfactory tubercle 2.920.4 | 3.1#0.4 | 2.9+0.4 | 3.0¢0.4 | 2.8+0.4 | 3.1:0.3
Cerebellum arbor vitae of cerebellum | 33.8+5.1|34.1+5.4 | 34.844.5 | 35.1+4.5 | 31.6%5.8 | 32.06.7
cerebellum 68.146.3 | 70.3+6.5 | 68.1+7.1 | 70.47.2 | 68.0+4.7 | 70.245.1
CSF (peri-brain) 327.6£16.4 330.8+13.9 320.8+19.7
lateral ventricle 12413 |11.8#1.1| 12.1+1.4 | 11.621.1 | 11.8#1.1 | 12.0+1.0
CSF and . .
ventricles third ventricle 9.4+1.7 9.5¢1.6 9.2+2.0
cerebral aqueduct 2.320.4 2.320.4 2.3+0.5
fourth ventricle 2.9+0.6 2.9+0.6 3.0£0.7
rcneigtbrf; iiray of the 8.4%1.0 8.621.1 8.00.8
cerebral peduncle 3.020.6 | 3.24#0.6 | 3.1#0.4 | 3.320.7 | 2.6:+0.5 | 3.0:0.7
substantia nigra 1.5+0.3 | 1.7#0.2 | 1.5#0.2 | 1.7#0.2 | 1.3%0.3 | 1.6%0.2
superior colliculus 8.3+1.1 | 8.8+1 | 8.4%1.0 | 9.0+1.0 | 7.9+1.4 | 8.4+0.9
Brain stem inferio‘rcolliculu‘s 11.641.2 | 11.441.1 | 11.841.1 | 11.5#1.0 | 11.3+1.4 | 11.1+1.3
posterlor commissure 0.440.1 0.440.1 0.340.1
Egm'ﬁ‘re of the inferior 0.540.1 0.540.1 0.440.1
medulla 26.742.8 27.7+1.7 24.7+3.5
midbrain 24.042.3 | 24.642.3 | 24.142.3 | 24.942.3 | 23.9+2.2 | 23.842.2
pons 47.5+4 |49.543.9 | 48.0+3.8 | 49.943.9 | 46.5¢4.5 | 48.7+4.2
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2.5. Tissue probability maps

Tissue probability maps were created using SPM8 (Wellcome Trust Institute of Neurology,
University College London, UK, www.fil.ion.ucl.ac.uk/spm) with the SPMMouse toolbox
(http://spmmouse.org) for animal brain morphometry as previously described (Sawiak et al.,
2014; Sawiak et al., 2013). Briefly, MR images from the 34 animals involved in the study were
registered to a previously published SPM template of the mouse lemur brain (Sawiak et al.,
2014). Affine registration adjusted the images to control for different head positions and
scanner geometry as well as overall brain size. Then unified segmentation iteratively warped
the data whilst correcting for signal inhomogeneity due to the receiver coil. The images of the
rigidly-aligned brains of each animal were then segmented using a k-means algorithm
(MacKay, 2003) with 4 segments: background, GM, WM, and CSF. These maps were then
averaged across individuals separately for each tissue type to produce mean GM, WM and
CSF tissue probability maps. These maps were manually edited, particularly around the edges
of the brain where partial volume effects lead to mislabeling of CSF as GM or WM voxels. The
templates were also masked using masks derived from the segmented atlas, to conserve only

brain and CSF structures.

2.6. Evaluations and applications

2.6.1. Quality of registration to other images

Using sammba-mri (anats_to_template, https://sammba-

mri.github.io/generated/sammba.reqistration.anats to template.html#sammba.reqgistration.a

nats to template), our MRI atlas was non-linearly registered to different MR images, including

in vivo MRI recorded at different field strengths (4.7 and 11.7 T), and ex vivo high-resolution
gadolinium-stained MRI. These images were collected from mouse lemurs unrelated to the
atlas. Images at 4.7 T were recorded according to previously published protocols on a Bruker
Biospec 47/30 system by using a surface coil (diameter = 30 mm) actively decoupled from the
transmitting birdcage probe (Bruker GmbH) and a three-dimensional inversion-recovery fast
spin-echo sequence of 234x234x234 ym nominal resolution (TR/TE = 2500/6 msec, TEw = 45
msec, Tl = 200 msec, RARE factor = 16, Mtx = 128 x 128 x 128, NA = 1). MR images were
zero-filled to reach an apparent resolution of 117x117x117 pym. Images at 11.7 T were
recorded on a Bruker Biospec 117/16 system (Bruker, Ettlingen, Germany) using a two-

dimensional multi-slice multi-echo sequence of 200x200x200 pm nominal resolution (TR/TE =
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5000/5 msec, TEw = 17.5 msec, 6 echos, Mtx = 160 x 160, 75 slices, NA = 1). For each field,
we present images from young non-atrophied animals (1.9 and 2.4 years at 4.7 and 11.7 T,
respectively) and old atrophied animals (10.9 and 10.4 years at 4.7 and 11.7 T, respectively).
Ex vivo gadolinium-stained MRI were recorded on a 7 T clinical magnet (Siemens, Syngo MR
VB15) using a 2D gradient echo T2*-weighted sequence with a spatial resolution of 31 x 31 x
120 um (TR/TE = 200/20.8 msec, flip angle = 80°, Mtx = 768 x 648, 144 slices, NA = 1). Animal
brains came from an in-house mouse lemur brain collection. The brains were extracted and
formalin-fixed for at least 6 months after the death of the animals. They were then stained by
a one-week soaking in a solution of Gadolinium (Dotarem, Guerbet, France) in PBS at 2.5
mmol/l. This protocol enhances the signal- and contrast-to-noise ratios on MR images of fixed
brains (Bertrand et al., 2013).

2.6.2. Evaluation of cerebral atrophy

The MRI brain atlas was then used to measure the volumes of individuals’ brain structures and
evaluate age-related cerebral atrophy in a cohort of 30 mouse lemurs that had previously been
evaluated by voxel-based morphometry (Sawiak et al., 2014). Animals from this cohort had
ages ranging from 1.9 to 11.3 years old (7 "young" animals (2.2 £ 0.2 years), 11 "middle-aged"
(4.8 £ 1.0 years) and 12 "old" (8.3 £ 1.7 years) animals). Compared to those used for atlas
creation, images for these animals were recorded by MRI at a different field strength (4.7 T)
with a 3D inversion-recovery fast spin-echo sequence using the same parameters as
described in the previous section though without zero-filling (Dhenain et al., 2003; Kraska et
al., 2011).

A study template representative of the 30 animals was created by registering individuals’
images using the same procedure described earlier for template creation. The study template
was then non-linearly registered to the earlier-created mouse lemur template. The mouse
lemur atlas was then transformed to each individual’s original image by applying the
concatenated inverted study-template-to-mouse-lemur-template and animal-to-study template
transforms. CSF accumulations and infiltrations were identified by simple thresholding and
used to correct the animal-specific atlases, which were then used to measure the volumes of
different brain structures. These volumes were analyzed by linear regression in R (function Im,

https://www.R-project.org) using the following model:

Vi=Bo+ Brjagei+ B IVi+ E;
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where the dependent variable Vjis the estimated volume (in mm?) of region j for animal i, the
independent variables being age; the age (in years) and /V; the intracranial volume (total

volume of the individually-transformed mouse lemur atlas, which marks brain plus surrounding

CSF, so total intracranial volume, in mm?3) of animal /, and €; is the error term.

2.6.3. Comparative anatomy

Cerebral anatomy in the mouse lemur was compared to that of other mammals using available
downloadable 3D digital MRI-based brain atlases of the mouse (Dorr et al., 2008), rat (Papp
et al., 2014), marmoset (Woodward et al., 2018), macaque (Reveley et al., 2017), and
compared to human data from MRI-based morphometric analysis (Filipek et al., 1994). The
volumes of the hippocampal formation, striatum (caudate nucleus + putamen), cortex and
cerebral WM (see list of structures in Table 1) were measured and expressed as a proportion

of total cerebrum (cortical GM + central GM + cerebral WM, see Suppl. Table 2).

3. Results

3.1. Mouse lemur template and probability maps

An MRI template of mouse lemur brains was generated from 34 animals aged 15-60 months
old scanned at 7 T using a T2-weighted sequence with a final isotropic resolution of 115 um
(Fig. 2A, C, E, Fig 3A). The orientation of the template roughly corresponded to that of the
reference Bons atlas (Bons et al., 1998). The image grid mid-plane coincided with the
anatomical midsagittal plane, and the image grid horizontal plane passed through the centers
of the AC and PC, corresponding to a standard anatomical coordinate system similar to

Talairach space (Talairach and Tournoux, 1988).

This template was used to create tissue probability maps for GM, WM and CSF (See Fig. 2 in
Nadkarni et al, Submitted). The template and tissue probability maps are available from
https://www.nitrc.org/projects/mouselemuratlas. Contrast to noise in the template reached 58
between GM and WM. The quality of the template was improved as compared to individual
images that had a GM/WM CNR of 13.2+2.6 (See Fig. 2 in Nadkarni et al, Submitted). The
Euclidian AC-PC distance was 4740 um in the template and in each of the individual images
registered to the template. It was 4678163 um in the original images, which represents a

1.3% difference between raw and template images.

The usability of an atlas for imaging studies relies on the accuracy of registration to its template.
Here, we tested the performance of our MRI-based atlas on non-linear registration with imaging
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data obtained from in vivo T2-weighted MRI at different field strengths (4.7 T (Fig. 3E, F) and
11.7 T (Fig. 3G, H)), as well as with ex vivo MRI recorded at 7 T (Fig 3D). Visual inspection of

the registered images suggested good accuracy of registration to the template (Fig. 3A).
3.2. Mouse lemur atlas

The template was manually labelled (https://www.nitrc.org/projects/mouselemuratlias). A two-

dimensional representation of the atlas in three orientations is shown in Fig. 2B, D, F and 3B;
a three-dimensional representation from the superior lateral view is shown in Fig. 2G. 74
subcortical structures could be identified (See Table 2 in Nadkarni et al, Submitted). 40 cortical
structures were outlined by interpreting borders defined in the Le Gros Clark atlas (Le Gros
Clark, 1931) with some adjustments on the basis of updates in more recent atlases (Zilles et
al., 1979). The volumes of each structure and their variation across the 34 animals used for
template creation, including measures of cerebral asymmetry and sex difference, are shown
in Table 1.

3.3. Application to evaluating regional atrophy from atlas-based defined regions

We assessed atrophied brain regions in a cohort of 30 mouse lemurs aged from 1.9 to 11.3
years old that had previously been evaluated with other methods such as voxel-based analysis
(Sawiak et al., 2014). Regions presenting with a significant atrophy are presented in Fig. 4 and
Table 2. Nearly all of the changes were symmetric with both sides of the brain affected. Most
cortical regions displayed some atrophy with age, with the most prominent including the insular
(areas 13-16, Fig. 4C), frontal (area 6), parietal (areas 5 (Fig. 4D) and 7), occipital (areas 17,
18), inferior temporal (areas 21, 28) and cingulate cortices (areas 23, 24, 25) (Table 2). With
the exception of the visual cortex, the primary motor and sensory cortices were spared.
Subcortical regions such as the thalamus (Fig. 4E), hypothalamus, caudate nucleus, and
central gray of the midbrain were also particularly affected by aging. Interestingly, with some
minor exceptions, the regions that were reported atrophied here are the same as those
declared atrophied in a previous article focusing on this cohort (Table 2, (Sawiak et al., 2014)).
These data confirm that in mouse lemurs 1) the cortex as a whole is more vulnerable to age-
related atrophy than subcortical regions, 2) the magnitude of age-related cortical shrinkage
varies greatly among cortical regions, 3) atrophy of association cortices is prominent whereas
motor and primary sensory (except the visual area) cortices are relatively spared, 4) multimodal
association cortices such as areas 13-16 and the cingulate cortex -which are viewed as
equivalent of prefrontal regions subserving executive functions (Le Gros Clark, 1931)- are also
especially vulnerable to aging.
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Figure 2. Labeling of the mouse lemur atlas. Brain structure delineations are shown in
coronal, sagittal and axial views (B, D, F) together with corresponding template images (A, C,
E). Panel G displays a three-dimensional representation of the atlas from a superior lateral

view. Scale bars equal 1 cm. For clarity, the label marking surrounding CSF is not displayed.
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Figure 3. Registration of various in vivo and ex vivo MR images to the mouse lemur
template. A-B. Coronal section of the mouse lemur MRI template (level of the anterior
commissure, A) and associated section in the atlas (B). C displays an MR image from one of
the 34 animals used to create this template. D displays 7 T gradient echo T2*-weighted,
gadolinium stained images from an ex vivo brain registered on the template. E-F highlight 4.7
T fast-spin echo T2-weighted MR images from 1.9 year-old (E) and 10.9 year-old (F) animals,
registered on the template. G-H display 11.7 T-T2-weighted multi-slice multi-echo MR images
from 2.3 year-old (G) and 10.4 year-old (H) animals, registered on the template. Scale bar: 5

mm.
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Figure 4. Age-related evolution of cerebral atrophy in various brain regions. (A). Dorsal
(left), ventral (middle) and lateral (right) views of the cortex showing regions presenting with a
significant age-related atrophy (colored labels) and spared cortical areas (white). (B) Dorsal
(left), ventral (middle) and lateral (right) views of atrophied subcortical brain structures. (C-E)
Age-related evolution of the volume of area 13-16 (insular cortex, C), area 5 (D) and thalamus
(E). Statistical modeling was performed as described in Section 2.6.2, with numerical results
given in Table 2. Annotations: ca = caudate nucleus, ce = cerebellum, g = central gray of the

midbrain, h = hypothalamus, Prp-pa = prepyriform and periamygdalar area, t = thalamus.
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Table 2. Brain structures presenting with age-related atrophy. Analysis was carried out as detailed in
Section 2.6.2. Slope is the co-efficient estimated for the parameter age (B effectively in mm? per year)
and p-value is its associated p-value (p-value for the hypothesis test Ho: B1 = O versus H1: B #0,
reflecting the significance of the regression coefficient associated to the age). NS: p > 0.05. 30 animals

were used for this study Animals’ age range was 1.9 to 11.3 years old.

name of slope p-value Structures detected as atrophied by
structure VBM analysis in (Sawiak et al., 2014)
Insular cortex (13-16) -1.01 0.000039 +
Frontal cortex

Area 6 -1.36 0.0019 +
Parietal cortex

Area 5 -2.22 0.00000027

Area 7 -0.70 0.000000016
Occipital cortex

Area 17 -3.55 0.00000370

Area 18 -0.69 0.011
Retrosplenial cortex -0.63 0.000013
Cingulate cortex

Area 23 left -0.24 0.0086

Area 24 -0.27 0.00058

Area 25 -0.10 0.00014
Temporal cortex

Area 21 -1.20 0.0030 +

Area 28 -0.75 0.015 -

Area 20 NA NS

Area 22 NA NS
Total cortex -14.46 0.00000030 NA
Thalamus -2.50 0.000072 +
Hypothalamus -0.90 0.00000001 +
Caudate -0.75 0.0016 +
Central gray of the midbrain -0.48 0.00000052 +
Putamen -0.30 0.057 +
Septum right -0.20 0.020 +
Cerebellum right -1.53 0.035 -
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3.4. Application to comparative neuroanatomy

Most studies on brain evolution rely on the analysis of the same set of volumetric
measurements made on a large variety of mammalian species by a single research group
using histology-based measures (Stephan et al., 1981). Our 3D MRI-based brain atlas offered
the opportunity to compare the volumes of brain regions assessed in this histology-based
reference article to in vivo MRI-based data. This revealed large discrepancies between the two
methods (Suppl. Table 1). For example, the size of the hippocampus is overestimated by about
38% with histology-based measures whereas the size of the pallidum is under-estimated by
about 38%. For the whole cortex, it is difficult to compare cortical prominence between the two
methods since the histology-based dataset has the limitation of including the underlying WM

and corpus callosum within the volume of the neocortex.

In addition to measures of volumes within a single species, digital atlases offer new
opportunities to compare cerebral volumes across different species (Suppl. Table 2). As a
proof of principle, we found that, in our population of adult mouse lemurs, the cortex contributes
54% of cerebral volume (Fig. 5). This value is close to that given by Filipek and al. for the
human brain (Filipek et al., 1994). By using freely downloadable 3D MRI-based brain atlases
of the mouse (Dorr et al., 2008), rat (Papp et al., 2014), marmoset (Woodward et al., 2018),
and macaque (Reveley et al., 2017), it can be determined that the cortex is around 56+3% of
cerebral volume in the four primate species as in the rat but only 51% in the mouse (Fig. 5,
Suppl. Table 2). Fig. 5 also shows that overall, the mouse lemur brain is very close to that of
the marmoset in terms of relative volumes of brain components and that primate brains differ
from those of rodents in the relatively smaller volumes of the hippocampus and striatum, and
relatively larger volumes of WM. These trends are especially marked in the human brain, in
particular the large volume of WM. In addition to measures of brain volumes, another
advantage of 3D digital brain atlases is that they allow an easy visualization of the 3D shape
of each brain structure. As an illustration, Fig. 6A shows that the shape of the striatum is very
different between rodents and primates. Also, within the primate group, it is very similar
between the mouse lemur and the marmoset. In particular it can be noted that the putamen is
flat and bent in these two primate species whereas it is rounded and domed in the macaque
as well as in human. Likewise, it can be seen in Fig. 6B that the hippocampus is much thinner
with a dorsal part that is much less developed in the macaque than in the mouse lemur, the

shape being intermediate in the marmoset.
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Figure 5. Volume fractions of hippocampus, cortex, WM and striatum plotted against

total cerebrum volume in mouse, rat, mouse lemur, marmoset, macaque and human.
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Figure 6. 3D shape comparison of the striatum and hippocampal formation in rodent
and primate species. A: 3D visualizations of the striatum in mouse, rat, mouse lemur,
marmoset and macaque as seen from a left anterior-superior view (green: caudate in primates,
striatum in rodents, brown: putamen). B: 3D visualizations of the C-shaped hippocampal

formation in mouse, rat, mouse lemur, marmoset and macaque as seen from a right anterior-

superior view.
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4. Discussion

Mouse lemurs are generating more and more interest as models of neurodegenerative disease
and references for comparative anatomy. The use of these animals in biological research
depends on the development of tools for high throughput and automatic analysis as well as for
standardization. We presented here one such tool: the first 3D digital brain atlas of the mouse
lemur primate, consisting of an MRI template and labels for the whole brain. We also presented
two potential applications of this atlas to assess age-related cerebral atrophy and for

comparative neuroanatomy.

Compared to previous traditional 2D histology-based atlases of the mouse lemur brain, our
MRI-based atlas has three main advantages: 1) a high resolution MRI template is provided for
accurate registration to different imaging modalities and we showed that it can be used to
register images recorded in various conditions (MRI recorded on 3 different scanners, from 4.7
to 11.7 T, in vivo and ex vivo), 2) brain regions are directly delineated onto 3D MR images, 3)
all the voxels from the brain were labeled, including WM areas, subcortical nuclei and cortical

regions.

In other species, including primates, several atlases have been based on ex vivo samples.
Here, we developed an atlas based on in vivo images that do not suffer from the deformation
of post mortem tissue processing. We also averaged data from several animals to reduce bias

linked to individual differences.
4.1. Accuracy of cerebral label attribution

After the seminal work of Brodmann (Brodmann, 1999 (original in 1909)), cytoarchitectural and
other histology-based labeling techniques were the standard methods used for brain
parcellation. This strategy was used to annotate cortical region atlases (Le Gros Clark, 1931;
Zilles et al., 1979) and non-cortical structures (Bons et al., 1998) in mouse lemurs. For our
atlas, delineation of WM and subcortical structures was relatively accurate because of the
strong contrast in the brain template. Delineation of cortical regions, however, was mainly
based on the transfer of structures found in histological atlases (Le Gros Clark, 1931; Zilles et
al., 1979). New techniques of brain parcellation such as registration of MRI to 3D histological
sections or measures of anatomical or functional connectivity (Glasser et al., 2016) will allow

future refinements of atlas labels.
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4.2. Application of the mouse lemur atlas to automatically annotate brain regions

Previous studies of cerebral atrophy in mouse lemurs were based on time-consuming manual
segmentations (Kraska et al., 2011) or on VBM that can highlight atrophied structures, but that
does not provide individual measures of the volume of atrophied structures (Sawiak et al.,
2014). Here we showed that using atlas-based registration, individual scans can be annotated
automatically, eliminating the time consuming step of manual tissue segmentation, and
enabling rapid and objective quantification of individual subjects’ brain region volumes. Using
this method, a reanalysis of past data processed by VBM (Sawiak et al., 2014) produced similar
results. The interest of this method is that, unlike VBM measures of atrophy, it provided
individual measures of the volumes of each brain region and allowed a quantitative
assessment of the atrophy. Caution should, however, be recommended after automatic
annotation of brain regions, and in particular for small regions or for regions close to CSF, and

it is always recommended to perform a visual assessment of the quality of the annotation.
4.3. Application of the mouse lemur atlas for comparative neuroanatomy

Comparative anatomy should be performed on reliable measures of brain structures to provide
reliable interpretations. One of the obstacles when evaluating many different rare animals is to
have access to anatomical data that are often difficult to record. For this reason, many studies
(Barton and Harvey, 2000; Finlay and Darlington, 1995) have used measures from a
histological study published in the 1980s (Stephan et al., 1981). The study was based on
perfused brains, extracted out of the skull, embedded in paraffin and sectioned serially. The
borders of brain structures were delineated from the stained histological sections. Calculations
were performed to take into account distances between the sections and corrections applied
for shrinkage resulting from fixation and embedding. Although it has been acknowledged that
the different components of the brain may have sustained different degrees of shrinkage, these
differences were considered negligible and not accounted for. We found substantial
differences between the measures we made and the data reported in this reference article.
One likely explanation is the post mortem artefacts associated with brain sampling and
shrinkage resulting from fixation and embedding during histological preparation. An additional
explanation may be differences in delineation of brain structures. It is impossible to evaluate
how delineation was done in the reference article as technologies at the time did not allow
digitization of large datasets. Delineation of an MRI template is expected to be less accurate
than that of histological sections, but one of the advantages of MRI-based digital atlases is that

the whole set of data is publicly available and can thus be corrected by other researchers.
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Published datasets suggest that the ratio of the cortical to cerebral volume is highly different
between humans (92%) and mouse lemurs (61%) (Stephan et al., 1981). Also, they report
intermediate values for the marmoset, macaque and chimpanzee (76%, 85%, and 89%,
respectively). These reference data support the theory of the corticalization of the human brain.
Unexpectedly, our own analyses based on MRI-based atlases show similar cortical indices
(56£3%) in four primates (mouse lemurs, marmosets, macaques and humans) while lower
values were found in mice. Our results are not consistent with a corticalization theory of brain
evolution. This is a good demonstration of the interest in revisiting previous comparative
anatomy studies but using MRI-based atlases. Also, contrary to some previous assertions (see
(Passingham, 1981) for example), we showed that mouse lemurs do not differ from other
primates in the proportion of their cortex and must not be considered, in this respect, as "lower
primates". Major differences between primates were found for the WM/cerebrum indices.
These are bigger in macaques and humans, suggesting that WM increase, a marker for
reinforced intracerebral connectivity, is a critical event for primate brain evolution, as already
proposed by several authors (Schenker et al., 2005; Schoenemann et al.,, 2005).
Hippocampus/cerebrum indices also decreased for the different primates. Our atlas of the

mouse lemur is thus a key tool for future collaborative studies of primate brain evolution.
5. Conclusion

We constructed the first 3D digital atlas of the mouse lemur brain. It consists of a template

constructed from in vivo MRI of 34 animals and labelled maps including all brain regions. It is

freely distributed at https://www.nitrc.org/projects/mouselemuratlas and also includes GM, WM

and CSF probability maps. The imaging tools used to create and manipulate the template are

also available (https://sammba-mri.github.io). The labelled atlas itself has room for

improvement. For example, future cortex parcellation could be based on the registration of our
atlas to histological data. Newer brain imaging modalities such as structural or functional
connectivity could also be included in future versions to improve understanding of primate
brains. This atlas is an important tool for current and future automatic evaluation of pathologies

in mouse lemur brains and for comparative anatomy.
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Supplementary Table 1. Comparison of the volumes (mm?3) of various cerebral structures according

to our 3D atlas and that of the reference histological evaluation (Stephan et al., 1981).

Reference . .
Current 3D atlas histological-based Difference between histology-
evaluation based measures and 3D atlas
Total brain 1668 1680 +0.7%
Telencephalon 1180 1129 -4%
Diencephalon 120 134 +12%
Striatum 72.7 85.7 +18%
Pallidum 17.3 10.7 -38%
Amygdala 26.1 36.4 +39%
Cerebellum 206.3 234.0 +13%
Septum 12.5 15.3 +21%
Hippocampus 72.7 100.0 +38%
Thalamus 89.5 78.3 -12%
Hypothalamus 25.1 29.8 +19%
Olfactory bulb 56.5 43.0 -23%

Supplementary Table 2. Total brain volume and volume fractions of hippocampus, cortex, WM and

striatum against total cerebrum volume in mouse, rat, mouse lemur, marmoset, macaque and

human.
brain volume | hippocampus/ cortex/ wmMm/ striatum/
(mm?3) cerebrum cerebrum cerebrum cerebrum
Mouse 426 0.095 0.51 0.09 0.072
Rat 2314 0.100 0.55 0.10 0.083
Mouse lemur 1668 0.063 0.54 0.17 0.063
Marmoset 7678 0.055 0.57 0.18 0.046
Macaque 74324 0.018 0.59 0.30 0.045
Human 1380000 0.008 0.58 0.37 0.017
References

Stephan, H., Frahm, H., Baron, G., 1981. New and revised data on volumes of brain

structures in insectivores and primates. Folia Primatol. (Basel) 35, 1-29.
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11.2. Study 2: Resting state cerebral networks in mouse lemur
primates: from multilevel validation to comparison with

humans

Studies of cerebral connectivity have contributed to many breakthroughs in the
understanding of brain function in normal as well as in pathological conditions such as
Alzheimer’s or Parkinson’s diseases. One of the objectives of this thesis was to
characterize cerebral connectivity in mouse lemurs. This study was based on
evaluation of mouse lemur brains after resting-state blood-oxygen level dependent
(BOLD) functional magnetic resonance imaging (fMRI). Patterns of low-frequency
signal oscillations recorded with this technique are similar in brain structures
functionally connected. Dedicated MR protocols were developed and sammba-mri was
used to coregister fMRI images. This article was posted on bioRxiv (Garin, C. M.,
Nadkarni, N. A., Landeau, B., Chételat, G., Picq, J-L, Bougacha, S., & Dhenain, M.
(2019). Resting state cerebral networks in mouse lemur primates: from multilevel
validation to comparison with humans. | acquired the fMRI and anatomical images of
the lemurs at 11.7T and coregistered them. | designed the multilevel validation
methodology for the exploration and the analysis of the neuronal networks in lemurs

and humans. | created, named and compared the functional atlas of these two species.

BioRxiv https://www.biorxiv.org/content/10.1101/599423v1

doi: https://doi.org/10.1101/599423) submitted to E-life.

[1.2.1. Introduction to the methodology: Animal preparation for fMRI acquisition

fMRI connectivity relies on the analysis of correlations of BOLD fMRI signal
evolution in different brain regions. This signal assesses neuronal activity through the
evaluation of the hemodynamic response i.e. the ability of blood to release oxygen to
active neurons at a greater rate than to inactive neurons. This measure is dependent
on the relative levels of oxyhemoglobin and deoxyhemoglobin (oxygenated or
deoxygenated blood) and is modulated by local blood volumes. For these reasons,
controlling the physiological parameters during fMRI acquisition in animals has proven

to be one of the crucial aspects to access reliable BOLD acquisition. In addition, fMRI
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acquisitions are highly sensitive to the subject’'s movement. As a consequence, the
first question that arises prior to any fMRI study in animals is: How to prepare an animal

to monitor and control the physiological parameters during the image acquisition?

[1.2.1.1. Controlling for motion: trade-off between awake and

anaesthesia-based connectivity

In humans, several studies showed that small head motions can produce spurious
but spatially structured patterns in functional connectivity (Jonathan D. Power et al.,
2014). In animals as well, it is critical to control for head motion. As animals are non-
compliant species, the most widely used method to control for head stability is to
anesthetize them and to stabilize the head with bitebar and earbars. However, training
for awake restraint techniques has been developed in rodents and primates. Briefly,
these procedures are based on progressive acclimation to the scanner environment.
Atraumatic devices such as head cylindrical head-holder or flat earbars can be used
to fix the head (Liang et al., 2011). In primates, individualized plastic helmets have
been constructed based on 3D anatomical images for a better stabilization of the head
(Belcher et al., 2013). The quality of the mechanical set-up to fix the head is critical
and according to Kalthoff et al. (Kalthoff et al., 2011), even with carefully fixed heads,
motion remains the main source of noise in rats fMRI and it contributes to 30% of the
non-neuronal signal variance (60% being attributed to residual noise). This residual
motion is related to respiration that represents 5% of the total variance of rsfMRI signal
(Kalthoff et al., 2011). It can be minimized by artificially-ventilating and paralyzing the
animals, a process that results in excellent control of the motion artefacts (Ferrari et
al., 2012), but that remains invasive and technically challenging. Cardiac motion
induces low-frequency BOLD fluctuations and is another source of noise for rsfMRI

signal interpretation (Murphy et al., 2013).

[1.2.1.2. Anaesthetics: mechanisms of action

Because of the difficulties related to awake rsfMRI, anaesthesia remains the method
of choice to control for head stability. Several options are available regarding the

anaesthetic to be used. Anaesthetics have been classified into several classes
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according to their targets: GABAAa receptors, NMDA receptors, two-pore-domain K*

channels, and other modes of actions.

GABAA receptors are the most widely used targets for anaesthetic. They are
chloride channels that hyperpolarize neurons, making them less excitable and thus
inhibiting the possibility of an action potential. Widely used anaesthetics such as
isoflurane, propofol and barbiturates belong to GABAA receptors agonists (Franks,
2008; Garcia et al., 2010). Each drug within this category displays a subtly unique
pharmacological characteristic. For example, isoflurane and sevoflurane have opposite
metabolic activities on cerebral blood flow and glucose consumption in various brain
regions (Lenz et al., 1998). Alpha-chloralose is a drug that is widely used in the context
of BOLD-fMRI because it provides robust metabolic and hemodynamic responses to
functional stimulation and is also expected to act on GABAA receptors (Garrett et Gan,
1998).

NMDA receptors are also targets commonly used. The use of antagonists for these
receptors, such as ketamine, is supposed to block excitatory synaptic activity and
potentially lead to anaesthesia. The latter is probably related to the fact that ketamine
binds preferentially to the NMDA receptors on GABAergic interneurons. Ketamine
however, leads to a "dissociative anaesthesia" during which the perception of pain is
dissociated from the perception of a noxious stimuli. It also has psychotomimetic
effects at low concentrations leading to auditory and visual hallucinations (Franks,
2008). Interestingly, ketamine increases regional brain activity, mainly in the anterior
cingulate, the thalamus, the putamen, and the frontal cortex (Bonhomme et al., 2012;
Langsjo et al., 2003).

Two-pore-domain K* channels are targeted by volatile anaesthetics (isoflurane,
halothane, nitrous oxide) which have different affinities for subfamilies (TREK-1 or
TASK) of these receptors (Patel et al., 1999). These channels modulate the potassium
conductance that contributes to the resting membrane potential in neurons. The
opening of this channels therefore facilitates a hyperpolarizing current, which reduces

neuronal excitability leading to anaesthesia.
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Among other targets, alpha2 adrenergic receptor agonists are targeted by
xylazine, medetomidine, dexmedetomidine (Sinclair, 2003). The effect of these drugs
is related to their action upon the receptors located in locus coeruleus. At this level
they prevent the release of norepinephrine, a neurotransmitter that is necessary for
arousal. The anaesthesia induced by these compounds resembles a state of non-REM
sleep, i.e. the first four of the five stages of the sleep cycle (Franks, 2008). All of these

drugs can be reversed by atipamezole (Sinclair, 2003).

[1.2.1.3. Impact of anaesthesia on global BOLD signal

BOLD signal can be affected by heart rate, arterial CO2 concentration and body
temperature. Different anaesthetics modulate various targets in the brain and have
different impacts on peripheral receptors acting on respiration or cardiac regulation.
Thus, they have different impacts on BOLD signal. For example, in mechanically
ventilated animals under various anaesthetic conditions and for which arterial blood
gases (PaCO2, Pa0O2) and pH were maintained constant, there was a higher BOLD
signal in rats anesthetized with medetomidine or ketamine-xylazine in comparison to
isoflurane (2%). This was explained by lower CBF, CMRO2, PtO2, vasodilatation in
animals under isoflurane (Ciobanu et al., 2012). The use of mechanical ventilation has
the advantage of avoiding hypercapnia (controlled with paCO2 monitoring) which has
an impact on fMRI reproducibility (B. Biswal et al., 1997 ; Ramos-Cabrer et al., 2005).
In spontaneously breathing animals, isoflurane causes dose-dependent respiratory
depression leading to hypercapnia (increased paCO:2) (Wren-Dail et al., 2017), that
significantly decreases the BOLD signal and the variation of this signal induced by
stimuli (Sicard et Duong, 2005). The hypercapnia also leads to vasodilatation and
increases cerebral blood flow (Xu et al., 2011). The modulation of the cerebral blood
flow could explain the decrease of the BOLD signal specificity to neuronal activity
induced by stimuli (L. Uhrig et al., 2014). Interestingly, Uhrig et al. showed the different
impacts of various anaesthetics on blood oxygenation in different brain regions. For
example, ketamine leads to higher oxygenation in the cortex in comparison to the
thalamus while the opposite occurs for propofol (Lynn Uhrig et al.,, 2014). This
variability probably impacts the ability to detect networks connecting these regions.

Thus, it seems that anaesthesia limits the ability to detect local BOLD signal variations.
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However, resting-state BOLD connectivity was found not to be dependent on paCO2
or paOz in rats (Fatima A. Nasrallah et al., 2015). Despite this result, the use of a 1:(4
or 5) oxygen and air mixture (D'Souza et al., 2014; J. Grandjean, Zerbi, et al., 2017;
Kundu et al., 2014; Sierakowiak et al., 2015) in anesthetized animals was commonly
observed. The use of oxygen in the mixture is probably useful to renew arterial blood

gases and support normocapnic conditions.

The impact of anaesthesia on other physiological parameters, such as temperature
or the auto-regulatory range of the cardiovascular parameters (contributing to 1% of
the variability) can modulate the quality of the measured connectivity. These
parameters must be monitored to assure normal physiological conditions during image
acquisition. The body temperature can easily be controlled with a heating cradle, pad

or any additional heating system.

However, few laboratories can afford all of these monitoring instruments. Controlling
the temperature, the paCO2 and the movement parameters (before and after the
acquisition) remains essential in assuring the animal’s physiological stability and the

quality of the data.

[1.2.1.4. Impact of anaesthetics on neuronal network organization

What is the impact of anaesthesia on brain network evaluations? In a recent study,
Barttfeld et al. compared connectivity measures in awake and anesthetized conditions
(Barttfeld et al., 2015). They showed that under anaesthesia, functional connectivity
patterns inherit the structure of anatomical connectivity, exhibit fewer small-world
properties, and lack negative correlations. Conversely, wakefulness is characterized
by the sequential exploration of a richer repertoire of functional configurations, often
dissimilar to anatomical structure and exhibiting positive and negative correlations
among brain regions. In another study, the same authors showed that some regions
such as the posterior cingulate cortex are disconnected following anaesthesia. Some
large scale networks (DMN, frontoparietal network) also show decreased functional
connectivity (Hudetz, 2012). Some other studies found that the functional connectivity
is preserved in lower order sensory networks, with an increase of the functional

connectivity in sensori-motor networks (L. Uhrig et al., 2014).
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[1.2.1.5. Anaesthetics used in rodents and primate for resting-state fMRI

studies

In rodents, isoflurane and medetomidine are the most commonly used anaesthetics.
In addition to their different mechanisms of action (GABAa receptors agonist for
isoflurane and alpha2 adrenergic receptor agonists for medetomidine), they have
opposite vasoproperties (vasodilatation for isoflurane and vasoconstriction for
medetomidine) which could impact neurovascular coupling differently. In rodents,
isoflurane seems to preserve the interhemispheric and cortico-cortical functional
connectivity but only at low doses (~1%) (Bukhari et al., 2017; J. Grandjean, Schroeter,
Batata, et al., 2014). Medetomidine seems to present opposite effects such as a
cortico-cortical FC disruption and a pronounced striatal FC (Bukhari et al., 2017; J.
Grandjean, Schroeter, Batata, et al., 2014; Paasonen et al., 2018). The effect of
isoflurane and medetomidine on the thalamo-cortical FC is still debated. Several
studies suggested that a combination of isoflurane and medetomidine (med/iso) at low
doses is the best compromise (Table 1, med/iso) to preserve the functional connectivity
and to replicate the awake state (J. Grandjean, Schroeter, Batata, et al., 2014). Other
anaesthetics used in rodents (propofol, urethane, chloralose) are presented in Table 1.
They presented ambiguous effects on the functional connectivity and are not

recommended any more.

In primates, isoflurane is the most used anaesthetic (Grayson et al., 2016; R.
Matthew Hutchison et al., 2013; Miranda-Dominguez et al., 2014; J. L. Vincent et al.,
2007). As in rodents, lower dose and anaesthesia duration are associated to increased
ability to detect functional connectivity (Table 2) (Barttfeld et al., 2015; Uhrig et al.,
2018). Also, one should keep in mind that direct comparison of the impact of
anaesthetics on cerebral networks is difficult because anaesthesia depth also

modulates networks and can lead to misinterpretation of the results.
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Anesthetics Doses | Comparison Effects Studies Species
vs the awake interhemispheric EG (Jonckers et
state preserve interhemispheric al., 2014)
(J.
cortical and thalamo-cortical FC | Grandjean,
preserved but disruption of striatal | Schroeter,
1% FC Batata, et al.,
vs anesthetics 2014) Mice
isofl (Bukhari et
Isofiurane cortico-cortical FC preserved but | al., 2017)
disruption of thalamo-cortical FC
1% to | increasing disruption of interhemispheric FC ;?ul;%a;g) et
2% doses with increasing doses v
o vs the awake | cortico-cortical and striatal FC | (Paasonen et
1.3% ) al., 2018) Rats
state increase s
(J.
disruption of thalamo-cortical FC Grandjean, .
- Schroeter, Mice
but pronounced striatal FC Batata. et al
vs anesthetics alata, et al.,
detomidine 0.1 2014)
me ;
mg/kg thalamo-cortical FC preserved but | (Bukhari et Mice
disruption cortico-cortical FC al,, 2017)
(Paasonen et
\s/tsatéhe awake cortico-cortical FC decreased al., 2018) Rats
(J.
Grandjean,
Schroeter,
0.05 Batata, et al.,
mg/kg; vs anesthetics | preserved FC 2014) Mice
med/iso 0.5% (Bukhari et
al., 2017)
0.06 . . (Paasonen et
mg/kg: vs the awake thalamq-comcal annd intra- al., 2018) Rats
o state subcortical FC deacrease
0.5%
05 kg | VS the awake | . on of interhemisoheric F (Jonckers et
Sk | iate disruption of interhemispheric FC | 5 2014)
(J. :
cortical and thalamo-cortical FC | Grandjean, Mice
urethane 1.5g/kg | vs anesthetics | preserved but disruption of striatal | Schroeter,
FC Batata, et al.,
2014)
1.25 vs the awake o (Paasonen et
g/kg state replication of the awake state al., 2018) Rats
120 vs the awake | .. . . . . (Jonckers et |
mg/kg state disruption of interhemispheric FC al., 2014) Mice
a-chloralose
60 vs the awake cortico-cortical FC suppression (Paasonen et Rats
mg/kg | state PP al., 2018)
Table 1 | Anaesthetic effects on the functional connectivity in rodents.

Review of five studies between 2014 and 2018.
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Anesthetics | Doses | Comparison Effects Studies Species
disruption of (R. M.
1% to | increasing ; . . Hutchison Macaca
o interhemispheric . .
2.75% doses o et al., | fascicularis
FC after 1.5%
sofi 2014)
isoflurane .
o reduction of the .
0.89% . DMN FC with a (C. X. Li et Macaca
to duration effect rolonaed Zhang, mulatta
1.19% prolonged 2018)
administration
preservation of
ketamine 20 vs the awake | positive FC but | (Uhrigetal., | Macaca
mg/kg state average positive | 2018) mulatta
FC reduced
22 to o .
sevoflurane | 4.4 vs the awake | average positive | (Uhrig et al., | Macaca
vé)l% state FC reduced 2018) mulatta
Table 2 | Anaesthetic effects on the functional connectivity

Review of five studies between 2014 and 2018.

[1.2.2. Introduction to the methodology: MRI sequences

in primates.

MRI sequences are the second critical parameter to perform rsfMRI studies in

animals. In a preliminary part of the study (see article Common functional networks in

the mouse brain revealed by multi-centre resting-state fMRI analysis in annex), we

developed rsfMRI protocols for mice. In the context of this study, we evaluated the

diversity of the fMRI sequences used in this animal (Table 3). Most of rsfMRI studies

in rodents use high field MRI (>7T), cryocoil and gradient EPI sequences. According

to our study, high field and cryocoil can improve the fMRI acquisition and lead to

reproducible patterns of functional connections (Joanes Grandjean et al., 2019). The

observed resolution varied between 0.15 x 0.15 and 0.263 x 0.233. The averages, the

repetition and echo times varied respectively between 150 and 500, 1000 and 2500,

9.2 and 20.
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field/ | readout/ Resolution / matrice / slice
Mice echo | reception FOV Averages TR/ITE number / anaesthesia
P (mm) 9 thickness

(2'\(’)'?2')‘"“9 etal, grazi/ent ngé ' 0'11;’ > 3115 /" 128x80/NI 170010  12/0.7  medetomidine
(J. Grandjean,
Schroeter, 9.4/ EPI/ 0.263x0.233 / iso, med, propofol,
Batata, et al., gradient  cryocoll 23.7 x 14 90=60 /NI 1000/10 /NI urethane, iso/med
2014)
(J. Grandjean, 94/ EPI/
Schroeter, He, et d t i 0.25x0.22 / NI 90x70 /500 1500/9.3 12/0.5 isoflurane
aI., 2014) graaien Cryocol
(Stafford etal., | 11.7/ EPI/ 0.2x0.2/ 128%90 / .
2014) gradient  surface 25.6x18 450 ~ 2000/10 30705 isoflurane
(D. Shah et al., 9.4/ EPI/ 0156 x 0.312/ 128 x 64 / -
2015) gradient  surface 20 x 20 150 2000/15 16/0.4 medetomidine
(ZL(ﬁ';";‘ etal, grazi’em SE;; C’e NI /20 x 20 1003"02)00 " 120015 24705 halothane
(Zerbietal., 9.4/ EPI/  0.263x0233/ .
5015) gradient  cryocoll >3 714 90x60/NI 100010  NI/NI iso/med
(D. Shah, Deleye,| 9.4/ EPI/  0156x0312/ 128 x 64/ .
etal, 2016) gradient  surface 20 x 20 150 ~ 2000115 16/0.4 iso/med
(J. Grandjean et 94/ EPI/ 0.22x0.25/20 90x70/ .
al., 2016) gradient  cryocoil x17.5 30  10009.2 12705 iso/med
(Gass et al., 94/ EPI/ NI/ 17.28 x 93 x64/ .
2016) gradient  cryocoil 1152 400 1300118 21/04  medetomidine
(D. Shah, Praet, | 9.4/ EPI/ 0156 x0.312/ 128 x 64/ .
etal, 2016) gradient  surface 20 x 20 150 ~ 2000115 16/0.4 iso/med
(Mechling et al., 7/ EPI/ 015x015/ 128 x80/ -
2016) gradient cryocoll  19.2 x 12 200 1700710 12/07  medstomidine
(Z%ﬁ’é’)ma”“ etal. g 4/ spin SE;; ée 0'11454ngg’ 1226‘01‘218’ 2500/18.3 30/0.45 awake

7/ EPI/ 0.2x0.2/19.2 96 x96/ awake and
(Takata, 2016) gradient  cryocaoil x 19.2 200 1500/20 18/0.5 medetomidine
(Latif-Hernandez | 9.4/ EPI/ 02x02/016 128 x64/ .
etal,, 2016) gradient  surface x 0.31 150 ~ 2000115 16/0.4 iso/med

7/ EPI/ -
(Okano,2016) | it oo 0-2X02/NI NI/NI 1000220 16/05  medetomidine
(2%‘?%"‘0”9 etal.l 41 1/Ni Sl'frgc’e NI/19.2x19.2 64 x64 /NI 1000720 12/0.75 isoflurane
(Hubner et al., 7/ EPI/ 0.15x0.15/  128x80/ -
2017) gradient oryocoll  19.2x120 200 70010 12707 medetomidine

Table 3 | MRI sequence parameters of mouse fMRI studies published between 2014 and

2017.

96



Due to the rat-like size of the mouse lemur primate brain, we then evaluated the

diversity of the sequence used in rat fMRI (Table 4). In rats, all the studies use high

field MRI (>4.7T) and surface coil. The observed resolution varied between 0.3 x 0.3

and 0.5 x0.5. The averages,

repetition and echo times varies respectively between

100 and 450, 1000 and 3000, 12 and 45.
slice
field / readout/ | Resolution/ Matrice / .
Rats TRITE number / anaesthesia
echo reception FOV (mm) Averages .
thickness
(Kalthoff et al., 1.7/ EPI/ 96%96 /
0.3x0.3/NI 2840/ 17.5 NI/ NI medetomidine
2011) gradient surface 100
(Sanganahalli 9.4/ EPI/ 04x04/2
. 64x64 / NI 1000/16 NI/ 2 a-chloralose
etal.,, 2013) gradient surface x 2.56
(Wehrl et al., 71/ EPI/ 64x64 /
0.5x0.5/ NI 2000/18 NI/ iso / med / chlor
2013) gradient surface 300
(Shim et al., 9.4/ EPI/ 64x64 /
) NI/ 25 x 25 1000/12.8 9/1 chlor / panc
2013) gradient surface 600
(F. A. Nasrallah ) EPI/ NI /25.6 x 64x64 / .
9.4 / spin 2000/45 NI/ 1 iso et med
et al., 2014) surface 25.6 300
(Liang et al., 4.7/ EPI/
NI /32 x32  64x64 /NI 1000/30 18/1 awake
2014) gradient surface
dexdomitor +
(C.Lietal., 9.4/ EPI/ 64x64 / .
) NI /35 x 35 2000/19.4 10/1 pancuronium
2014) gradient surface 110 )
bromide
(Song et al., 94/ EPI/ 0.39x0.39 / 64x64 / .
2000/17 10/1 dexdomitor
2015) gradient surface 25.6 x 25.6 450
(Sierakowiak et 104/ EPI/ 64x64 /
NI /NI 1000/16.3 1171 medetomidine
al., 2015) gradient surface 300
(Huang et al., 7/ EPI/ 64%64 /
. NI /30 x 30 1000/20 1171 isoflurane
2016) gradient surface 300
(Becerra et al., 4.7/ EPI/
. NI/30x%x30  64x64/90 3000/12 15/1.5 awake
2017) gradient surface

Table 4 | MRI sequence parameters of rat fMRI studies published between 2011 and

2017.

97



[1.2.3. Coregistration of EPIl images

When images (anatomical and EPI) come from different subjects, standard
coregistration transformations such as the different brain shapes and sizes have to be
corrected. However, EPl images display a poor contrast complicating their
coregistration. So, in addition to the standard anatomical coregistration, additional

corrections have to be made.

The usual coregistration strategy is based on four major steps illustrated in Figure
24:

(1) EPI images from one sequence are realigned together using an affine
transformation (translation, rotation, scale, skew). The average of these EPI
images is also calculated to create an EPI reference (“refEPI”). The generated
transformation parameters are further used as confounds (motion during the
fMRI acquisition) in subsequent analyses. The affine transformation is followed

by a nonlinear registration to the EPI reference.

EPI distortion is an inhomogeneity of the BO field that produces distortion which
vary according to the subject’s orientation. The correction of EPI distortion is
optional but highly advised, especially at high field. Moreover, susceptibility
artefacts are even more severe in animals with small brain sizes (X. Hong et al.,
2015).

Slice timing correction has to be performed because usually the 3D volumes
of an EPI sequence are not acquired at once but within a sequence of 2D slices
obtained at different times. The purpose of this correction is to interpolate all the

slices by knowing the time of repetition and the slice order acquisition.

(2) EPI brain images (skull striped) of a given subject are registered using a non-

linear transformation to their anatomical image (acquired in the same space).

(3) The anatomical brain images (skull striped) of a cohort are coregistrated to an
anatomical template using an affine transformation followed by a nonlinear
transformation. This step spatially normalizes the different anatomical images
and generate transformations that will be used in step (4).

(4) Coregistration to the anatomical template space is performed by applying the

transformation parameters from (2) and (3) to the EPI images produced by (1).



Group anatomical images

Subject EPl images

time

Skull - 0 | Template space

stripping

- Skull
@ @ stripping
Transformation

arameters .
p - Anatomical
template

. Group EPI
ransformation images
parameters

Figure 24 | Four major steps for the fMRI image coregistration to an anatomical template
The images used to illustrate this are taken from our mouse lemur study. The different numbers

correspond to the text above this figure.
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[1.2.4. Signal pre-treatment for resting-state fMRI

Pre-treatment of the BOLD signal is an important step towards the control of the
non-neuronal signal. The selection of the confounds and the techniques used to
remove them remains a major question in the rsfMRI field due its impact on the
reproducibility of the results. To our knowledge, no consensus exists concerning the
fMRI confounds and their clean-up. The major challenge of the BOLD pre-treatment is

to remove confounds with a minimum loss of the signal of interest.

Controlling the motion during an acquisition has been exposed in a previous Chapter
(I1.2.1.1 Controlling for motion: trade-off between awake and anaesthesia-based
connectivity). However, because motion systematically alters the BOLD signal it
remains one of the main confounds to regress. The standard method is to use a
regressor based on the realignment parameters produced by the transformation of
the EPI images to EPI reference (see 11.2.3. Coregistration of EPI images (1)). The 6
motion parameters are commonly regressed as well as their derivatives, squares and

these of the preceding volume (K. J. Friston et al., 1994).

Signal regressions using BOLD signal from various tissues are one of the most
standard ways to clean up the fMRI signal. This method used the BOLD signal
extracted and averaged within specific masks such as white matter, cerebrospinal fluid
(CSF) or the whole brain (global signal regression). The regression of the global signal
and its derivative is very effective toward motion confounds (Jonathan D. Power et al.,
2014). However, the global signal regression is very controversial these last ten years
and has led to contradictory conclusions, especially concerning the appearance of anti-
correlations, distance dependent effect of motion, or the removal of the signal of
interest (Murphy et Fox, 2017) (Lydon-Staley et al., 2019). Using the tissue based
signal (CSF, ventricles) as a regressor it is also expected that confounds will be
removed such as physiological signal, scanner artefacts, and motion. The latter is more

common but displayed moderate results for motion control (Ciric et al., 2017).

Time series regressions of physiological recordings are rarely performed in
both human and animal fMRI studies despite that the correlation between BOLD signal
and heart beat or respiration has been proven. However, cardiac and respiratory
regression have demonstrated opposed results. Jo et al. found that physiological

regressors account for a small amount of the variance (Jo et al., 2010) while Vogt et



al. found a significant contribution (Vogt et al., 2011). Many studies have highlighted
networks that were coherent with the current literature without any physiological
regression. These results suggest that the signal regression using BOLD signal from

various tissues can be potentially adequate.

Censoring methods are used to reduce the impact of motion or MRI artefacts.
Despiking identifies outlier time points based on their abnormal intensity and
interpolates over them. Scrubbing identifies the time points to censor/delete them

based on a prior threshold. These methods are only used in specific cases.

Principal component analysis is a method used to (1) isolate noisy signals
extracted from CSF or white matter signal and that can be further used in the nuisance
regressors or (2) identify highly noisy regions by their temporal standard deviation.
Independent component analysis, this method also allowed the identification of
artefactual structures. Note that the principal component analysis method is more

effective than the tissue mean regression (Muschelli et al., 2014).

The use of spatial smoothing is also very controversial. Theoretically, bigger
voxels provide a better signal to noise ratio but the separation of the different types of
tissues is less precise. According to some studies, spatial smoothing has an important
impact on graph-theoretical features (Alakorkko et al., 2017) probably due to an
overestimation of functional correlation (Liu et al., 2017). However, other studies claim
that spatial smoothing has a limited impact on fMRI analyses (Op de Beeck, 2010).
Nevertheless, estimating the optimal spatial smoothing seems to be necessary to
extract meaningful regions with independent component analysis (Z. Chen et Calhoun,
2018).

The use of frequency filters at rest is justified since high frequencies are related to
physiological noise (J. D. Power et al., 2014). The current rsfMRI studies commonly
use filters between 0.01 and 0.1 Hz at rest. However, several publications claimed that
artificially induced correlations were related to bandpass filters (C. E. Davey et al.,
2013).

In conclusion for this introduction to BOLD pre-treatment, different approaches can
be tested to maximize the removal of general noise but there is no unique correct way
to pre-process fMRI data, each one being specific to the dataset and the further

analyses.
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Abstract

Measures of resting-state functional connectivity allow the description of neuronal
networks in humans and provide a window on brain function in normal and pathological
conditions. Animal models are critical to further address experimentally the function of
brain networks and their roles in pathologies. Here we describe for the first time brain
network organization in the mouse lemur (Microcebus murinus), a small primate
attracting increased attention as a model for neuroscience. Resting-state functional
MR images were recorded at 11.7 Tesla. Forty-eight functional regions were identified
and used to identify networks using graph theory, dictionary learning and seed-based
analyses. Comparison of results issued from these three complementary methods
allowed the description of the most robust networks from mouse lemurs. Large scale
networks were then identified from resting-state functional MR images of humans using
the same method as for lemurs. Strong homologies were outlined between cerebral

networks in mouse lemurs and humans.

Keywords
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1. Introduction

Blood-oxygen level dependent (BOLD) functional magnetic resonance imaging
(fMRI) is largely used to investigate brain function in response to specific tasks. In the
absence of explicit tasks (i.e. in resting state conditions) patterns of oscillations of the
fMRI signal are similar in functionally connected brain structures (Biswal et al., 1995).
The detection of the synchronicity of BOLD signal in various brain regions in resting
state conditions can thus be used to describe cerebral network organization. In
particular this allows the characterization of /. local regions in which highly coordinated
neuronal activity occurs and Ji. large scale networks composed of widespread
functional regions connected together (Biswal et al., 1995; Power et al., 2014).

Studies of brain networks have contributed to many breakthroughs in the
understanding of brain function in normal as well as in pathological conditions such as
Alzheimer’s or Parkinson’s diseases (Buckner et al., 2005; Gao and Wu, 2016).
However, many questions remain concerning both the technique and interpretation of
resting state fMRI. For example, both the role of resting state networks in cerebral
function, and the biological mechanisms underlying their activity, are still partly
unknown. Also, how their modulations impact behavior and cognition in pathological
conditions is still debated (Mohan et al., 2016).

Using animal models is critical to further address these questions. Indeed, in
animals it is possible to artificially stimulate neuronal activity to characterize biological
mechanisms underlying network function (Gerits et al., 2012). Another interest of
studying neuronal networks in animals is to evaluate how evolution has driven network
architecture and to assess to what extent animal behaviors and ecology (Burkart et al.,
2016) have impacted this architecture. Finally, animals can be used to model diseases
and explore the impact of pathological processes on brain networks.

Various analysis pipelines have been proposed to investigate neuronal networks in
humans and animals. For example, large scale networks were identified using data-
driven methods relying on spatial map decomposition (dictionary learning (Varoquaux
et al., 2011), independent component analysis (Damoiseaux et al., 2006)) or on graph
theory (modularity analysis (Grayson et al., 2016)), as well as hypothesis-driven
methods (seed-based analysis (Hutchison et al., 2014)). These methods are based on
different algorithms and each one has its own inherent advantages and disadvantages

(Lee et al., 2013). They can provide complementary approaches for identifying



networks in unexplored animals.

The mouse lemur (Microcebus murinus) is a primate attracting increased attention
in neuroscience research. This small animal (typical length 12cm, 60-120g weight) is
arboreal and nocturnal. It has a decade-long lifespan and is a model for studying
cerebral aging (Sawiak et al., 2014) and various diseases such as diabetes-related
encephalopathy (Djelti et al., 2016), Parkinson's disease (Mestre-Frances et al., 2018),
or Alzheimer's disease (Kraska et al., 2011). It has a key position on phylogenetic trees
of primates and is used to investigate primate brain evolution (Montgomery et al.,
2010). Characterizing its cerebral networks is thus useful in the context of comparative
biology as well as for further use of this animal to model various pathologies. Thus, the
first aim of this study was to characterize neuronal networks in mouse lemurs. Our
second objective was to implement a protocol that could define functional regions
directly from resting-state fMR images and to compare large scale networks identified
with data-driven and hypothesis-driven methods to assess the robustness of the
identified networks. Our third objective was to compare resting state networks
identified in lemurs with those identified in humans using the same procedure.

Resting state functional MR images were recorded from 14 mouse lemurs at 11.7
Tesla. These images enabled the identification of 48 functional regions using dictionary
learning (Varoquaux et al., 2011). These regions were concatenated into a 3D
functional atlas covering most of the brain and were used as nodes for whole brain
network characterization. Large scale networks were identified using several methods
based on graph theory, dictionary learning and seed-based analysis. They included
default-mode-like, visual, fronto-temporal, somato-motor, basal ganglia and thalamic
networks. These networks were then compared to large scale networks in humans.
We found a strong homology between cerebral networks in mouse lemurs and

humans.



2. Results

2.1 Identification of local functional regions and concatenation in a 3D

functional atlas

Resting state fMR images were recorded from 14 anaesthetised (isoflurane 1.25-
1.5%) mouse lemurs at 11.7 Tesla (Suppl. Table 1). Images were recorded using a
gradient-echo echo planar imaging (EPI) sequence. Each animal was scanned twice
with an interval of 6 months.

Organisation of whole brain networks can be modelled using graph theory. During
this modelling, whole brain networks are defined as a set of nodes (basic elements of
the system) and edges (allowing relationships between nodes). The identification of
nodes can be based on the use of anatomical atlases (Ghahremani et al., 2016) or on
the use of study-specific functional atlases that identify local functional regions (Ma et
al., 2018).

Here, we identified local functional regions by performing a dictionary learning
based on a large number of sparse components (SCs). This method extracts maps of
cerebral networks from fMRI data and relies on sparsity-based decomposition of the
signal. Multi-animal dictionary learning analyses of resting state fMR images were
performed in mouse lemurs using 35 components (Fig. 1). Each component was
manually classified using anatomical (Bons et al., 1998; Nadkarni et al., 2018) and
Brodmann atlases (Brodmann, 1999 (original in 1909); Le Gros Clark, 1931). First,
brain regions were classified based on their locations within the frontal, parietal,
temporal and occipital lobes as well as subcortical and midbrain regions. The 35
components were used to create a 3D functional atlas of the brain (Fig. 2). Some single
components were associated to bilateral structures as shown, for example, for the
precentral cortex in Fig. 1. These bilateral regions were classified as two different
regions (i.e. one in each hemisphere). Thus, 48 local functional regions (27 cortical, 21
subcortical) could be extracted from the 35 component dictionary analysis (Table 1).

They can be downloaded from https://www.nitrc.org/projects/fmri_mouselemur/.



https://www.nitrc.org/projects/fmri_mouselemur/
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Figure 1. Regions of functional activity identified in mouse lemurs.

Regions of functional activity were identified following dictionary learning analyses
of resting state fMR images using 35 components. They are shown on coronal and
axial anatomical templates with an automatic slice selection based on the center of
mass of each component. All components were organized within five anatomical
areas: frontal, parietal, occipital, temporal, and subcortical regions.
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Figure 2. Mouse lemur 3D functional atlas based on dictionary learning.

Forty eight local functional regions were identified following dictionary learning
analyses of resting state fMR images using 35 components. Brain regions were
classified based on their locations within the frontal (A), parietal (B), occipital (C),
and temporal (D) lobes. We display three different views and three slices extracted
from the functional atlas. 1. Frontal Superior Anterior, 2. Frontal Middle, 3. Frontal
Superior Posterior, 4. Supplementary Motor Area, 5. Cingulum Anterior, 6.
Precentral, 7. Postcentral, 8. Cingulum Posterior, 9. Parietal, 10. Occipital Middle,
11. Temporal Superior, 12. Temporal Middle, 13. Temporal Inferior, 14. Occipital
Inferior, 15. Cuneus, 16. Occipital Pole, 17. Basal forebrain, 18. Septal nuclei, 19.
Striatum Anterior, 20. Caudate nucleus Posterior, 21. Putamen Posterior, 22. Globus
pallidus, 23. Amygdala, 24. Hypothalamus, 25. Dorsal thalamus, 26. Ventral
thalamus, 27. Hippocampus, 28. Colliculus, 29. Pons, 30. Midbrain.




Label name Area Function
Frontal Sup Ant (1) 10/46 task coordination
Frontal Mid (2) 45/12 visual, auditory processing
Frontal Sup Post (3) 8 coordinated movements
Frontal lobe | Supp Motor Area (4) 4 primary motor
Cingulum Ant (5) 24 multimodal
Precentral (6) 6 secondary motor area
Postcentral (7) 1-3 primary somatosensory
Pari Cingulum Post (8) 23 multimodal
arietal
lobe Parietal (9) ? secondary somatosen_so.ry
somatosensory association
Temporal Sup (11) 22 secondary auditory area
Temporal | o0 oral Mid (12) 38/21 | auditory processin
lobe pora yp 9
Temporal Inf (13) 20 secondary visual
Cuneus (15) 18 visual processing
Occipital Occipital Mid (10) 18 secondary visual area
lobe Occipital Inf (14) 37 visual processing
Occipital Pole (16) 17 primary visual

Basal forebrain (17)
Septal nuclei (18)
Striatum Ant (19)
Caudate nucleus Post (20)
Putamen Post (21)
Globus pallidus (22)
Subcortical | Amygdala (23)
regions Hypothalamus (24)
Dorsal thalamus (25)
Ventral thalamus (26)
Hippocampus (27)
Colliculus (28)
Pons (29)
Midbrain (30)

Table 1. Identification of functional regions of the mouse lemur brain.

Brain regions were classified based on their locations within the frontal, parietal,
temporal, or occipital lobes as well as subcortical regions. Each labelled region was
compared to cytoarchitectonic (Brodmann, 1999 (original in 1909); Le Gros Clark,
1931) and anatomical atlases of the mouse lemur (Bons et al., 1998; Nadkarni et al.,
2018) and of the human “AAL for SPM12” atlas (Tzourio-Mazoyer et al., 2002) to
evaluate the Brodmann areas that were the closest to the identified regions. A function
is also proposed for each region following expectations from Brodmann classification.



2.2 Large scale brain networks in mouse lemurs

The quantification of correlations of temporal evolution of BOLD fMRI signal
between two regions (or nodes) provides an index of the “functional connectivity”
between these nodes. Here, the 48 functional regions identified with the dictionary
learning analysis were used as nodes for graph analysis of the mouse lemur brain. A
3D-view of the mouse lemur network based on these 48 functional regions is presented
in Suppl. Fig. 1. Partial correlation matrices were created using fully preprocessed MR
images by calculating the partial correlation coefficients between temporal evolutions

of BOLD MR signals within each region of this 3D functional network.

2.2.1 Modularity and large scale network identification based on graph

analysis

In graph theory, large scale networks are defined as community structure (or
modules), which are groups of nodes connected densely and sparsely with nodes from
other modules. The modularity of a partition (Q) is the degree to which a network can
be subdivided into non-overlapping groups of nodes with maximum within-group
connections and minimum number of between-group connections (D. B. Vincent et al.,
2008). Here, the average partial correlation matrix was used to evaluate the modular
structure of the mouse lemur brain by graph theory. Q was calculated to assess the
ability of this weighted undirected matrix to be segregated into non-overlapping groups
of nodes. A high modularity value (Q = 0.43) was obtained which suggests a prominent
modular structure of mouse lemur brain networks. This modularity index was
associated with the classification of the matrix into 6 modules (large scale networks)
(Fig. 3, Suppl Table 2). Each functional region was associated with one and only one
network. These networks were identified as:

M-16 — Default mode network-like (DMN-like). This module involved posterior
and anterior cingulum, superior posterior frontal and parietal cortices. In other species,
these regions are reported to be part of the DMN (Belcher et al., 2013; Hutchison et
al., 2010; J. L. Vincent et al., 2007). This module also embedded nodes from the
superior motor area and postcentral cortices.

M-26 — Visual. This module involved the cuneus, the occipital pole, the middle,
the inferior occipital and the inferior temporal cortices. Those clusters correspond to

visual areas and regions involved in integration of visual information.



M-36 — Frontal. This module involved nodes from frontal and precentral cortices.

M-46 — Temporal. This module embedded temporal structures usually implicated
in response to auditory stimuli as well as the right posterior putamen.

M-56 — Basal ganglia. This module embedded the anterior striatum, the posterior
striatum (posterior caudate nucleus and posterior putamen), the amygdala, basal
forebrain, septal nuclei, as well as the hypothalamus and globus pallidus.

M-66 — Thalamic. This network involved a large number of subcortical regions
including and surrounding the thalamus, the hippocampus, the colliculi and the

midbrain.
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Figure 3. Mouse lemur networks identified using graph analysis based on 48
functional regions.

Using graph analysis, we partitioned the mouse lemur brain into six cortical and
subcortical modules. A color and a name were assigned to each module. Colors
highlight interactions between different nodes, i.e. they outline large scale networks.
Eigenvector centrality, a measure of node influence, is represented by the node size.




2.2.2 ldentification of large scale networks based on dictionary learning

We then wondered whether the six previously identified modules could be identified
with dictionary learning analysis, another data-driven method. A six-component
analysis revealed bilateral networks spread over the whole brain (Fig. 4, Suppl. Table
2). Four networks (the DMN, visual, basal ganglia and thalamic) were very similar to
those identified with the module analysis. One network (fronto-temporal) was a
concatenation of two networks identified by module analysis. The last network
(somato-motor) was not identified with module analysis. Unlike for the graph analysis
some functional regions (e.g. the anterior cingulate cortex) could be attributed to
different networks (e.g. the DMN, fronto-temporal and somato-motor networks). More
precisely, the networks were identified as:

SC-16 — DMN. This network involved structures identified with graph analysis
(posterior and anterior cingulum cortices, superior posterior frontal and parietal
cortices). Some nodes (superior motor area and postcentral cortices) identified as part
of the DMN by graph analysis were not detected with dictionary learning.

SC-26 — Visual. This network involved the same nodes as those detected with
module analysis (occipital pole, middle, inferior occipital and inferior temporal cortices),
except the inferior temporal cortex.

SC-36 — Fronto-temporal. This network involved several regions that were
identified as frontal or temporal network with graph analysis. It also included the
anterior cingulum cortex.

SC-46 — Somato-motor. This network embedded frontal and parietal regions
located above the Sylvian fissure (corresponding to Brodmann 1-3 (primary region
involved in body sensation), 4 (primary motor region) and 6 (secondary motor region))
and temporal regions surrounding the Sylvian fissure. This network could thus be
involved in somato-motor activities.

SC-5¢ — Basal ganglia. This network involved the same regions as those
identified for this network with module analysis except for the hypothalamus and globus
pallidus.

SC-6s — Thalamic. This last network involved mostly the same regions as the
ones identified with graph analysis. In addition, it included the basal forebrain, septal

nuclei and globus pallidus.
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Figure 4. Cerebral networks identified following six component dictionary
learning in mouse lemurs.

This analysis revealed bilateral networks that included several regions spread over
the whole brain classified as default mode-like, visual, fronto-temporal, somato-
motor, basal ganglia and thalamic networks.




2.2.3 ldentification of large scale networks based on seed-based analysis

Another way to analyse cerebral networks is to perform seed-based studies. This
method evaluates the relationships between mean BOLD signal in a brain region
(seed) and BOLD signal in any voxel of the brain. Here, the seeds corresponded to the
48 previously identified functional regions. Some seeds were only connected with
voxels from the same brain region and were not further explored (i.e. the visual and
thalamic networks, SB-26 and SB-66 in Fig. 5). Four seeds were connected with voxels
localized in brain networks previously described with the graph analysis and dictionary
learning methods (i.e. the DMN, fronto-temporal, somato-motor and basal ganglia
networks, Fig. 5). Two networks identified with other methods were not identified by
seed-based analysis (the visual and thalamic networks). As for dictionary learning,
some structures (i.e. the anterior cingulum cortex) could be attributed to different
networks (Suppl. Table 2). More precisely, the networks highlighted by seed-based
analysis are described as follows.

SB-16 — DMN. The seed from the posterior cingulum cortex (PCC) is usually
used to define the DMN. Here, using this seed we highlighted highly connected voxels
in the regions identified as DMN with graph analysis and dictionary learning methods
(posterior and anterior cingulum cortices, superior posterior frontal and parietal
cortices). Additional parts of this network were also identified (middle frontal cortex and
dorsal thalamus).

SB-3s — Fronto-temporal. The seed from the left middle temporal cortex was
connected with the right middle and superior temporal cortices, superior anterior frontal
cortex, superior posterior frontal cortex and anterior cingulum cortex.

SB-46 — Somato-motor. Using a seed in the left superior motor area, we
highlighted a network englobing several regions included in the somato-motor network
identified by dictionary learning (fronto and parietal cortices, superior temporal regions,
anterior cingulum cortex). Voxels from the middle frontal, superior posterior frontal
cortex, posterior cingulum cortices as well as the posterior caudate nucleus and dorsal
thalamus were also associated with this network.

SB-56 — Basal ganglia. Using the posterior caudate nucleus (left) as a seed, we
highlighted a basal ganglia network that involved the striatum. It was already identified
for this network with graph analysis and dictionary learning. Voxels from the superior
posterior frontal cortex and anterior cingulum cortices were also associated with this



network.
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Figure 5. Mouse lemur resting-state networks characterized with seed-based
analysis.

Each image highlights mean z-statistic maps of regions connected to a cerebral
seed. Seed-based analysis detected four of the six previous large scale networks
identified with dictionary learning: default mode-like, fronto-temporal, somato-motor,
and basal ganglia (seeds positioned in the posterior cingulate cortex, the left medial
temporal cortex, the left superior frontal cortex and the left posterior caudate nucleus,
respectively). Visual and thalamic networks that were detected with dictionary
learning were not detected with seed-based analysis: SB-26 and SB-66 display lack
of large network detection using seeds in the left occipital cortex and the left ventral
thalamus. Color bars represent z-statistic values.




2.3 Functional hubs and small-worldness features of mouse lemur brains
2.3.1 Brain hubs in mouse lemurs

Whole brain networks can also be characterized using various descriptors. One of
these descriptors, "hubness", describes the centrality of nodes in the network. This is
a measure of node influence within the whole brain network. It can be measured by
eigenvector centrality. For each node, this index is mainly calculated based on its
partial correlation values (edges) with all regions of the 3D functional atlas, weighted
by the eigenvector scores of its neighbourhood nodes. In other words, nodes which
display high eigenvector centrality scores are strongly linked to other nodes and/or to
strongly connected nodes. Here, eigenvectors were presented as histograms (Fig. 6)
or as the size of the nodes in the graphical representation of the networks (Fig. 3). The
3 nodes presenting the highest eigenvector centrality were the anterior cingulum
cortex, the posterior cingulum cortex, and the superior posterior frontal cortex. These
three regions belong to the DMN. The dorsal thalamus was the next region showing
highest hubness properties. Then the following hubs involved the parietal cortex,

superior motor area, as well as the superior temporal and postcentral cortices (Fig. 6).

2.3.2 Small-worldness of mouse lemur brain networks

Network topology describes properties of regional specialization and global
information transfer efficacy. It can be classified into three main classes: random,
lattice and small-world networks (Telesford et al., 2011). Network topology can be
characterized using two small-world coefficients (o and w) (NetworkX (Hagberg et al.,
2008)). Small-world networks have o values superior to 1 and w values close to 0
(Telesford et al., 2011). In mouse lemurs these coefficients (0 = 1.47 and w = 0.39)
indicated small-world properties. Usually, mammal brains have small-worldness

topology (Mechling et al., 2014).
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Figure 6. Eigenvalue centrality scores, reflecting "hubness", in mouse lemur
brain regions.

The three regions displaying the highest scores were the anterior cingulate cortex,
the posterior cingulate cortex and the central frontal cortex. The dorsal thalamus was
the next region showing highest hubness properties. Then the following hubs
involved the parietal cortex, superior motor area, as well as the superior temporal
and postcentral cortices.
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2.4 Cerebral networks in humans

We then wondered how comparable mouse lemur and human brain networks are.
To answer to this question, resting state fMRI data were recorded from 42 healthy
humans ranging from 41 to 60 years old at 3.0 Tesla using an interleaved 2D T2*
SENSE EPI. Participants were asked to keep their eyes closed and relax without falling
asleep during image acquisition. Human images were then processed with the same
graph analysis and dictionary learning algorithms as mouse lemur images.

Local functional regions were identified using a dictionary learning based on 35
components. Single components spread on bilateral structures were dissociated into
two different regions (i.e. one in each hemisphere). Ultimately, the brain was partitioned
into 56 local functional regions (55 cortical, 1 subcortical). They were named based on
the “AAL for SPM12” atlas (Tzourio-Mazoyer et al., 2002) (Suppl. Fig. 2)

As for mouse lemurs, the 56 functional regions identified with the dictionary learning
analysis were used as nodes for large scale network analysis. First, we calculated
partial correlation coefficients between temporal evolutions of BOLD MR signals within
each region of the 3D functional atlas. The obtained correlation matrix was used to
calculate the matrix modularity value (Q = 0.56). This index was associated with the
segregation of the matrix into 6 modules that were classified as default mode, visual,
frontal, temporal somato-motor, and temporo-insular networks (Suppl. Fig. 3).

Then large scale networks were further characterized in humans using a dictionary
learning analysis with 6 components (Fig. 7, Table 2). The 6 networks identified could
be classified as the default mode, visual, fronto-supramarginal (classified as control-
executive network in (Solé-Padullés et al., 2016)), somato-motor, temporal, and a

fronto-parietal network (classified as attention network in (Raichle, 2011)).
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Figure 7. Human cerebral networks identified following six component
dictionary learning.

The spatial map decomposition extracted 6 cortical networks commonly observed in
the literature (DMN, visual, fronto-supramarginal, somato-motor, temporal, fronto-
parietal). This analysis was performed with similar pretreatments as for the mouse
lemurs.




2.5 Functional hubs and small-worldness features of human brains

Eigenvector centrality and network topology were evaluated in humans using the
same procedures as for mouse lemurs. Eigenvector centrality was presented as
histograms (Fig. 8) or as the size of the nodes in the graphical representation of the
networks (Suppl. Fig. 3). The 3 nodes presenting the highest eigenvector centrality
were the parietal inferior (right and left) and the precuneus posterior. Then the next
hubs were located in the middle frontal cortex (left), the angular region (left) and the
posterior cingulum cortex. All these regions except the middle frontal cortex belong to
the DMN. Regarding network topology, as expected we found small-world properties

in the human brain (o = 1.1 and w = 0.08).
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Figure 8. Eigenvalue centrality scores, reflecting "hubness", in human brain
regions.

The 3 nodes presenting the highest eigenvector centrality were the parietal inferior
(right and left) and the precuneus posterior. Then the next hubs were located in the
middle frontal cortex (left), the angular region (left) and the posterior cingulum cortex.
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3. Discussion

This study provides a detailed characterisation of the organisation of functional
networks in mouse lemur primates under isoflurane sedation. Complementary
analyses based on dictionary learning, seed-based studies and graph analysis
highlighted 48 local functional regions that could be grouped into several large scale
networks. We also identified the main hubs and small-world characteristics of mouse
lemur brains. Human brain networks were also analysed with algorithms similar to

those used in lemurs in order to compare networks in both species.

3.1 Parcellation of functional regions within mouse lemur brains

Up to now, description of mouse lemur functional organisation was based on
cytoarchitectonic atlases (Bons et al., 1998; Le Gros Clark, 1931; Nadkarni et al.,
2018). Here, using dictionary learning with a large number of components, we created
a 3D map of 48 local functional regions. The quality of this functional atlas was
supported by the bilateralism of the extracted regions. One of the strengths of this
functional map is that it can be used to create a whole brain graph that relies on brain
function rather than on anatomical boundaries. Studies of animal resting state
networks often used regions of interest based on anatomical atlases (Li and Zhang,
2018), as opposed to functional atlases. The latter approach is preferable since
anatomical boundaries do not necessarily correspond to underlying brain function.
Therefore, regions of interest based on anatomical atlases display less signal
homogeneity and so increase non-specific signal (Craddock et al., 2012). The second
advantage of functional atlases is that no predetermined anatomical atlas is required
during the analysis. Consequently, the independence of our pipeline provides the
capacity to build brain networks in species that have not been fully investigated.



3.2 Modular organisation of mouse lemur brains

High modularity is an important principle of brain organisation (Bullmore and
Sporns, 2009). It can be measured with modularity of a partition (Q). Here we found
Q=0.43 in mouse lemurs. This value is consistent with Q values reported in rats
(Q=0.39 (D'Souza et al., 2014)), other non-human primates (0.33 < Q < 0.54 (Shen et
al., 2012)) or humans in our study (Q = 0.56) and indicates that the mouse lemur brain
can be partitioned into modules. Using graph analysis, we identified six cortical and
subcortical modules that corresponded to large scale networks. This organisation into
six modules is consistent with the number of modules reported in rats (n=6 (D'Souza
et al., 2014)), other non-human primates (for example n=4 (Shen et al., 2012) or n=7

(Grayson et al., 2016) in Macaca fascicularis), or humans in our study (n=6).

3.3 Characterisation of large scale networks in mouse lemur brains
3.3.1 Multi-method approach of resting state analysis in animals

Whole brain networks can be decomposed into large scale networks. However,
there are no absolute frontiers between these large scale networks due to the
gradualness of the interactions between the different regions of the brain. Several
methods, such as dictionary learning, graph analysis and seed-based studies can be
used to identify these large scale networks in mammal brains. They rely on various
mathematical bases associated with various sensitivities to image artefacts (Power et
al., 2014). Also, these methods have diverse abilities to classify brain regions into
networks. For example, graph analysis attributes each region to one and only one
network while dictionary learning and seed-based analysis can attribute a region to
several networks. In most resting state fMRI studies in animals, neuronal networks are
identified on the basis of a single method. Here we showed that different methods do
not detect exactly the same networks. However, networks identified with each method
display a strong overlap. Functional regions included in a network by several methods
represent the more robust parts of the network. Thus, we propose a first classification
of the mouse lemur networks that takes into account only regions identified by two or
three methods (Fig. 9, Suppl. Table 3). An overview of each network is presented in

the following paragraphs.
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Figure 9. Most robust functional networks identified in mouse lemurs using
two or three network identification methods.

Regions from the DMN, visual, fronto-temporal, somato-motor, basal ganglia and
thalamic networks that could be identified by two or three network identification
methods are considered as robustly associated to a network and are displayed on
this figure. For each network, edges were reported from those identified with graph
analysis.

3.3.2 Default-mode-like network

The DMN is one of the most studied networks in humans (Hampson et al., 2006)
and other mammals including rodents (Lu et al., 2012) and non-human primates (J. L.
Vincent et al., 2007). It plays a critical role in several physiological and pathological
processes such as Alzheimer’s or Parkinson’s diseases (Buckner et al., 2005; Gao and
Wu, 2016). In mouse lemurs, four regions of this network were detected with network
identification methods: anterior and posterior cingulum cortices, superior posterior
frontal cortex and parietal cortex. In several species, these regions are reported to be
part of the default mode network (Belcher et al., 2013; J. L. Vincent et al., 2007).

In humans and other mammals, the DMN contains highly connected hub nodes. In
the mouse lemur brain, we also found that it contained the most connected nodes.
Given the importance of this network it was critical to characterize it in the mouse
lemur, which is widely used as a model of neurodegenerative diseases (Kraska et al.,
2011; Mestre-Frances et al., 2018).



3.3.3 Fronto-temporal network

The fronto-temporal network was found in mouse lemurs with dictionary learning
and seed-based analysis, but was split into two networks (frontal and temporal) with
graph analysis. One of its components, the superior temporal cortex, was a strong hub
in the mouse lemur brain. In primates, these regions are reported to be part of the

executive network (Hutchison et al., 2012)

3.3.4 Networks specialized in sensory and motor information processing

We also identified networks that could be classified as externally-driven. The first
one is the visual network. It involved mainly occipital areas. This network has been
described in numerous primates under task and rest conditions (Belcher et al., 2013).
The second externally-driven network is the somato-motor network. It has also been
widely defined in humans (Beckmann et al., 2005), primates (Nelissen and Vanduffel,
2011), and many other mammals (Sierakowiak et al., 2015). It integrates sensory input
and motor commands. In mouse lemurs, we found that this network contains several
hubs such as the anterior cingulum cortex, the superior motor area and the postcentral

cortices.

3.3.5 Subcortical networks

Finally, two networks were identified in subcortical areas. The first one involved the
basal ganglia. Similar networks are described in primates (Belcher et al., 2013), and
other mammals (Sierakowiak et al., 2015) and are involved in emotional, motivational,
associative and cognitive functions (Herrero et al., 2002).

The second subcortical network involved several regions such as the ventral
thalamus (a strong hub in mouse lemurs), dorsal thalamus, hippocampus, colliculus,

pons and midbrain. It was called "thalamic network".



3.4 Small-worldness features of mouse lemur brains

We finally evaluated the small-worldness properties of the mouse lemur functional
networks by calculating small-world coefficients o and w. Our results attested that
mouse lemur networks have small-world properties (w = 0.39). Interestingly, w was
much smaller in the human brain (w = 0.08) than in the lemur brain suggesting stronger
small-world properties in humans. The small-world configuration is considered as
optimal for local information processing and for its global transfer. Indeed, small-world
networks have the unique ability to have specialized regions while simultaneously
exhibiting shared or distributed processing across all of the communicating regions of
a network (Telesford et al., 2011).

3.5 Cross species comparison: homologies and divergence between humans

and mouse lemur networks

In a last part of the study, cerebral networks were analyzed in humans with the
same graph analysis and dictionary learning algorithms as the ones used in mouse
lemurs. Two major differences were reported between the two species. First, large
scale networks were only cortical in humans while they involved two subcortical
networks in lemurs. Second, in humans, large scale networks involved more functional
regions than in lemurs. This latter result is consistent with the stronger small-world
organization in humans than in lemurs suggesting a better efficacy of whole brain
networks in humans. These differences between the two species may be related to a
better efficacy of neuronal networks in humans, but they could also be associated to
different awareness levels as lemurs were anesthetized while humans were awake
during image acquisition. Indeed, Barttfeld et al. compared connectivity measures in
awake and anesthetized conditions in primates. They showed that under anaesthesia,
the more frequent functional connectivity patterns inherit the structure of anatomical
connectivity and exhibit fewer small-world properties (Barttfeld et al., 2015).

Graph analysis revealed four similar modules (default mode-like, visual, frontal, and
temporal networks) in mouse lemurs and humans, although their regional organization
was not strictly identical. Two other modules detected in humans (somato-motor and
temporo-insular) corresponded to networks that were not detected in lemurs. On the
contrary, the two subcortical modules detected in lemurs (basal ganglia and thalamic

networks) were not detected in humans. Because of the multiple regions involved in



module description by graph analysis and because of the possibility to attribute a
region to only one network with this method, it was difficult to further compare human
and lemur networks with this technique.

Dictionary learning also revealed four similar networks (DMN, visual, fronto-
temporal/supramarginal and somato-motor networks) in lemurs and humans (Table 2;
Suppl. Fig. 4). In both species, the DMN network involved the cingulum, frontal, and
parietal cortices. In mouse lemurs, it involved the superior posterior frontal cortex that
was probably subdivided in two functional regions (frontal superior medial and frontal
superior posterior cortices) in humans. Other regions such as the temporal cortex were
included in the human DMN but not in the mouse lemur DMN. Interestingly, in both
species, this network was the one in which highest hubness coefficients (eigenvectors)
were detected. This reinforces the importance of this network for brain functional
organization. In humans, the default mode network has been largely linked to self-
referential thought, internal-oriented cognition and monitoring of the environment
(Buckner et al., 2008). The strength and stability of this network in mouse lemurs under
anaesthesia is consistent with the discovery of this network in many other anesthetized
animals (J. L. Vincent et al., 2007). This suggests that it is an essential element of brain
functional organization and that it may be dedicated to other tasks too.

In the visual network, occipital cortex was detected in both species. Additional more
anterior-parietal regions such as the paracentral lobule and the postcentral were
highlighted in humans. We cannot rule out that this wider extension in human dataset
is not related to the wakefulness state as it induces a richer repertoire of functional
configurations (Barttfeld et al., 2015).

In mouse lemurs, a network involving the anterior cingulum, frontal and temporal
regions was classified as the fronto-temporal network. In humans, one network
involving mostly the anterior cingulum and frontal regions could be homologous to this
network. Interestingly, in lemurs, this networks also involved temporal (superior and
medial temporal regions) while it involved parietal regions (supramarginal anterior and
parietal inferior cortices) as well as additional regions (supplementary motor, cingulum
median and opercular regions) in humans. This network could correspond to the
control-executive network (Solé-Padullés et al., 2016). If the fronto-temporal network
of mouse lemur is equivalent to the fronto-supramarginal human network, then this
would suggest a shift of the functional region localized in the superior temporal area in

lemurs towards a supramarginal location in humans.



The last comparable network was the somato-motor network. In humans it involved
regions surrounding the central sulcus (precentral and postcentral regions) as well as
the supplementary motor region. In lemurs, there is no central sulcus, but this network
involved similar regions (precentral and postcentral regions) as well as the
supplementary motor region. Interestingly, this part of the network seemed to have a
more anterior position in the brain of lemurs than in humans. This is consistent with the
more anterior part of the motor regions reported in lemurs by Le Gros Clark (Le Gros
Clark, 1931) and Brodmann (Brodmann, 1999 (original in 1909)). This pattern is linked
to the smaller size of the frontal region in lemurs as compared to humans. Finally, in
humans, this region involved the paracentral and the precuneus anterior cortices while
it involved the region classified as anterior cingulate cortex in the mouse lemur. These
two regions are localized in the same area and we cannot rule out that the functional
region classified as anterior cingulate cortex in lemur indeed involved the pre and post

central lobule in addition to the anterior cingulate cortex.

3.6 Anaesthesia-related limitations

One of the objectives of this study was to describe for the first time neuronal
networks in mouse lemurs. It was conducted on sedated animals using isoflurane with
the lowest non-awakening isoflurane level possible for mouse lemurs (1.25%).
Isoflurane is expected to decrease the functional connectivity but at high doses
(superior to 1.5%) or after a long exposure (Hutchison et al., 2014; Li and Zhang,
2018). Evaluating resting state networks in anesthetised and not in awake animals is
an obvious limitation of the study (Schroeter et al., 2014). However, several animal
studies showed that the major functional networks are preserved under anaesthesia
(J. L. Vincent et al., 2007). Here, we confirm this assumption by describing several
networks, including a DMN-like in anesthetised mouse lemurs. In the future, one may
also focus on resting state fMRI in awake mouse lemurs to possibly evaluate more
physiological brain states and increase the number of nodes associated with each
identified network. Such an approach is challenging but has already been performed

in marmosets (Belcher et al., 2013) and macaques (Goense et al., 2008).
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Table 2. Comparison of the regions belonging to the different networks extracted
in mouse lemurs and humans.
Regions that were identified with different methods are grouped within a single case.
The 3D functional atlas of each species was pasted on different networks obtained by
dictionary learning. A region was considered to belong to a network when more than
30% of its volume belonged to this network. The fit between two regions with different
names was based on the anatomical proximity. Labels represent the number
corresponding to this region in Figure 2 for lemurs and Supplementary Figure 2 for

humans.




4. Conclusion

This study provides the first characterisation of functional brain networks in mouse
lemur primates. Local functional regions were identified without using any anatomical
atlas. Six large scale networks were identified using several complementary data-
driven and hypothesis-based methods. Networks identified with each method
displayed a strong overlap and we propose a first classification of the most robust
mouse lemur networks by selecting only regions identified by two or three methods.
We also proposed a second validation method by comparing networks in lemurs and
human brains. Indeed, a strong homology was reported between well characterized
human cortical networks and lemur cortical networks. This further suggests the
accuracy of the identified mouse lemur networks. The mouse lemur brain displayed
small-world features leading to optimal information transfer. Finally, critical hubs were
detected and involved the posterior and anterior cingulate cortices, the central
prefrontal cortex, and the dorsal thalamus.

The mouse lemur is an interesting primate because of its key position in the
phylogenetic tree, rodent-like small size and nocturnal and arboreal lifestyle. The 3D

functional atlas and resting state network maps are freely available at

https://www.nitrc.org/projects/fmri_mouselemur/. The imaging tools used to create and

manipulate the template are also available (https://sammba-mri.github.io).

5. Materials and methods

5.1 Animals and breeding

This study was carried out in accordance with the recommendations of the
European Communities Council directive (2010/63/EU). The protocol was approved by
the local ethics committees CEtEA-CEA DSV IdF (authorization 201506051736524 VI
(APAFIS#778)). All mouse lemurs studied were born in the laboratory breeding colony
of CNRS/MNHN in Brunoy, France (UMR 7179 CNRS/MNHN) and bred in our
laboratory (Molecular Imaging Research Center, CEA, Fontenay-aux-Roses).

Sixteen mouse lemurs (12 males and 4 females) were initially included in this study.
Two females that presented brain lesions on anatomical MRI were excluded from the
analysis. The 14 analysed animals ranged from 0.9 to 3.1 years old (meantSD:

1.7%0.7) (Suppl. Table 1). Housing conditions were cages containing one or two lemurs
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with jumping and hiding enrichment, temperature 24—-26°C, relative humidity 55% and
seasonal lighting (summer: 14 hours of light/10 hours of dark; winter: 10 hours of
light/14 hours of dark). Food consisted of fresh apples and a homemade mixture of
bananas, cereals, eggs and milk. Animals had free access to tap water. None of the

animals had previously been involved in pharmacological trials or invasive studies.

5.2 Animal preparation and MRI acquisition

Each animal was scanned twice with an interval of 6 months. All scanning was
under isoflurane anaesthesia at 1.25-1.5% in air, with respiratory rate monitored to
confirm animal stability until the end of the experiment. Body temperature was
maintained by an air heating system at 32°C, inducing a natural torpor in mouse lemurs
(Aujard and Vasseur, 2001). This has the advantage of allowing a low anaesthesia
level without reawakening.

The MRI system was an 11.7 Tesla Bruker BioSpec (Bruker, Ettlinger, Germany)
running ParaVision 6.0.1. Anatomical images were acquired using a T2-weighted
multi-slice multi-echo (MSME) sequence: TR = 5000 ms, TE = 17.5 ms, 6 echoes,
inter-echo time = 5 ms, FOV =32 x 32 mm, 75 slices of 0.2 mm thickness, resolution
= 200 um isotropic, acquisition duration 10 min. Resting state time series data were
acquired using a gradient-echo EPI sequence: TR = 1000 ms, TE = 10.0 ms, flip angle
= 90°, repetitions = 450, FOV = 30 x 20 mm, 23 slices of 0.9 mm thickness and 0.1

mm gap, resolution = 312 x 208 x 1000 ym, acquisition duration 7m30s.

5.3 MRI acquisition in humans

Forty-two healthy participants from the ‘Imagerie Multimodale de la Maladie
d’Alzheimer a un stade Précoce’ (IMAP) study (Caen) were included in the present
study (18 males and 24 females ranging from 41 to 60 years old (mean+SD: 5045.9)).
All participants were scanned on a 3.0 T scanner (Philips Achieva, Amsterdam,
Netherlands) at the Cyceron Center (Caen, France). Anatomical T1-weighted images
were acquired using a 3D fast-field echo sequence (3D-T1-FFE sagittal TR = 20 ms,
TE = 4.6 ms, flip angle = 10°, 180 slices of 1 mm with no gap, FOV = 256 x 256 mm?,
in-plane resolution = 1 x 1 mm?). Resting state time series data were acquired using
an interleaved 2D T2* SENSE EPI (2D-T2*-FFE-EPI axial, SENSE = 2; TR = 2382 ms;
TE = 30 ms; flip angle = 80°; 42 slices of 2.8 mm with no gap, repetitions = 450, FOV



= 224 x 224 mm?, in plane resolution = 2.8 x 2.8 mm?, acquisition duration = 11.5 min).
Head motion was minimized with foam pads. Participants were equipped with earplugs
and the scanner room’s light was turned off. During this acquisition, participants were

asked to keep their eyes closed and relax without falling asleep.

5.4 MRI pre-processing
5.4.1 Mouse lemur data

Scanner data were exported as DICOM files then converted into NIfTI-1 format.
Then spatial pre-processing was performed using the python module sammba-mri

(SmAIl MaMmals BrAin MRI; http://sammba-mri.github.io) which, using nipype for

pipelining (Gorgolewski et al., 2011), leverages AFNI (Cox, 1996) for most steps and
RATS (Oguz et al., 2014) for brain extraction. Anatomical images were mutually
registered to create a study template, which was further registered to a high resolution
anatomical mouse lemur template (Nadkarni et al., 2018). Resting state images were
corrected for slice timing (interleaved), motion, and B0 distortion (per-slice registration
to respective anatomicals), then all brought into the same space of the mouse lemur
template by successive application of the individual anatomical to study template and
study template to mouse lemur atlas transforms. Functional images were further
pretreated using Nilearn (Abraham et al., 2014). Nuisance signal regression was
applied including a linear trend as well as 24-motion confounds (6 motion parameters,
those of the preceding volume, plus each of their squares (Friston et al., 1994)).
Images were then spatially smoothed with a 0.9 mm full-width at half-maximum
Gaussian filter. The first 10 volumes were excluded from analysis to ensure steady-

state magnetization.

5.4.2 Human data

Artefacts were inspected in individual datasets using the TSDiffAna routines
(http://imaging.mrc-cbu.cam.ac.uk/imaging/DataDiagnostics). Datasets displaying
significant movements (> 1.5° rotation or > 3 mm translation) and abnormal variance
distribution and/or artefacted were excluded from the analysis. Data were then
preprocessed as defined in Landeau et al. (Landeau et al., 2017) with slice timing

correction, realignment to the first volume and spatial normalization within native space
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to correct for distortion effects. EPl volumes were registered to their own high
resolution anatomical image and then registered and normalized to MNI template
space. Nuisance signal regression was applied including a linear trend as well as 24-
motion confounds (6 motion parameters, those of the preceding volume, plus each of
their squares (Friston et al., 1994)). Images were then spatially smoothed with a 2 mm

full-width at half-maximum Gaussian filter.

5.5 ldentification of functional regions by dictionary learning and creation of a

3D functional atlas

Multi-animal dictionary learning was performed with Nilearn (Mensch et al., 2016)
on preprocessed resting state functional MR images. A mask excluding the corpus
callosum, hindbrain, ventricles and three systematically artefacted regions (olfactory
bulb, ventral entorhinal cortex and prepiriform cortex) was used to restrict functional
data to non-noise voxels prior to dictionary learning analysis. During a pilot
investigation, several analyses were performed using 20, 30, 35, 40, 45, 50, and 60
sparse components (SCs). The study based on 35 SCs was selected for the final
analysis as it highlighted either unilateral local functional regions or bilateral regions.
Moreover, the extracted components matched well to anatomy (Nadkarni et al., 2018).
The 35 SCs were used to create a 3D functional atlas of the mouse lemur brain. Each
bilateral SC was split into two unilateral regions. Regions smaller than 5 mm? were
excluded leading to 48 local functional regions. Each region was then named using
ITK-SNAP to create a 3D functional atlas (Yushkevich et al., 2006). The same
procedure than in lemurs was applied to process human fMRI data. We used 35 SCs

and a grey matter mask without hindbrain.

5.6 ldentification of large scale networks
5.6.1 Connectivity matrix based on functional atlas

Partial correlation matrices were created using fully preprocessed MR images by
calculating the partial correlation coefficients between BOLD MR signal timecourses
within each region of the 3D functional atlas. Partial correlations were used because
they select direct associations between regions and allow the control of indirect

correlations (Mechling et al., 2014). Individual partial correlation matrices were



computed from shrunk covariance matrices using the Ledoit and Wolf shrinkage
coefficient (Ledoit and Wolf, 2004) as recommended by Varoquaux et al. (Varoquaux
et al., 2012) and Brier et al. (Brier et al., 2015). Partial correlation coefficients were
then Fisher's z-transformed. Values from different animals were averaged and
thresholded based on a one-tailed t-test (p < 0.01) (Mechling et al., 2014).

5.6.2 Modularity and large scale network identification by graph theory

analysis

The modularity of a partition (Q) is the degree to which a network can be subdivided
into non-overlapping groups of nodes (D. B. Vincent et al., 2008). The modularity of a
partition as well as an optimal segregation of the whole brain network into modules

were calculated using Gephi 0.9.2 (Bastian et al., 2009).

5.6.3 Large scale network identification by dictionary learning analysis

A second dictionary analysis was performed in mouse lemurs and humans using a
smaller number of SCs in order to highlight large networks and to compare them. Six
SCs were used based on the 6 modules found with the graph theory analysis (see
Results). In humans, a mask excluding the hindbrain and the white matter was used
prior to the analysis to compare the dictionary learning of the two species in a similar

space.

5.6.4 Large scale network identification by seed-based analysis

Seeds corresponded to each region of the 3D functional atlas. The BOLD signal
was averaged within each seed. The functional connection between the seed’s mean
BOLD signal and the BOLD signal in any voxel of the brain was estimated using a first-
level general linear model (Nistats (Abraham et al., 2014)). The within-animal effect
(i.e. the two series of MR images from each animal) was entered as a predictor (design
matrix) and the mean seed time course as regressor. The model directly returned a
fixed effect of the seed across the two sessions, producing 14 z-statistic maps. The
functional regions previously identified were used as seeds. For each seed, a visual
inspection of the animal mean z-statistic maps allowed the selection of four distinct

large scale networks that were spread over the whole brain.



5.7 Identification of functional regions from dictionary-learning and seed-based

maps

Dictionary learning and seed-based analysis produced maps showing pixels
belonging to different networks. These maps were extracted and pasted into the 3D
functional atlas. A brain region was considered to be part of a specific network when

the volume of labelled voxels within the map occupied at least 30% of that region.

5.8 Evaluation of functional hubness and small-worldness features of mouse

lemur brains by graph theory analysis

We consider in this analysis the absolute value of the correlation coefficient as

performed routinely in human fMRI graph theory studies (De Vico Fallani et al., 2014).

5.8.1 Brain hubs in mouse lemurs

Eigenvector centrality, a measure of "hubness", was measured using NetworkX
(Hagberg et al., 2008).

5.8.2 Small-worldness of mouse lemur brain networks

Network topology can be characterized using two small-world coefficients (o and

w) (NetworkX (Hagberg et al., 2008)).

C/Crand

oisdefinedasoc =
L/Lrand

(Watts and Strogatz, 1998)

c
Lrand Crand

w is defined as w = (Telesford et al., 2011).

With C and L being, respectively, the average clustering coefficient (a measure of
network segregation) and the average shortest path length (a measure of integration)
of the network. Crand and Lrand are their equivalent derived random networks. Small-
world networks have o values superior to 1 and w values close to 0 (Telesford et al.,
2011).
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Resting state cerebral networks in mouse lemur primates:
from multilevel validation to comparison with humans
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Supplementary Data

Supplementary Tables

Sex Age Age Anatomical brain
(months) (vears) lesion
283EA M 10.6 0.9 No
365A M 10.6 0.9 No
285AB M 10.7 0.9 No
285AAA M 16.5 1.4 No
283CCA M 16.6 14 No
263BCE M 17.8 1.5 No
314CA M 18.0 1.5 No
283CA M 22.4 1.9 No
285E M 22.6 1.9 No
276BC M 28.0 2.3 No
285D M 28.1 2.3 No
289BB F 28.8 2.4 No
300BA M 29.8 2.5 No
288BC F 37.3 3.1 Yes
208CBF F 375 3.1 No
310C F 39.9 3.3 Yes

Supplementary Table 1. Cohort of mouse lemurs involved in the study.



Modules

Dictionary learning

Seed-based

Default mode-
like

Cingulum Post

Cingulum Ant

Frontal Sup Post

Parietal (R&L)

Supp Motor Area (R&L)

Postcentral (R&L)

Frontal Mid

Dorsal thalamus

Occipital Pole (R&L)

Cuneus
Visual Occipital Mid (R&L)
Occipital Inf (L)
Temporal Inf (L) | Occipital Inf (R)
Frontal Sup Ant
Frontal Mid (R&L)
Frontal Precentral (R&L) Frontal Sup Post
Cingulum Ant
Temporal Sup (R&L)
Temporal Temporal Mld (R&L)

Temporal Inf (R)

Posterior putamen (R)

Somato-motor

Supp Motor Area (R&L)

Postcentral (R&L)

Temporal Sup (R&L)

Cingulum Ant

Parietal (L)

Precentral (R&L) Parietal (R)

Frontal Mid

Frontal Sup Post

Cingulum Post

Caudate nucleus Post (R)

Dorsal thalamus

Basal ganglia

Striatum Ant (R&L)

Caudate nucleus Post (R&L)

Putamen Post (L)

Amygdala (R&L)

Frontal Sup Post

Basal forebrain

Cingulum Ant

Septal nuclei

Hypothalamus

Putamen Post (R)

Globus pallidus

Thalamic

Dorsal thalamus

Ventral thalamus (R&L)

Hippocampus (R&L)

Colliculus (R&L)

Pons

Midbrain

Occipital Inf (R)

Basal forebrain

Septal nuclei

Globus pallidus




Supplementary Table 2. Comparison of the regions belonging to the different
networks extracted with module, dictionary learning and seed-based analysis.
Regions that were identified with different methods are grouped within a single case.
The 3D functional atlas was pasted on different networks obtained by dictionary
learning or seed-based analysis. A region was considered to belong to a network when
more than 30% of its volume belonged to this network.



Robust functional regions
Cingulum Post
Cingulum Ant

Frontal Sup Post
Parietal (R&L)

Default mode-like

Occipital Pole (R&L)
Occipital Mid (R&L)
Occipital Inf (L)
Cuneus

Visual

Frontal Sup Ant
Frontal Mid (R&L)
Frontal Sup Post
Cingulum Ant
Temporal Sup (R&L)
Temporal Mid (R&L)

Fronto-temporal

Postcentral (R&L)
Supp Motor Area (R&L)
Somato-motor Temporal Sup (R&L)
Cingulum Ant

Parietal (L)

Striatum Ant (R&L)
Caudate nucleus Post (R&L)
Putamen Post (L)
Amygdala (R&L)
Basal forebrain
Septal nuclei

Basal ganglia

Dorsal thalamus
Ventral thalamus (R&L)
Hippocampus (R&L)
Colliculus (R&L)
Pons
Midbrain

Thalamic

Supplementary Table 3. Robust functional networks in mouse lemur primates.
This table displays components that could be identified by two or three methods. The
different networks are the DMN, visual, fronto-temporal, somato-motor, basal ganglia
and thalamic networks.



Supplementary Figures

Supplementary Figure 1. Whole brain network in mouse lemurs.

Mean correlation matrix showing the mouse lemur brain network represented on a
3D mouse lemur brain space using BrainNet (Xia et al., 2013). Nodes represent the
local functional regions extracted from our 3D functional atlas. They were spatially
distributed based on their center of mass. Edges between the nodes represent the
mean partial correlation from the 28 mouse lemurs. Color and size of these edges
are proportional to this correlation. The color bar represents partial correlation
values.
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Supplementary Figure 2. Human 3D functional atlas based on dictionary
learning.

Functional regions based on dictionary learning. Fifty six local functional regions
were identified from the 35 sparse components (region volume = 5000 mm3). Brain
regions were classified based on their locations within the frontal (A), parietal (B),
occipital (C), and temporal (D) lobes and on the “AAL for SPM12” atlas (Tzourio-
Mazoyer et al., 2002). We display three different views. 1. Frontal Superior Anterior,
2. Frontal Superior Posterior, 3. Frontal Superior Medial, 4. Frontal Middle, 5. Frontal
Inferior Opercular, 6. Frontal Orbital, 7. Cingulum Anterior, 8. Cingulum Middle, 9.
Insula, 10. Precentral, 11. Postcentral, 12. Supplementary Motor Area, 13. Parietal
Superior Anterior, 14. Parietal Inferior, 15. Angular, 16. Parietal Superior Posterior,
17. Precuneus Anterior, 18. Precuneus Posterior, 19. Paracentral Lobule, 20.
Cingulum Posterior, 21. Supramarginal, 22. Temporal Inferior, 23. Temporal Middle
Anterior, 24. Temporal Middle Posterior, 25. Temporal Superior, 26. Cuneus, 27.
Occipital Superior, 28. Occipital Middle, 29. Occipital Inferior, 30. Calcarine, 31.
Lingual, 32. Fusiform, 33. Occipital Pole, 34. Striatum-Thalamus, 35. Frontal Inferior.
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Supplementary Figure 3. Human networks identified using graph analysis
based on 56 functional regions.

Using graph analysis, we partitioned the human brain into six cortical and subcortical
modules. A color and a name were assigned to each module. Colors highlight
interactions between different nodes, ie. they outline large scale networks.
Eigenvector centrality, a measure of node influence, is represented by the node size.
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Supplementary Figure 4. Comparison of the resting state network organization
in humans and mouse lemurs.

Functional spatial maps extracted with dictionary learning are displayed side by side.
Four cortical networks were matched between lemurs and humans. They were
classified as default mode network, visual, fronto-temporal/supramarginal, and
somato-motor. Regions that are similar across species are pointed out with arrows.
In the DMN-like network, frontal cortex (green arrows), posterior cingulum cortex
(black arrows), parietal cortex (blue arrows) were detected in both species. The
superior medial frontal and temporal cortices (arrow-heads) were detected in
humans but not in mouse lemurs. In the visual network, occipital cortex was detected
in both species. An additional independent region was detected in the paracentral
lobule and postcentral cortices in humans (arrow-head). For the fronto-
temporal/supramarginal network the middle frontal (brown arrows), superior frontal
(green arrows) and anterior cingulate cortex (black arrow) were detected in both
species. Interestingly, in humans the supramarginal cortex seems to fit with the
superior temporal cortex, in lemurs (blue arrows). For the somato-motor network,
regions were detected on both side of the central sulcus in humans and in a similar
region in lemurs (in which there is no central sulcus). In humans, they were in parieto-
frontal regions while in lemurs they involved more frontal regions (blue arrows).
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1.3. Study 3: Resting-state fMRI and glutamate measures in
the brain of a non-human primate: relationships and age-

related alterations

The biological parameters associated to the organization of brain regions into
networks are still poorly understood. The ability to detect neuronal networks in mouse
lemurs offers the opportunity to further characterize mechanisms responsible for
network organization at the level of the whole brain in a primate. In a last part of the
study, we characterized the relationships between resting-state fMRI and glutamate
levels assessed by Chemical Exchange Saturation Transfer imaging of glutamate
(gluCEST). We also evaluated the ability of the functional connectivity matrix to

differentiate young and aged lemurs

Contribution: In this article | acquired the fMRI, gluCEST, anatomical images of the
lemurs at 11.7T and coregistered them. | performed the functional connectivity analysis
(hubs, etc.) and developed a pipeline to extract automatically the gluCEST signal using
an atlas. Then, | designed and achieved the comparison between the two sequences
as well as the two cohorts (old and middle aged lemurs). GIUCEST signal acquisition
and pre-treatment protocols were developed by J. Flament and J. Pépin (Pépin, 2018).

These developments will not be discussed here.

[1.3.1. Combination of fMRI and to other techniques

Many approaches have combined fMRI with other techniques to study neuronal
activity. Often generated by physiological stimuli triggers, the neuronal activity induces
characteristic responses such as electric currents, vascular reaction or metabolic
variations. These responses can be registered thanks to a variety of methods such as
electrophysiology to measure the voltage fluctuations; positron emission tomography
(PET) and perfusion MRI to measure the cerebral blood flow; PET and NMR
spectroscopy to measure glucose consumption/metabolisation and the synthesis of
biomolecules such as neurotransmitters. This combination of techniques provides
complementary approaches for the exploration of unknown mechanisms such as the
characterization of the origin of the BOLD signal, the temporal and spatial

characteristics of the neuronal activity in different tasks or pathologies, or as in this



study, the evaluation of an association between highly connected regions, local

neuronal activity and glutamate.

[1.3.1.1. Electrophysiology and fMRI

Electrophysiology is a technique measuring the voltage fluctuations resulting from
ionic current produced by neuronal activity. In comparison to BOLD, electrophysiology
provides a direct understanding of the neuronal activity. Therefore, electrophysiology

can be used to improve the interpretability of many fMRI studies.

Concerning the neuronal origin of BOLD, Logothetis et al. found that the local field
potential is a better theoretical predictor of BOLD signal than single or multiunit
recording (Logothetis et al., 2001). This analysis was based on an experiment
measuring the BOLD and the electrophysiological response to a stimulus within the
visual cortex of anesthetized monkeys. This experiment suggested that BOLD pattern
is more likely to represent local synaptic activity (local input) rather than the spiking

activity (local output).

Scalp electroencephalography (EEG) or intracranial EEG recordings during
sensory, cognitive motor and visual functions (Singh et al., 2003) have revealed
positive correlations between electrophysiological signal and BOLD fluctuations.
These positive correlations were mainly observed within the gamma ranges (>30 Hz)
of the brain regions (network) activated by a given task (Mulert et al., 2010). Negative
correlations were mostly reported in the low frequency range (Murta et al., 2015). At
rest, Magri et al. found that the spontaneous activity registered with BOLD and local
field potential in the visual cortex of macaques display similar relationship profiles than
those in activated tasks (Magri et al., 2012). However, the profile of correlations
between electrophysiological frequency and BOLD signal reveals a high level of
complexity, poorly understood and that can’t be reduced to simple and general rules.
Indeed, Jann et al. found at rest (eyes closed), strong positive correlations between
BOLD and alpha frequencies recorded with EEG, within regions of the DMN (Jann et
al., 2009). Moreover, Mantini et al. suggest that each network could be characterized
by a specific electrophysiological pattern or combination of frequencies ((D. Mantini et
al., 2007); Figure 25). Other open questions such as the biological meaning of the
BOLD negative response remains highly debated and the EEG profiles suggest that it

could reflect a reduced neuronal activity (Moraschi et al., 2012).


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031704/
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Figure 25 | Association between two rsfMRI networks and their EEG profiles.
Auditory network (RSN 4) and motor network (RSN 5) associated with their extracted EEG
rhythms. From (D. Mantini et al., 2007).

[1.3.1.2. Positron emission tomography and fMRI

PET imaging is a technique used to quantify metabolic processes in the body. It
detects the radioactivity emitted by radioactive tracers. A computer analysis will
construct 3D images reflecting the concentration or the metabolised tracers within a
period of time. As examples, fludeoxyglucose detect regional glucose uptake and
['50O]H20 quantify blood flow. The quantification of the cerebral blood flow with PET
imaging allows for the identification of task related activation of several brain regions
such as the frontal cortex during verbal working memory (Petrides et al., 1993). The
complementarity PET imaging and fMRI has been largely illustrated with the discovery
of the default mode network (DMN). Indeed, the DMN was first discovered using
['5OJH20 PET and identified brain regions decreasing their activity during cognitive
tasks. ((Shulman et al., 1997) (Raichle et al., 2001); Figure 26). In a more recent study
and with an interesting multimodal approach Shah et al. found that the glucose uptake
measured with fluorodeoxyglucose PET was positively correlated with the activation of
the DMN (N. J. Shah et al., 2017). The ability to observe different cerebral networks in
rats, with fludeoxyglucose PET has been demonstrated at rest and with unilateral
stimulation of the whiskers (Wehrl et al., 2013).
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Figure 26 | Brain regions identified as decreasing their activity during cognitive tasks.
The color bar represents the cerebral blood flow measured by ['®*O]H.O PET. From (Raichle
et al., 2001).

[1.3.1.3. NMR spectroscopy and fMRI

In vivo 'TH NMR spectroscopy is a well-established technique for the quantification
of the brain metabolites at rest or during activation. However, cerebral metabolic
changes during cognitive tasks are poorly understood. Prichard et al. was the first study
to describe a metabolite (lactate) increase in the human visual cortex related to
stimulation (Prichard et al., 1991). Then other similar studies reported metabolite
variations related to stimulation, such as: lactate increase (=23%), glutamate increase
(=3%) or aspartate decrease (=15%) (Mangia et al., 2007). Another study observed
during pain stimulation, a positive correlation between glutamate and BOLD variations
whereas there was a negative correlation found between GABA and BOLD variations
(Cleve et al.,, 2017). Furthermore, the metabolic variations of glutamate were
highlighted in a study using a sequence that simultaneously quantifies glutamate and
BOLD signals in the human visual cortex (Ip et al., 2017). This technique has recently
gained attention due to a high temporal resolution allowing the quantification of
glutamate concentration within time scale of under a minute (Stanley et Raz, 2018).
Glutamate is one of the most ubiquitous excitatory neurotransmitters involved in the
excitatory and inhibitory balance. As for BOLD, observing glutamate variations
associated with cognitive processes will probably become possible in future studies. In
cerebral networks, GABA was significantly correlated with DMN deactivation during
task performance, whereas glutamate concentration was associated with a reduced
deactivation (X. Chen et al., 2018) (Hu et al., 2013) (Kapogiannis et al., 2013).
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In rodents, similar metabolic responses were found in anesthetized rats (Just et al.,
2013). Moreover, Sonnay et al. found that a prolonged stimulation of the rat barrel
cortex led to a BOLD signal decrease after an habituation period. Interestingly, they
found a prevalence of oxidative metabolism during this prolonged stimulation period
(Sonnay et al., 2017).

[1.3.1.4. Other techniques evaluating neuronal activity characteristics

The few techniques previously mentioned which evaluate the biological
characteristics of neuronal activity are far to be exhaustive. As an example, the arterial
spin labeling MRI or perfusions MRI is a technique measuring the cerebral blood flow.
This technique extracted similar cerebral networks when compared to BOLD fMRI in
humans (Zhu et al., 2013) and mice (Francesco Sforazzini et al., 2014). These studies

attest the major role of cerebral blood flow in the detection of networks with fMRI.

Recently, optical imaging (multi-photon based microscopy) has shown spatial
patterns of neuronal activation, traveling through the cerebral cortex and along
stereotypical waves. The simultaneous use of neuronal calcium signal (sensitive to
neuronal activity) and hemodynamic signal has established their spatial coactivation
(Matsui et al., 2016) (Murakami et al., 2018). This result confirms that hemodynamic
fluctuations reflect neuronal activity dynamics. In the same study, the delay between
the hemodynamic response and the stimulus was also observed. These studies also
highlight that the spatiotemporal trajectory of the infra-slow fluctuations of the calcium
signal (<0.1 Hz) through the cortex were distinct from other frequencies (Mitra et al.,
2018). Interestingly, this spatiotemporal trajectory was modified in anesthetized

animals versus those awake.

To our knowledge no studies have evaluated the relationships between highly
connected regions, neuronal activity, and regions with elevated glutamate. As for the
previous techniques, assumptions were made to identify the biological origin of these
associations. This promising combination of non-invasive biomarkers was also used to
characterize a large spectrum of the aging process, and has many potential
applications for neurodegenerative disease studies.



158



[1.3.2. Article in preparation: Garin, C. M., Nadkarni, N. A., Pepin J., Bougacha,
S., Flament, J. & Dhenain, M. (in preparation). Resting-state fMRI and
glutamate measures in the brain of a non-human primate: relationships and

age-related alterations.

Resting-state fMRI and glutamate measures in the brain of
a non-human primate: relationships and age-related
alterations

Clément M. Garin 2, Nachiket A. Nadkarni'2, Jérémy Pépin J. "2, Salma
Bougacha'234, Julien Flament 2, Marc Dhenain'2"

' Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud,
Université Paris-Saclay UMR 9199, Neurodegenerative Diseases Laboratory, 18
Route du Panorama, F-92265 Fontenay-aux-Roses, France

2 Commissariat a I'Energie Atomique et aux Energies Alternatives (CEA), Direction de
la Recherche Fondamentale (DRF), Institut Frangois Jacob, MIRCen, 18 Route du
Panorama, F-92265 Fontenay-aux-Roses, France

3 Inserm, Inserm UMR-S U1237, Normandie Univ, UNICAEN, GIP Cyceron, Caen,
France

4 Normandie University, UNICAEN, EPHE, INSERM, U1077, CHU de Caen,

Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France

Correspondence

Marc Dhenain

MIRCen, UMR CEA-CNRS 9199

18 Route du Panorama

92 265 Fontenay-aux-Roses CEDEX

France

Tel: +33 1 46 54 81 92; Fax: +33 1 46 54 84 51
email: Marc.Dhenain@cea.fr

159


mailto:Marc.Dhenain@cea.fr

1. Introduction

Resting state fMRI (rsfMRI) is a widely used method of functional magnetic
resonance imaging (fMRI). It can evaluate brain function in a resting condition, i.e.
when an explicit task is not being performed and detects blood-oxygen-level
dependent (BOLD) signal, a proxy for neuronal activity.

rsfMRI can provide information on functional brain connectivity. This latter can be
evaluated by measuring the level of co-activation of BOLD signal between brain
regions, defined by the level of correlation between rsfMRI time-series. This allows the
characterization of several cerebral networks in the brain (e.g. the default mode
network (DMN) or sensorimotor networks) (Raichle, 2011). These networks are
consistently found in healthy subjects, across species and represent specific patterns
of synchronous activity. rsfMRI connectivity also allows the assessment of the level of
information transfer through specific brain regions, i.e. a measure of hubness.

rsfMRI can also provide information on local neuronal activity by quantifying low-
frequency oscillations (LFO) of BOLD signal (Biswal et al., 1995; Zou et al., 2008). For
example, the total power of BOLD signal within the frequency range between 0.01 and
0.1 Hz is a LFO index (called amplitude of low-frequency fluctuation (ALFF)) that
reflects neuronal activity. Typical patterns of ALFF are displayed in humans in resting
state condition, with high values within the DMN (Fransson, 2006). ALFF is correlated
with markers of glucose metabolism as well as with functional connectivity (Aiello et
al., 2015) or diffusion-based measures of connectivity (Lee et Xue, 2017).

The impacts of multiple neurotransmitters on local cerebral regions are largely
evaluated in neuroscience. High level of serotonin innervation from dorsal raphe
nucleus to the rest of the brain has been related to the high connectivity of this structure
with the rest of the brain (Noori et al., 2017). Also, regional serotonin-1A receptor
binding predicts BOLD signal change in three different DMN nodes (retrosplenial,
posterior cingulate and dorsomedial prefrontal cortices) (Hahn et al., 2012).
Relationships between GABA, the chief inhibitory neurotransmitter in the brain and
reduction of network activity have also been reported in the DMN (Kapogiannis et al.,
2013). However, the impact of neurotransmitters on functional brain connectivity and
neuronal activity is still poorly described at the level of the whole brain.

Glutamate is the principal excitatory neurotransmitter in the brain and is involved
in multiple cognitive functions. It is an essential amino acid of the brain metabolism and

has the highest amino acid concentration of the brain (=10 mmol/kg) (Greenamyre,



1986; Niciu et al., 2012). In normal conditions, most of glutamate is located in cells
including astrocytes (Cooper et Jeitner, 2016) that surrounds the synapses,
neurotransmission being governed by few micromolar of extracellular glutamate. In
addition to its major role as an excitatory neurotransmitter, glutamate is central to
several metabolic pathways related to energy metabolism and oxidative stress (Y.
Zhou et Danbolt, 2014).

Studies combining MR spectroscopy (MRS) and fMRI reported positive correlation
between glutamate and BOLD signal (Cleve et al., 2017; Ip et al., 2017). Furthermore,
there is evidence suggesting that glutamate/glutamine may modulate functional
connectivity (Horn et al., 2010). In cerebral networks glutamate concentration was
associated with a reduced deactivation of the DMN in response to task performance
(Chen et al., 2018; Y. Hu et al., 2013; Kapogiannis et al., 2013).

Until now, relationships between neurotransmitters and rsfMRI-based indexes of
neuronal network connectivity or function were mainly based on the monitoring of
neurotransmitters by MRS. One limitation of MRS is that measurements are confined
to relatively large voxels, due to limited sensitivity of the method. Recent developments
of gluCEST (Chemical Exchange Saturation Transfer of glutamate) imaging allow the
quantification of glutamate at the level of the whole brain (Cai et al., 2012; Carrillo-de
Sauvage et al., 2015). This opens the possibility to directly compare glutamate activity
and rsfMRI-based indexes of neuronal network connectivity or function at the level of
the whole brain.

The mouse lemur (Microcebus murinus) is a primate attracting increased attention
in neuroscience research. This small animal (typical length 12cm, 60-120g weight) has
a decade-long lifespan and is a model for studying cerebral aging (Sawiak et al., 2014)
or Alzheimer's disease (Kraska et al., 2011). It displays neuronal networks (default-
mode like, temporo-prefrontal, somato-motor, visual, thalamic and basal ganglia
networks) that are largely similar to those reported in humans (Garin et al., 2019).
Because of its small size, it can fit in small bore high field (11.7 T) MRI during resting
state conditions. This allows to perform rsfMRI and gluCEST images with optimal
conditions.

In this study, we evaluated relationships between rsfMRI indexes of functional
connectivity (hubness) or neuronal function (ALFF), and gluCEST signal in two cohorts
of middle-aged and old mouse lemurs. Evaluations were performed at the level of

individual brain regions or of large scale neuronal networks. Different indexes of



connectivity, ALFF as well as gluCEST signal were strongly correlated. This suggests
that connectivity and neuronal function are strongly modulated by glutamate level.
Comparison between middle-aged and old lemurs revealed a decrease of the ALFF in
the DMN associated to a decrease of the anterior cingulate cortex centrality index of

hubness.

2. Results
2.1. ALFF in the mouse lemur brain

Resting-state fMR images were recorded from 29 anaesthetised (isoflurane 1.25-
1.5%) mouse lemurs using a gradient-echo echo planar imaging (EPI) sequence at
11.7 Tesla (Suppl. Table 1). Four animals that presented brain lesions or artefacted
MRI images were excluded from the analysis. Animals were split in two groups: middle-
aged adults (n=14, 1.3 to 3.8 year-old) and old animals (n=15, 8.0 to 10.8 year-old)
(Suppl. Table 1). The amplitude of low-frequency fluctuation (ALFF) index was
obtained after the time series for each voxel were transformed to the frequency domain
with a Fast Fourier Transform (FFT) (Zuo et al., 2010). It was calculated for each voxel
of the pre-processed EPI images in the low-frequencies range 0.01 to 0.1 Hz. mALFF
index was calculated as ALFF weighted by the average ALFF of the whole brain. The
mALFF signal from different brain regions was extracted using a reference functional
atlas of the mouse lemur brain (https://www.nitrc.org/projects/fmri_mouselemur/;
(Garin et al., 2019), Fig. 1C). High values of mALFF were detected in subcortical

regions such as basal forebrain, globus pallidus, putamen and amygdala as well as

cortical regions such as the cingulate and parietal cortices (Fig. 1A, B, Suppl. Fig. 1).

mALFF was further quantified within large scale networks previously reported in
mouse lemurs (default-mode like, temporo-prefrontal, somato-motor, visual, thalamic
and basal ganglia networks) (Garin et al., 2019) (Fig. 2). The basal ganglia network
displayed the highest mALFF signal in middle-aged or old animals (Fig. 2A-B). Visual
and thalamic networks displayed the lowest mALFF in both groups. The DMN was the
cortical network with the highest mALFF in middle-aged animals. Significantly lower
mALFF was detected in the DMN of old animals as compared to middle-aged ones
(Fig. 1D, p = 0.002, Kruskal's test).


https://www.nitrc.org/projects/fmri_mouselemur/
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Figure 1. Whole brain mALFF statistical map in middle-aged and old mouse
lemurs.

Functional atlas of the mouse lemur brain (C) based on a BOLD signal spatial
decomposition. Forty-eight functional regions (27 cortical, 21 subcortical) were
extracted following sparse dictionary learning with 35 components. 3D surface t-
maps of the mALFF in (A) 14 middle-aged and (B) 15 old mouse lemurs. Elevated
mALFF is observed within regions encompassing the basal forebrain, amygdala,
putamen and globus pallidus as well as cortical regions such as the middle temporal
(12), anterior cingulate (5) and parietal cortices (12). White arrows highlight signal
intensity difference in the DMN of old versus middle-aged animals. The color bar
represents the t values (one-sample t-test). mALFF contrast lost was observed in
the DMN-like of the aged group (D, p = 0.02, independent samples t-test). *: p <0.05;
**: p <0.01, **: p < 0.001, ****: p < 0.0001. 1. Frontal superior anterior, 2. Frontal
middle, 3. Frontal superior posterior, 4. Supplementary motor area, 5. Cingulum
anterior, 6. Precentral, 7. Postcentral, 8. Cingulum posterior, 9. Parietal, 10. Occipital
middle, 11. Temporal superior, 12. Temporal middle, 13. Temporal inferior, 14.
Occipital inferior, 15. Cuneus, 16. Occipital pole, 17. Septal nuclei, 18. Caudate
nucleus posterior, 20. Putamen posterior, 21. Globus pallidus, 22. Amygdala, 23.
Basal forebrain.
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Figure 2. Indexes of functional connectivity (hubness), neuronal function
(ALFF), and gluCEST signal in the cerebral networks of the mouse lemurs.
Different neuronal networks can be identified in mouse lemurs. mALFF level was low
in the visual and thalamic networks, intermediate in the default-mode like, temporo-
prefrontal and somato-motor networks and highest in the basal ganglia networks (A,
B). Averaged eigenvector centrality level was low in the visual and thalamic networks
and the basal ganglia, intermediate in the temporo-prefrontal and somato-motor
networks and highest in the default-mode like (C, D). gluCEST level was highly
similar to mALFF with a low signal in the visual and thalamic networks, intermediate
in the default-mode like, temporo-prefrontal and somato-motor networks and highest
in the basal ganglia networks (E, F).

2.2. Functional hubs in the mouse lemur brain

Resting-state fMR images used for ALFF evaluation were further used to analyse
brain hubs. The whole brain network was defined as a set of 48 nodes (basic elements
of the system) identified as local functional regions previously described in mouse
lemurs (Garin et al., 2019). These nodes were used to build an averaged matrix for

middle-aged and old mouse lemur cohorts (Fig. 3A, B).

Influence of each node within the whole brain network (or "hubness") can be
characterized using various descriptors. One of them (eigenvector centrality) was
calculated for each node, based on node partial correlation values (edges) with all
regions of the 3D functional atlas, weighted by the eigenvector scores of its
neighbourhood nodes. In other words, nodes which display high eigenvector centrality
scores are strongly linked to other nodes and/or to strongly connected nodes. The
cingulum anterior and posterior, the frontal superior, posterior, and anterior, the
temporal superior cortices and the dorsal thalamus were identified as major hubs in
both groups (Suppl. Fig. 2). The gap between the poorly connected regions (low
eigenvector centrality) and the mains hubs (high eigenvector centrality) was weaker in
the old lemurs. However, the global ranking across functional regions was preserved
in both cohorts. Also, eigenvector centrality index was reduced in the anterior cingulate
cortex of old animals compared to middle-aged ones (Fig. 3C, p = 0.02, independent

samples t-test).
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Figure 3. Whole brain networks extracted from middle-aged and old mouse
lemurs.

Mean correlation matrix showing the mouse lemur brain network are represented on
a 3D mouse lemur brain space (BrainNet (Xia et al., 2013)). Nodes represent the
local functional regions extracted from a 3D functional atlas. They were spatially
distributed based on their centers of mass. Edges between the nodes represent the
mean partial correlation from the (A) 14 middle-aged and (B) 15 old animals. Color
and size of these edges are proportional to this correlation. Differences in node
centrality were found in the anterior cingulate cortex (white arrows). The color bar
represents partial correlation values.

Eigenvector centrality was reduced in the anterior cingulate cortex of the aged
animals as compared to middle-aged animals (C, p = 0.02, independent samples t-
test). *: p < 0.05.

The averaged eigenvector centrality score of each functional network (DMN like,
temporo-prefrontal, somato-motor, visual, thalamic and basal ganglia networks) (Garin
et al., 2019) could also be calculated (Fig. 2C-D). The DMN-like network displayed the
highest eigenvector centrality score. Also, cortical regions (except the visual cortex)
had higher eigenvector centrality scores than subcortical regions. No differences were
found between large scale networks of middle-aged and old animals.

2.3. GIuCEST contrast in mouse lemur brains

GIuCEST images were recorded using a 2D fast spin echo sequence in the same
animals as those used for the rsfMRI study and during the same imaging session.
Individual gluCEST images were brought into the same space as the rsfMR images.
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gluCEST maps representative of each cohort were calculated using a one-sample t-
test (Fig. 4A, B). GIUCEST signal from different brain regions was extracted from a
reference functional atlas of the mouse lemur (Suppl. Fig. 3).

Subcortical regions such as caudate nucleus, globus pallidus, and putamen
displayed elevate glutamate signal in both cohorts. Cortical regions such as frontal
superior posterior as well as supplementary motor area, temporal, cingulum anterior
also displayed high GIUCEST signal in both groups. In most brain regions, GIUCEST
signal did not present with major difference between middle-aged and old lemurs
except within the globus pallidus (Fig. 3C, p = 0.0004, t-test).

The gluCEST signal was also extracted in the six previously defined large scale
networks. The ranking of gluCEST signal in the subcortical networks was highly similar
to that for the mALFF and was marked by a high gluCEST signal in the basal ganglia
and a lower signal in the thalamic network (Fig. 2E-F). The visual network displayed
the lowest signal of the cortical networks. No significant differences were found

between large scale networks of middle-aged and old animals.

R Middle-aged adults
- Oid

Globus pallidus

Figure 4. gluCEST signal statistical map in middle-aged and old mouse lemurs.
3D surface t-map of the gluCEST signal in middle-aged (A, n=14) and old (B, n=15)
mouse lemurs. Elevated gluCEST signal is observed within regions encompassing
the frontal superior anterior cortex (1), supplementary motor area (4), temporal (12)
and cingulum anterior cortices as well as subcortical regions such as globus pallidus,
caudate nucleus, and putamen. Signal was lower in the globus pallidus of old
animals (C, p = 0.0004, t-test) of old animals compared to middle-aged animals. ***:
p < 0.0001. The color bar represents the t values (one-sample t-test).




2.4. Local neuronal activity and functional connectivity are associated to

glutamate

We then evaluated the relationships between local neuronal activity or functional
connectivity extracted from the various brain regions and glutamate contrast in the
same regions. Comparisons of each index were performed systematically in the whole

brain, in the cortical and subcortical regions.

2.4.1. mALFF is associated to gluCEST contrast

mALFF and gluCEST signal were positively correlated in both groups when
compared in the entire brain (Fig. 5A-B). The correlation detected at the level of the
entire brain was mainly driven by a strong correlation at the level of subcortical regions,
that was detected in the two cohorts (R = 0.72 and 0.75 in middle-aged and old
animals, Fig. 5E-F) rather than in cortical regions, in which a weaker, but significant
positive correlation was only found in the middle-aged group (R = 0.53, Fig. 5C) but
not in the old group. Interestingly the strong correlation detected in the subcortical
regions, reflected two categories of structures: those belonging to the basal ganglia
with high mALFF and gluCEST signal and those belonging to the thalamic network with
low mALFF and gluCEST signal. These data suggest that high neuronal activity is

related to highest glutamate level in particular within the subcortical regions.
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Figure 5. Relationships between mALFF and gluCEST contrast

Positive relationships were observed between mALFF and gluCEST signal in all
functional brain regions of the middle-aged (A) and old (B) lemurs as well as in
cortical regions of middle-aged animals (C) and subcortical regions of both cohorts
(E, F). Spearman correlation indexes are displayed on each graph.
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2.4.2. Hubness is associated to gluCEST contrast

Eigenvector centrality was positively correlated with gluCEST signal in the whole
brain of middle-aged (Fig. 6A) and old animals (Fig. 6B). Strong correlations between
eigenvector centrality and gluCEST signal were also observed in cortical regions (Fig.
6C, D) and subcortical regions (Fig. 6E, F) of both groups.

Eigenvector centrality measures are dependent of the threshold used to remove
low correlated and thus non-meaningful edges of the network. Here, we used a
threshold based on a one-tailed t-test (p <0.01). To assess the impact of this threshold
on result outcome, we changed it from 0.0001 to 0.36 with a spacing value of 0.01
leading to 36 new comparisons of the correlations between eigenvector centrality and
gluCEST contrast (Suppl. Fig. 4). Different thresholds changed the density of the
network from 0.13 to 0.59 but most correlations between eigenvector centrality and
gluCEST contrast in the whole brain and in cortical regions were still significant
(p<0.05) whatever the mouse lemur cohort. On the contrary correlations were almost
never significant in the subcortical regions when thresholds were changed. This
suggests that correlations between eigenvector centrality and gluCEST contrast are
robust if one considers analyses performed at the whole brain or cortical level but not
within subcortical regions.

In this first part of the study, we used eigenvector centrality as an index of hubness.
Other indexes of hubness are available. Degree centrality represents the sum of the
weighted edges incident upon a node. Current flow betweenness centrality is a
betweenness centrality measure that considers the influence from all the paths across
nodes. This algorithm gives more weight to the shortest path but also considers the
other connections (Newman, 2005). These two indexes were used to further assess
relationships between connectivity and gluCEST contrast (Table 1). Degree centrality
indexes were positively correlated to gluCEST contrast in the whole brain and in the
cortex of both groups. Current flow betweenness centrality indexes were also
significantly correlated to gluCEST contrast in the brain and in the cortex of both
groups. Overall, these results highlight a strong relationship between glutamate levels
and centrality indexes in the whole brain and in the cortical regions, but a weaker

relationship in subcortical regions.
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Figure 6. Relationships between eigenvector centrality and gluCEST contrast.
A positive relationship was observed between eigenvector centrality and gluCEST
signal extracted from all functional brain regions of the middle-aged (A) and old (B)
lemurs. Similar correlations were obtained when using only the cortical regions or
subcortical regions in middle-aged and old lemurs. Spearman correlation indexes
are displayed on each graph.
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gluCEST mALFF
Middle-aged Middle-aged
adults Old adults
R p R p R p R p
Eigenvector centrality
Brain 0.544 | 0.000065* | 0.540 | 0.000073* 0.390 | 0.006120* | 0.411 | 0.003701*
Cortical 0.679 | 0.000007* | 0.538 | 0.003761* 0.730 | 0.000015* | 0.204 | 0.307650
Subcortical | 0.534 | 0.012698 | 0.623 | 0.002535* 0.279 | 0.220289 | 0.691 | 0.000525*
Degree centrality
Brain 0.473 | 0.000693* | 0.491 | 0.000397* 0.471 | 0.000726* | 0.391 | 0.005952*
Cortical 0.640 | 0.000326* | 0.530 | 0.004470* 0.618 | 0.000585* | 0.194 | 0.333441
Subcortical [ 0.395 | 0.076527 | 0.500 | 0.020992* 0.412 | 0.063699 | 0.597 | 0.004241*
Current flow betweenness centrality
Brain 0.430 | 0.002261* | 0.458 | 0.001066* 0.424 | 0.002671* | 0.335 | 0.019984*
Cortical 0.628 | 0.000450* | 0.632 | 0.000401* 0.579 | 0.001563* | 0.275 | 0.165496
Subcortical | 0.319 | 0.158035 | 0.358 | 0.110590 0.358 | 0.110590 | 0.448 | 0.041656*

Old

1]

Table 1. Relationships between different indexes of hubness and gluCEST
contrast or mALFF.

Most hubness indexes were correlated to gluCEST contrast in whole brain or cortical
regions. Relationships between hubness and gluCEST were less stable in subcortical
regions. The correlations between hubness and mALFF display a reproducible pattern
amongst the different indexes. The hubness indexes were always positively correlated
to mALFF in whole brain of both groups, in the cortical regions of the middle-aged
group and in the subcortical regions of the old lemurs.

2.5. mALFF and hubness are correlated

mALFF and eigenvector centrality evaluated in different brain regions were
positively correlated (Fig. 7A, B). Correlation between mALFF and eigenvector
centrality was statistically significant in the cortex but not in the subcortical regions of
middle-aged animals (Fig. 7C, E). This relationship seemed to be shifted in old animals
in which correlation between these two markers was statistically significant in
subcortical regions and not in the cortex (Fig. 7D, F). As for the comparison with
gluCEST signal, we evaluated the stability to the threshold of this correlation (Suppl.
Fig. 5). Cortical correlations were always true for the middle-aged group and
surprisingly subcortical correlation were always true in the aged group. Additional
indexes of hubness (degree centrality and current flow betweenness centrality
indexes) were used to further assess the specificity of the relationships between
hubness and mALFF (Table 1). We found positive correlation into the brain with all

indexes. Positive correlations between ALFF and all indexes were found in the cortex



of the middle-aged group and in the subcortical regions of aged animals, which further

confirmed the age-related shift of cortico/subcortical relationship between ALFF and

hubness.
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Figure 7. Relationships between eigenvector centrality and mALFF.
A positive relationship was observed between eigenvector centrality and mALFF in
all functional brain regions of the middle-aged (A) and old (B) lemurs as well as in
cortical regions of middle-aged animals (C) and subcortical regions of old animals
(F). Spearman correlation indexes are displayed on each graph.
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3. Discussion

This study evaluated mALFF, hubness and glutamate level in mouse lemur
primates at high field MRI (11.7T). We focused on two independent cohort of middle-
aged and old animals. Several results were consistent between the two cohorts. First,
we highlighted different levels of mALFF activity in different brain regions. mALFF is
considered as a marker of neuronal activity (Zou et al., 2008). Highest levels of mALFF
were detected in structures belonging to the basal ganglia network (putamen, globus
pallidus). Moreover, mALFF was well correlated to the gluCEST signal.

Different levels of hubness were also detected in different brain regions and
regions with stronger hubness properties were mainly cortical (cingulate, frontal, and
temporal cortices). Hubness parameters were well correlated to gluCEST in the cortex
but not in subcortical regions.

Together, these results suggest relationships between neuronal activity assessed
by mALFF, hubness and glutamate levels. In the cortex, glutamate level is linked to
both mALFF and hubness. Glutamate is the major excitatory transmitter in the central
nervous system. Relationships between concentration of this neurotransmitter and
activation of particular regions (e.g. the posterior cingulate cortex/precuneus) or
activation of networks (e.g. the default mode network) have already been reported (Y.
Hu et al., 2013; Kapogiannis et al., 2013). A relationship between glutamate and
neuronal activity was thus expected and our results suggest that this relationship is
strong and impact most cortical regions. In addition to the role of glutamate for local
activity, our study further outlined that in the cortex, glutamate level is linked to
hubness, i.e. to the ability to have information crossing brain regions. This suggests a
relationship between glutamate and long-distance transfer of information in the brain.

In the subcortical regions, high glutamate level was mainly associated to high local
activity (and not to hubness properties), in particular in the basal ganglia network.
Numerous studies defined the basal ganglia as a main input from the cortical
glutamatergic projections (Galvan et al., 2006; Lanciego et al., 2012). Also, according
to Greenamyre et al., the striatum is the major region receiving glutamatergic cortical
input (Greenamyre, 2001). In consequences, the high gluCEST signal detected in this
area may correspond to this pathway and may be responsible for the high activity within

the basal ganglia.



The major pools of glutamate are located in cells and neurotransmission is
governed by few micromolar of extracellular glutamate. gluCEST is an interesting
technique as it is sensitive to the concentration of this intracellular glutamate (Cai et
al., 2012). 70% of the gluCEST signal is weighted by intracellular glutamate (Bagga et
al., 2018). Glutamate is present within cells close to the synapses and within astrocytes
that surround the synapses (Cooper et Jeitner, 2016). High glutamate level may thus
reflect high functional synaptic connection in the most active regions. We can however
not rule out other explanations for high glutamate level in active brain regions. Indeed,
stimulation of brain regions were shown to increase glutamate levels in the activated
regions (Just et al., 2013; Sonnay et al., 2017). It is thus also conceivable that the high
glutamate level in the most active regions is the result of a prolonged activation of the
regions. Even if our study suggests a critical role of glutamate for brain activity in the
whole brain and to tune nodal activity in the cortex, they do not exclude possible roles
of other neurotransmitters that were not evaluated in the current work. Serotonin for
example was shown to be critical to stimulate neuronal networks activity (Noori et al.,
2017). GABA was also reported to be critical to reduce activity of neuronal networks
(Kapogiannis et al., 2013).

As we evaluated mALFF, hubness and glutamate level in two cohorts of middle-
aged and old animals, our study can also provide some clues on aging changes for
these markers. First, we highlighted alterations of mALFF index in the DMN-like of the
old animals when compared to the middle-aged ones. This result is consistent with
data in humans in which ALFF of the DMN is also impaired with aging (S. Hu et al.,
2014). We also reported lower eigenvector centrality in the anterior cingulate cortex of
old animals. This region is a major hub of the mouse lemur brain and of its DMN-like
network (Garin et al., 2019). Thus, this result is consistent with age-related decreases
of the functional connectivity reported within regions of the DMN in humans (Sala-
Llonch et al., 2015). It further confirms the weakness of DMN during aging.

Interestingly, we also found a shift of the relationship between ALFF and hubness
that concerned cortical regions in middle-aged animals and subcortical regions in old
animals. This may suggest a reorganization of the brain function in old animals, in
relationship to lower capacity to mobilize cortical regions.

Finally, we found an age-related reduction of gluCEST signal in the globus pallidus.
The globus pallidus is a key structure of the glutamatergic system strongly involved in

glutamatergic transmission (Greenamyre, 2001). Alterations of glutamate in these



structures may have consequences on alterations of cerebral health associated to

aging.

4. Conclusion

As a conclusion, using a small primate model that can be studied by high field MR,
we showed that glutamate is strongly associated to mALFF in cortical and subcortical
brain regions. In the cortex, glutamate is also associated to functional connectivity and
to long-distance transfer of information. We also highlighted age-related changes for
these parameters. They concern alterations of mALFF in critical networks and
reduction of glutamate in the globus pallidus. We also highlighted an age-related
reorganization of the cortical/subcortical relationships between mALFF and functional

connectivity.

5. Materials and methods
5.1. Animals and breeding

This study was carried out in accordance with the recommendations of the
European Communities Council directive (2010/63/EU). The protocol was approved by
the local ethics committees CEtEA-CEA DSV IdF (authorizations 201506051736524
VI (APAFIS#778)). All mouse lemurs studied were born in the laboratory breeding
colony of the CNRS/MNHN in Brunoy, France (UMR 7179 CNRS/MNHN) and bred in
our laboratory (Molecular Imaging Research Center, CEA, Fontenay-aux-Roses).

Twenty-nine mouse lemurs (21 males and 12 females) were initially included in this
study. Four animals that presented brain lesions or artefacted MRI images were
excluded from the analysis. Fourteen animals ranged from 1.3 to 3.8 years old
(meantSD: 2.1+£0.8 years) were grouped together to form the “young lemurs cohort”
(Supplementary Table 1). Fifteen animals ranged from 8.0 to 10.8 years old
(meantSD: 8.8+1.1 years) were grouped together to form the “old lemurs cohort”
(Supplementary Table 1). Housing conditions were cages containing one or two lemurs
with jumping and hiding enrichment, temperatures 24—-26°C, relative humidity 55% and
seasonal lighting (summer: 14 hours of light/10 hours of dark; winter: 10 hours of
light/14 hours of dark). Food consisted of fresh apples and a homemade mixture of
bananas, cereals, eggs and milk. Animals had free access to tap water. None of the



animals had previously been involved in pharmacological trials or invasive studies.

5.2. Animal preparation and MRI acquisition

Each animal was scanned twice with an interval of 6 months. All scanning was
under isoflurane anaesthesia at 1.25-1.5% in air, with respiratory rate monitored to
confirm animal stability until the end of the experiment. Body temperature was
maintained by an air heating system at 32°C, inducing a natural torpor in mouse lemurs
(Aujard et Vasseur, 2001). This has the advantage of allowing a low anaesthesia level
without reawakening.

The MRI system was an 11.7 T Bruker BioSpec (Bruker, Ettlingen, Germany)
running ParaVision 6.0.1 with a volume coil for radiofrequency transmission and a
quadrature surface coil for reception (Bruker, Ettlingen, Germany).

Anatomical images were acquired using a T2-weighted multi-slice multi-echo
(MSME) sequence: TR =5000 ms, TE = 17.5 ms, FOV =32 x 32 mm, 75 slices of 0.2
mm thickness, 6 echoes, 5 ms IET, resolution = 200 ym isotropic, acquisition duration
10 min.

Resting state time series data were acquired using a gradient-echo echo planar
imaging (EPI) sequence: TR = 1000 ms, TE = 10.0 ms, flip angle = 90°, repetitions =
450, FOV = 30 x 20 mm, 23 slices of 0.9 mm thickness and 0.1 mm gap, resolution =
312.5 x 208.33 x 1000 um, acquisition duration 7m30s.

gluCEST images covering the brain from prefrontal cortex to the occipital cortex
were acquired with a 2D fast spin-echo sequence: TR = 20000 ms, TE =6 ms, FOV =
24 x 24 mm, 12 slices of 1.5 mm thickness, resolution = 0.250 x 0.250 um?, acquisition
duration 33m00s. The MAPSHIM routine was applied in a voxel encompassing the
slices of interest in order to reach a good shim on gluCEST images. gluCEST images
were preceded by a frequency-selective continuous wave saturation pulse and
acquired with a saturation pulse applied during Tsat = 1 s, composed by 10 broad pulse
of 100ms, with 20 us inter-delay and an amplitude B1 = 5 uT. The frequency of the
saturation pulse Aw was applied in a range from =5 ppm to 5 ppm with a step of 1 ppm.
In vivo, CEST contrast can be hampered by several competing factors such as direct
saturation transfer (DS) of free water and background magnetization transfer (MT).
Although we supposed DS symmetrical with respect to water frequency and
suppressed by asymmetrical analysis its contribution to CEST contrast (Sun et al.,



2005; van Zijl et Yadav, 2011; J. Zhou et Zijl, 2006).

5.3. MRI pre-processing

CEST images were first processed pixel-by-pixel and analyzed using in-house
programs developed on MATLAB software (MathWorks Inc., Natick, MA) used to
generate Z-spectra by plotting the longitudinal magnetization as a function of saturation
frequency. The specific glutamate contribution was isolated using Asymmetrical
Magnetization Transfer Ratio (MTRasym) (Liu et al., 2010) and was calculated as
follows: MTRasym(Aw) = 100 x (Msat(-Aw) — Msat(+Aw)) / Msat(-5 ppm), Msat(zAw)
being the magnetization acquired with saturation pulse applied at ‘+" or ‘= Aw ppm.
GIuCEST images were calculated with Aw centered at £ 3 ppm. GIUCEST image was
converted into NIfTI-1 format.

The other scanner data were exported as DICOM files then converted into NIfTI-1
format. Then spatial pre-processing was performed using the python module sammba-

mri (SmAIl MaMmals BrAin MRI; http://sammba-mri.github.io) which, using nipype for

pipelining (Gorgolewski et al., 2011), leverages AFNI (Cox, 1996) for most steps and
RATS (Oguz et al., 2014) for brain extraction. Anatomical images were mutually
registered to create a study template, which was further registered to a high resolution
anatomical mouse lemur template of the functional atlas (Garin et al., 2019). Resting
state images were corrected for slice timing (interleaved), motion, and BO distortion
(per-slice registration to respective anatomicals). Then all the images (including
GIuCEST image) were brought into the same space of the mouse lemur template by
successive application of the individual anatomical to study template and study
template to mouse lemur atlas transforms.

Functional images were further pretreated using Nilearn (Abraham et al., 2014).
Nuisance signal regression was applied including a linear trend as well as 24-motion
confounds (6 motion parameters, those of the preceding volume, plus each of their
squares (Friston et al., 1994)). Images were then spatially smoothed with a 0.9 mm
full-width at half-maximum Gaussian filter. The first 10 volumes were excluded from

analysis to ensure steady-state magnetization.


http://sammba-mri.github.io/

5.4. mALFF calculation and extraction

LFO measures were performed using the fast Fourier transform indice: amplitude
of low-frequency fluctuation (ALFF) (Zuo et al., 2010). The mALFF correspond to the
ALFF index weighted by in the average ALFF of the whole brain and was calculated
using AFNI (Cox, 1996). ALFF index was calculated for each voxel of the pre-
processed EPI images in the low-frequencies range 0.01 to 0.1 Hz. The mALFF signal
of each voxels was extracted within the different regions based on the functional atlas
(Garin et al., 2019) using NiftiLabelsMasker from Nilearn (Abraham et al., 2014).

5.5. GIuCEST contrast extraction

gluCEST contrast was also extracted in regions based on the functional atlas using
NiftiLabelsMasker from Nilearn (Abraham et al., 2014). For each region, the signal was
averaged and was divided by its averaged whole brain signal. This normalisation was

not performed for the between groups comparison.

5.6. Graph theory analysis
5.6.1. Connectivity matrix based on functional atlas

Partial correlation matrices were created for each animal using fully preprocessed
MR images by calculating the partial correlation coefficients between BOLD MR signal
timecourses within each region of the 3D functional atlas. Partial correlations were
used because they select direct associations between regions and allow the control of
indirect correlations (Mechling et al., 2014). Individual partial correlation matrices were
computed from shrunk covariance matrices using the Ledoit and Wolf shrinkage
coefficient (Ledoit et Wolf, 2004) as recommended by Varoquaux et al. (Varoquaux et
al., 2012) and Brier et al. (Brier et al., 2015). Partial correlation coefficients were then
Fisher’s z-transformed. Values from different animals were averaged and thresholded
based on a one-tailed t-test (p < 0.01) (Mechling et al., 2014).

5.6.2. Hub regions

We consider in this analysis the absolute value of the correlation coefficient as

performed routinely in human fMRI graph theory studies (De Vico Fallani et al., 2014).



Hubness is measure of node influence within the whole brain network. For each node,
this index is calculated based on its partial correlation values (edges) with all region of
the 3D functional atlas. Measure of “hubness” such as eigenvector centrality, degree
centrality, betweenness centrality, current flow betweenness centrality were performed
using NetworkX (Hagberg et al., 2008). These scores were calculated individually and

averaged for the young and the old cohorts.
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Subject | Sex Age Age | Apimal rejected
(months) | (years)
283EA M 40.8 1.3 NO
283CCA M 41.0 1.3 NO
285AAA M 41.3 1.4 NO
365A M 41.3 1.4 NO
285AB M 421 1.4 NO
263BCE M 43.8 1.4 NO
314CA M 45.0 1.5 NO
285D M 71.2 2.3 NO
283CA M 71.8 2.4 NO
276BC M 72.2 2.4 NO
285E M 72.4 2.4 NO
300BA M 75.5 2.5 NO
289BB F 87.0 2.9 NO
208CBF F 95.2 3.1 NO
288BC F 95.8 3.2 cerebral lesion
310C F 114.8 3.8 cerebral lesion
967HACA | M 2435 8.0 NO
184CB F 243.6 8.0 NO
965MBIA | M 243.6 8.0 NO
965MBFA | M 244.3 8.0 NO
965MBFC | F 244 .4 8.0 NO
965MBGA | M 2447 8.0 NO
967HACB | F 2447 8.0 NO
965MBFB | M 2454 8.1 NO
169BAB F 246.0 8.1 NO
965FDBB | M 265.4 8.7 NO
147BCBB | M 265.7 8.7 NO
147BCBA | M 266.3 8.8 artifact
943GKBC | F 266.5 8.8 NO
153FBA M 311.7 10.3 NO
216B F 317.3 10.4 NO
965MBG F 327.7 10.8 artifact
119BBB F 328.1 10.8 NO

Supplementary Table 1. Cohort of mouse lemurs involved in the study.




Fronl M.ﬂ e Middle-aged adults
lem;x:ral \n'( ﬁ
mTSTiRSE'm'C! g G >

Ventral \halamus ool
Collicul Uﬁ .
Precentra B B
Qccipital Inf IL]
Dorsal thalamus * .
anlﬁ\Mld [R) LR R
——
HYPU(halamus 0 ,ﬁ.“ B
Cuneus .
s MC:lrIMEK\ul (R) .
upp Molor Area s
P&cmnlla! Mid LR g o
2 é: t?lalsuMpd 0 .
5 Qodnial Pole i .
-3 ‘amporal Sup [L
13 entral T

i
Supp Motor Area (R P
Pancial Il .
i ———
ital nuciel S
ingalum Post Cdpa ey

Barictal . L3
Stiglum Am
Cingulu

Fuldmen ot ARE ———

Amyadsla

Putamen Posi
Globus pallidus T

Basal forebrain L — )

08 10 12 14 16 18

B mALFF

Hippecampus
Secpal
Colliculus {L

Old

Hippocampus 2;

s
- CuH(.uII\‘beﬁi
eiporalin
Fronial Sup
Frontal Mid L
Qeeipital Inf (L
Flﬂﬂli\ Mid
ostcer l.l' | R
VEr.vrlliﬂ lhalamus §Ri

ral Sup
Temporal g

Frontal [
Supp Motor Area (L
Ven| ral mmamus L

i
I i
Supg) Mclnr Area
Occipital Mid

Paneial (L
Posicentr
eI
Ocoipital Pole i
Caudale nnmeus Pust
halamus

[
Ternporal Mid (L

Putamen I"ﬂs!(lﬁ}

14 16 18
mALFF

Supplementary figure 1. mALFF scores in middle aged and old mouse
lemurs.

Extraction of the averaged mALFF signal in the different regions of the mouse
lemur functional atlas. The regions were ranked based on their group t-values

(one-sample one-sided t-test to control whether the mALFF signal varied from 1).
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Supplementary figure 2. Eigenvector centrality scores, reflecting "hubness"
in middle-aged and old mouse lemur brains.

The whole brain network was defined as a set of 48 nodes identified as local
functional regions previously described in mouse lemurs. These nodes were used
to build an averaged matrix for middle-aged and old mouse lemur cohorts. The
measure of node influence was measured by eigenvector centrality. In young
animals, the regions displaying the highest scores were the cingulate anterior,
cingulate posterior, superior frontal and temporal cortices. The two structures
presenting the highest centrality scores in young animals (cingulate cortices) had
lower scores in old animals.
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Supplementary figure 3. gluCEST signal in middle aged and old mouse

lemurs.

Extraction of the averaged gluCEST signal in the different brain regions of the
mouse lemur. The regions were ranked based on their group t value (one-sample
one-sided t-test to control whether the gluCEST signal varied from 1).
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Supplementary figure 4. Stability of the correlations between gluCEST and
eigenvector centrality.

The gluCEST signal was extracted and averaged in the different brain regions of
mouse lemurs. Hub centrality score was calculated based on the average
eigenvector centrality of each brain region. Thresholds used to remove non-
significant edges were modulated from 0.0001 to 0.36 with a spacing value of 0.01
on the cortical graph. The correlations were considered statistically significant at p
< 0.05 (Spearman correlation; black dotted line). This hypothesis was tested all
along the 36 points and in the two cohorts.
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Supplementary figure 5. Stability of the correlations between mALFF and
eigenvector centrality.

The mALFF signal was extracted and averaged in the different brain regions of the
mouse lemur. Hub centrality score was calculated based on the average
eigenvector centrality of each brain region. Thresholds used to remove non-
significant edges were modulated from 0.0001 to 0.36 with a spacing value of 0.01
on the cortical graph. The correlations were considered statistically significant at p
< 0.05 (Spearman correlation; black dotted line). This hypothesis was tested all
along the 36 points and in the two cohorts.
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Discussion

Mouse lemurs (Microcebus murinus) are the smallest, fastest developing, and
among the most prolific and abundant primates in the world. They attract increased
attention as potential model organisms for primate biology, behavior, and health (Ezran
et al., 2017). In particular, they are used for neuroscience research as model of
cerebral aging (Languille et al.,, 2012) and various neurodegenerative diseases
(Mestre-Francés et al., 2018). They also have a key position on the phylogenetic tree
of primates and can be used to investigate primate brain evolution. Despite this
interest, the tools that are used to characterize mouse lemur brains are based on "old"
technologies such as paper atlases. Today 3D atlases are gold standard for atlases.
They possess much more visualization and computational power than classical paper
atlases. For example, shapes and volumes of brain structures can be visualized
directly from a 3D digital atlas. They allow to perform automatic quantification of
different information (cerebral atrophy, MRI signal) and make it possible to analyze
information from different sources and imaging modalities, such as function, gene and
protein expression patterns that can be incorporated into the same framework
(Lebenberg et al., 2011) (Ma et al., 2005) (Mazziotta et al., 1997). Here our objective
was to develop and use different atlases of mouse lemur brains. First, we developed
an anatomical atlas of the brain, then we described resting-state networks and
functional maps (based on ALFF) in mouse lemurs. Finally, we created glutamate
maps of their brains and used the previously developed atlases to analyse
relationships between brain function and glutamate. We also performed a multimodal
analysis of age-related changes occurring in mouse lemur brains. The ability to perform
such analyses was based on the development of dedicated tools, in particular

Sammba-MRI and of image analysis pipelines to analyse rsfMR images.

I.1. From anatomical to functional atlases in mouse lemurs
[11.1.1. Comparison of anatomical to functional atlases

Historically, histology-based atlases were used to characterize the brain of most
animal species. In addition to the characterization of brain structures, cytoarchitectural
analyses allowed to characterize different brain regions including in lemurs (Brodmann,
1999 (original in 1909)) (Le Gros Clark, 1931). Here, first, we proposed a new 3D atlas
based on manual segmentation of the brain. 120 regions were identified in this atlas



and the definition of cortical regions was mainly based on the manual transfer of
structures found in histological or cytoarchitectural atlases (Le Gros Clark, 1931; Zilles
et al., 1979) onto the 3D digital atlas.

In a second approach, we created a functional atlas based on the spatial
decomposition of BOLD signal issued from rsfMR images. This atlas was composed
of 48 functional regions. Figure 27 displays a comparison of these two atlases. Prior
to perform this comparison, the anatomical atlas was simplified by removing regions
smaller than 5 mm? and regions that had been excluded for functional analysis (white
matter, hindbrain, ventricles, olfactory bulb, entorhinal, and prepiriform cortices). This

left 28 cortical and 25 subcortical (i.e. 53) regions.

The functional atlas displays a slightly different segmentation of brain regions when
compared with the anatomical structures (N. Bons et al., 1998; Nadkarni et al., 2018).
However, identification of the functional regions remains coherent with the Brodmann
atlas (Brodmann, 1909; Le Gros Clark, 1931). Moreover, the quality of the functional
atlas was supported by the robust bilaterality of the extracted regions and localization
consistent with resting-state network maps from other primates (Belcher et al., 2013).
The quality of the functional atlas is also supported by the property of dictionary

learning analysis to decompose the BOLD signal without any anatomical priori.

Precise comparisons between the two atlases remain challenging. The two atlases
displayed obvious differences in their cortical limits except in the occipital lobes. The
frontal lobe seems to be more scattered in the functional atlas but the subcortical
boundaries of the two atlases display strong similarities. Note that in the anatomical
atlas, the subcortical areas were described with more details (smaller regions) than
with the functional ones. Studying the origins of the discrepancies between these two
atlases will be essential to improve the characterization of the mouse lemur brain and
to further address an adapted use of each atlas. A combined characterization including
histology would be an interesting way to further improve the knowledge of mouse lemur

brain.
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Figure 27 | Mouse lemur 3D functional atlas based on dictionary learning.

Forty-eight local functional regions were identified from the 35 sparse components (regions
volume = 5 mm3). Brain regions were classified based on their locations within the frontal
(Blue), parietal (Green), occipital (Purple), temporal (Yellow) lobes. We display three different
views and three slices extracted from the functional atlas. This illustration highlights the

bilaterality and the distribution of the regions composing our atlas.

It remains difficult to select an adapted atlas for a study, knowing that this choice
strongly impacts the quality and the interpretation of the future results. We were
confronted with such a choice during our second and third studies. Instead of using an
anatomical atlas to identify nodes from mouse lemur cerebral networks, we chose to
use the functional atlas. This choice was justified by a homogenous BOLD signal in
the functional regions and the quality of the whole brain connectivity graph in the

second study.



[11.1.2. Graph theory features in mouse lemur brains

Universal properties of the brain topology have emerged recently with graph
analysis. One of them is the small-world feature which is an optimal configuration for
global information transfer and local processing (Liang et al., 2011; Mechling et al.,
2014; Wang et al., 2010). Small-world feature is found in multiple species including
humans (Bullmore et Sporns, 2009), non-human primates (Barttfeld et al., 2015),
rodents (Mechling et al., 2014) and ferrets (Zhou et al., 2016) and now mouse lemurs.
The small world feature of the mouse lemur brain was expected since the brains of
most mammals have robust small-world characteristics. It is however interesting to
outline that characterization of the brain function in various animals can now be

performed using indexes of information processing efficacy.

[.2. Methodological considerations concerning our studies

The characterization of the brain based on resting-state fMRI requires to perform
several methodological choices that can modulate the outcome of the studies. We

propose to discuss some of the development performed in this context.

[11.2.1. Implementation of sammba-MRI

The creation of brain atlases and their manipulations require the use to dedicated
tools to register images and compare images issued from different modalities.
Optimized workflow for coregistration was already implemented for the human brain
since decades. However, an adaptation of the scripts was necessary to resolve the
obvious anatomical differences observed between humans and small mammals such
as rodents, small primates (differences of grey/white matter volume or brain sizes).
Indeed, these anatomical features generate variations in signal intensity that have to
be taken into account for each species. Here, we created sammba-MRI to answer to
an important need of optimized pipeline for the coregistration of small mammals MR
images, especially for fMRI. Using this automated pipeline offers numerous
advantages such as the ability to study large cohorts, the possibility to extract unbiased
and reproducible information and the ability to save considerable amount of time during
image analysis. Recently, using sammba-MRI we tested our coregistration pipeline
robustness in four different species (marmoset, mice, rat and mouse lemur). We

successfully coregistered their anatomical and fMRI images by just varying the volume



of their brain. Note that an operator quality control is always necessary to assure the
quality of the coregistration. However, automated control of the registration quality in
mice has recently been proposed (loanas et al., 2019). This automated indicator of
quality would be interesting to use with sammba-MRI. The different studies presented
in my thesis provide examples of sammba-MRI ability to coregister different sources of
MR images (anatomical, gluCEST, fMRI) and more recently this capacity has been
extended to perfusion MR images. This important flexibility is a significant advantage

for the exploration of animal models of pathologies with different MRI approaches.

[11.2.2. Anaesthesia and image acquisition protocols

In our studies, rsfMRI were recorded from anaesthetized animals. Anaesthesia
remains the major issue for rsfMRI studies in non-compliant species, though it has
been published that it preserved the major functional networks (Gozzi et Schwarz,
2016; R. M. Hutchison et al., 2011; J. L. Vincent et al., 2007). However, the reliability
of the network under anaesthesia compared to the awake state remains highly
discussed (Bukhari et al., 2017; R. M. Hutchison et al., 2010; Paasonen et al., 2018;
Uhrig et al., 2018). We used isoflurane which has an effect on the neuronal network
depending on the duration and the dose (R. M. Hutchison et al., 2014; Jonckers et al.,
2014; C. X. Li et Zhang, 2018). For this reason, we chose the lowest non-awakening
isoflurane level possible for mouse lemurs (1.25%). The use of a mix at low doses of
medetomine/isoflurane for the anaesthesia might be a way to improve the quality of

the images in the future.

Another option might be to record MRI from awake animals. Today, only a few
studies have described species scanned whilst awake. However, they have cleaner
networks that correspond to a physiological brain state. Working with awake animals
is also a great opportunity to further design behavioral experiments associated to
BOLD MR acquisitions. Other confounding and practical factors such as stress and the
time-consuming training (often leading to a small number of subjects) however need

to be taken into account (Belcher et al., 2013).

Further optimization of the rsfMRI dataset can also be obtained by improving the
acquisition reproducibility of the EPI images. Several approaches can be proposed to

improve the reproducibility of the acquisition: (1) mechanically ventilating the animals



to increase their stability (paCO2) and to avoid movement artefacts due to free

breathing (2) the use of a rat cryogenic coil.

[11.2.3.fMRI image processing

Image pre-processing is an important key step for data analysis quality during
rsfMRI studies in animals. In most resting state fMRI studies, neuronal networks are
identified on the basis of a single method and the quality of image processing is left to
subjective user judgement (Andronache et al., 2013; Vergara et al.,, 2017). This
subjective intervention can be separated into evaluation of a-priori changes (i.e.
selection of the best possible dataset) and post-processing analysis (i.e. selection of
the best (or plausible) neuronal networks within a range of networks obtained). Here,
fMRI images were preprocessed with a selective brain mask and by removing
movement artefacts. This approach strongly improved the quality of extracted networks
and no post-processing analysis or manual removal of irrelevant networks was

required.

Then several algorithms can be used to characterize cerebral networks after
rsfMRI: seed-based analysis, ICA, dictionary learning... ICA or dictionary learning are
strongly dependent on the number of components selected for the study. Classically,
this property can be used to test the reproducibility of the component extraction. We
found that increasing dictionary learning component numbers provided reproducible
but increasingly divided components with similar boundaries. We therefore assumed
that, as in humans (Smith et al., 2009), the dictionary analysis could define a functional
organization at multiple levels. However, Smith et al. suggested that a tree-structure
hierarchy could not be a perfect model covering all levels of details for a highly complex

set of interconnected functional areas (Smith et al., 2009).

In our study, we decided to classify whole brain networks into six large scale
networks. This choice was based on a user-independent graph analysis algorithm:
modularity. This method has the advantage of being user independent although we
cannot affirm that it provided the only optimal choices for the brain network partition.
Dictionary learning with six components has led to functional maps similar to the
resting-state networks observed in other primate fMRI studies (Belcher et al., 2016;
Belcher et al., 2013; R. M. Hutchison et al., 2015; R. M. Hutchison et al., 2011).



The similarity between dictionary learning and seed-based analysis concerning the
mouse lemur DMN-like had reinforced the assumption that the networks that we
identified are accurate (Figure 28). However, the thresholds used in seed-based
analysis were established visually and by comparison with dictionary learning. We tried
to use an automatic threshold (Bonferroni correction) but we found a less accurate

organization of brain networks.

Figure 28 | Mouse lemur DMN-like characterized by seed-based analysis.
This figure highlights regions connected to the posterior cingulate cortex (1) used as seed.
Correlated activity was observed in the anterior cingulate cortex (2), superior temporal cortex
(3), inferior temporal cortex (4), frontal superior posterior cortex (5), parietal cortex (6), and
cuneus (7). The color bar represents the one-sample t-test z-score values threshold at p<0.05

(Bonferroni corrected; n=28 animals).

The stability of the whole brain network (connectivity matrices) or the capacity to
extract networks individually was not shown in our studies. The use of small animals
can cause reproducibility difficulties at the individual scale. It is one of the reasons why
resting-state network studies in small mammals require the use of an important number
of animals to assure a significant statistical power. In the second study, we used 28
lemurs. This is probably the highest number of non-human primates used to identify
neuronal networks. In our studies, the functional hubs identification was reproducible
across 2 studies and between two cohorts (middle-aged and old). Also, varying the
number of components in the dictionary learning analysis (study 2) allowed the
identification of reproducible functional regions across different analysis (not shown).

This suggests that the networks that were identified are robust.



[.3. Perspective of the studies

The description of the mouse lemur network was one of the major results of this
thesis. We described these networks with the most detail as possible knowing that they
will be reemployed in future studies. The comparison and the detection of the human
networks with the same methodology have participated to ensure the accuracy of our
results and to propose hypothetic functions for these networks. We also provided
multimodal description of mouse lemur brains by focusing on ALFF and gluCEST
signal. We showed that glutamate is strongly associated to mALFF in cortical and
subcortical brain regions. In the cortex, glutamate is also associated to functional
connectivity and to long-distance transfer of information. We also highlighted age-
related changes for these parameters. They concern alterations of mALFF in the DMN,
a critical network for brain function and reduction of glutamate in the globus pallidus.
We also highlighted an age-related reorganization of the cortical/subcortical
relationships between mALFF and functional connectivity. Interestingly these analyses
were possible because MR images were recorded at high magnetic field (11.7 Tesla).
This outline an obvious interest of mouse lemurs that are small primates that fit in such
high filed MRI.

In the future, the methodology that was developed in the context of this thesis will
allow the characterization of mechanisms behind the various pathological processes
that can be induced in this species. It is possible to induce a neurodegenerative
process related to Alzheimer pathology in lemurs (Gary et al., 2016). In the future it will
be possible to assess relationships between alterations of functional neuronal
networks, ALFF or glutamate level and the induction of an “Alzheimer’s disease like”

pathology.



IV. Annexe

IV.1. Résumé

Les modéles animaux sont couramment utilisés pour imiter les maladies afin
d'explorer l'impact des processus pathologiques sur les réseaux cérébraux ou pour
mesurer I'effet d'une nouvelle thérapie. Le microcebe murin (Microcebus murinus) est
un primate particulierement intéressant en neuroscience. Ce petit animal est un
modéle d'étude du vieilissement céréebral et de diverses maladies comme
I'encéphalopathie associée au diabéte, la maladie de Parkinson ou la maladie
d'Alzheimer. Il occupe une position clé sur l'arbre phylogénétique des primates et est
utilisé pour étudier I'évolution du cerveau. Son anatomie cérébrale est encore mal

décrite et ses réseaux cérébraux n'ont jamais été étudiés.

L'imagerie fonctionnelle par résonance magnétique fonctionnelle (IRMf) est
largement utilisée pour étudier le fonctionnement du cerveau en réponse a des taches
spécifiques. Elle est également utilisée en I'absence de taches explicites (c'est a dire
a I'état de repos). Elle détecte des oscillations du signal BOLD de basse fréquence.
Ces oscillations sont similaires dans des structures cérébrales fonctionnellement
connectées qui sont appelées réseaux. Les études des réseaux cérébraux ont
contribué a de nombreuses percées dans la compréhension des fonctions cérébrales,
dans des conditions normales et pathologiques telles que la maladie d'Alzheimer ou la
maladie de Parkinson. Cependant, de nombreuses questions subsistent, portant a la
fois sur le fonctionnement de la technique d'IRMf et son interprétation. Par exemple,
le rOle de ces réseaux dans les fonctions cérébrales et les mécanismes biologiques a
I'origine de leurs activités sont encore partiellement inconnus. De plus, I'impact de
leurs modulations sur le comportement et la cognition dans des conditions

pathologiques fait toujours I'objet de débats.

Une question récurrente concernant 'étude de cohortes d'animaux par IRM
anatomique et IRM fonctionnelle est le recalage spatial de grandes séries d'images
acquises avec différents protocoles. Certains outils ont été développés au cours de la
derniére décennie pour analyser les images obtenues sur des petits animaux.
Toutefois, les outils informatiques actuels sont peu avancés en comparaison a ceux
I’'homme. Nous avons donc développé un logiciel Python appelé sammba-MRI, congu

pour offrir une utilisation efficace des méthodes de recalage spatial existantes chez



'humain (ANTS, AFNI). Il génére des modéles d'images anatomiques moyennées,
spécifiques des cohortes et recale diverses images IRM vers ces modeéles. Sur la base
d'un modele généré avec sammba-mri, nous avons construit un atlas anatomique
numérique du cerveau du Iémurien. Cet atlas, ainsi que plusieurs autres atlas de
mammiféres disponibles, ont permis de comparer entre espéces les volumes de
différentes régions cérébrales. Des mesures issues de ces atlas IRM indiquent que
I'indice de volume de la substance blanche par rapport au volume cérébral augmente
du rongeur aux petits primates, aux macaques, atteignant leurs valeurs les plus

élevées chez les humains.

La deuxieme partie de I'étude a été consacrée a I'élaboration de protocoles pour
effectuer des études de connectivité chez les microcébes. Des protocoles IRM dédiés
ont été développés et sammba-mri a été utilisé pour recaler les images IRMf. Nous
avons créé une méthodologie pour extraire et caractériser, pour la premiére fois, les
réseaux cérébraux chez le microceébe. Nous avons montré que leur cerveau est
organisé en régions fonctionnelles intégrées dans des réseaux fonctionnels a grande
échelle. lls ont été classés comme étant des réseaux de type mode par défaut, fronto-
temporaux, moteurs, visuels, ganglions de la base et thalamiques. Ces réseaux ont pu
étre comparés aux réseaux chez I'humain. Nous avons mis en évidence des regles

d’organisation communes, mais aussi des divergences entre ces deux espéces.

Les mécanismes biologiques associés a l'organisation de régions cérébrales en
réseaux sont encore mal compris. Dans la derniére partie de cette these, nous avons
caractérisé une relation entre IRMf a I'état de repos et les niveaux régionaux de
glutamate. Ces derniers ont été obtenus a l'aide d’'une technique d’imagerie du
glutamate appelée transfert de saturation par échange chimique (gluCEST). Nous
avons mis en évidence une relation entre une mesure de l'activité cérébrale (ALFF)
issue de I''RMf, le score de hubness et le niveau de glutamate. Ces résultats suggerent
que le glutamate joue un role critique dans I'organisation et la régulation de la fonction
cérébrale. Une relation entre le hubness, l'activité neuronale locale et un indice du
niveau de glutamate dans le cerveau est compatible avec le réle bien établi du
glutamate comme neurotransmetteur excitateur. Nous avons également mis en
évidence des changements liés a l'dge pour ces paramétres. lls concernent les
modifications d'ALFF dans le réseau en mode par défaut et la réduction de glutamate

dans le globus pallidus. Nous avons également mis en évidence une réorganisation



liée a I'age des relations corticales / sous-corticales entre ALFF et la connectivité

fonctionnelle.



IV.2. Scientific production:
IV.2.1.0ral scientific communications:

Multilevel functional organization of the mouse lemur primate brain

International Society of Magnetic Resonance in Medicine, Montréal, 2019

Clément Garin'2, Nachiket Abhay Nadkarni'-2, Salma Bougacha'-?, Jean-Luc Picq'?,

and Marc Dhenain'?

'Commissariat a 'Energie Atomique et aux Energies Alternatives (CEA), Direction de
la Recherche Fondamentale (DRF), Institut Frangois Jacob, MIRCen, Fontenay-aux-
Roses, France, 2Centre National de la Recherche Scientifique (CNRS), Université
Paris-Sud, Université Paris-Saclay UMR 9199, Neurodegenerative Diseases

Laboratory, Fontenay-aux-Roses, France

Resting state networks have been characterized in numerous mammals covering
human, non-human primates, dogs, rabbits and rodents, though only ever at single
semi-arbitrary levels of complexity. In humans, resting state networks analyses have
been extended to extracting networks of varying complexity, representing different
levels of a possible “functional hierarchy”. We performed the first study of “functional

hierarchy” in animals. We focused on the gray mouse lemur (Microcebus murinus), a
small primate attracting increased attention as a model for cerebral and age-related

disorders.

IV.2.2.Invited talk:

Brain network analysis using resting state fMRI, Demonstration studies in

small non-human primates
General meeting of NEURATRIS, ICM, Paris, 2019




IV.2.3.0thers formats:

Resting state, gluCEST and anatomical MRI approaches at 11.7T for brain

aqging studies in a non-human primate

International Society of Magnetic Resonance in Medicine, Paris, 2018

Clément Garin', Nachiket Abhay Nadkarni', Salma Bougacha'-2, Jeremy Pepin', Julien

Flament', Jean-Luc Picq'-3, and Marc Dhenain’

'Commissariat & I'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-
aux-Roses, France, Fontenay aux roses, France, 23U1077, INSERM, Caen,
France, 3Laboratoire de psychopathologie et de neuropsychologie, University of Paris

8, Paris, France

The gray mouse lemur (Microcebus murinus) is a small non-human primate with rapid
maturity. This study focuses on the development of non-invasive MRI tools applied to
neurodegenerative processes. We performed three different types of analysis:
anatomical volumetric measures, neuronal network assessment with resting-state
fMRI and brain glutamate distribution with gluCEST imaging. We found anatomical
atrophy and functional deficiency mostly in cortical regions. To our knowledge, this
study is the first to characterize the functional and anatomical brain aging process in a
non-human primate. Furthermore, the mouse lemur functional and gluCEST maps

have never been described before.

MRI Evaluation of Morphological and Perfusion Changes in Aged APPswePS14dEs

M. Alzheimer's Association International Conference, Londre, 2017

Clément Garin'? , Nachiket Abhay Nadkarni® , Clemence Dudeffant'? , Marc
Dhenain?3 ,

'Commissariat a 'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-
aux-Roses, France; 2 Centre National de la Recherche Scientifique (CNRS), Fontenay-
aux-Roses, France; 3 Commissariat a 'Energie Atomique et aux Energies Alternatives

(CEA), MIRCen, Fontenay-aux-Roses, France



IV.2.4.In preparation

Animal functional magnetic resonance imaging: Trends and path toward

standardization.

Francesca Mandino, Dominic Cerri, Clement M. Garin, Milou Straathof, Geralda van
Tilborg, M. Mallar Chakravarty, Marc Dhenain, Rick M. Rijkhuizen, Alessandro Gozzi,
Andreas Hess, Shella D. Keilholz, Jason P. Lerch, Yen-Yu lan Shih, Joanes

Grandjean

Toward the large scale network evolutionary history: a mammals cross-species

comparison using fMRI

IV.2.5.0ther contributions

Contrast-enhanced MR microscopy of amyloid plaques in five mouse models of

amyloidosis and in human Alzheimer's disease brains

Objective: - Identify the amyloid plaque topologies in different mouse models of
amyloidosis and evaluate the impact of various characteristics on their detection
by MRI

Contribution: In this article my participation concerned the MRI acquisitions and the

breeding of mice.

Common functional networks in the mouse brain revealed by multi-centre

resting-state fMRI analysis

Objective: - Identify reproducible and common large scale networks using

rsfMRI images produced by different laboratories
- Produce a guideline for the design of rodent rsfMRI investigations

Contribution: In this article my participation mostly concerned the acquisition of fMRI
and anatomical images in mice at 11.7T. We also participated in the common reflection

for an international standardization of rodent rsfMRI practices.
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models of amyloidosis and in
human Alzheimer’s disease brains
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i Gadolinium (Gd)-stained MRI is based on Gd contrast agent (CA) administrationinto the brain

: parenchyma.The strong signal increase induced by Gd CA can be converted into resolution

: enhancement to record microscopic MR images. Moreover, inhomogeneous distribution of the Gd CA

: inthe brain improves the contrast between different tissues and provides new contrasts in MR images.
: Gd-stained MRI detects amyloid plaques, one of the microscopic lesions of Alzheimer's disease (AD),

: inAPPg /PS1y,,s mice orin primates. Numerous transgenic mice with various plaque typologies have

. been developed to mimic cerebral amyloidosis and comparison of plaque detection between animal

i models and humans with new imaging methods is a recurrent concem. Here, we investigated detection
: ofamyloid plaques by Gd-stained MRI in five mouse models of amyloidosis (APPg, [PS1y146 , APP/

i PSlyq APP23,APP.,;, and 3xTg) presenting with compact, diffuse and intracellular plaques as well as
i in post mortem human-AD brains.The brains were then evaluated by histology to investigate the impact
: ofsize, compactness, and iron load of amyloid plaques on their detection by MRI. We show that Gd-

: stained MRl allows detection of compact amyloid plaques as small as 25 um, independently of their iron
: load, inmice aswell as in human-AD brains.

: Amyloid plaques are one of the earliest hallmarks of Alzheimer’s disease (AD), occurring up to 20 years before
i clinical diagnosis'. Even if their role in AD onset is still debated, they appear as an effective biomarker of its
¢ preclinical stages. Currently, the clinical detection of amyloid plaques is based on positron emission tomography
: (PET) imaging with three radioactive agents recently approved by the Food and Drug Administration (FDA)?.
i However, the low spatial resolution of PET does not allow the visualization of individual plaques, and in animals,
: PET studies have provided controversial results® *, For example, some studies successfully detected amyloid pro-
¢ gression in APP23°and 5xFAD® mice while others failed to detect signal changes related to amyloidosis™®, Other
i imaging modalities, such as optical imaging® or two-photon imaging after craniotomy'’, have also been developed
¢ to detect amyloid plaques in animals. As with PET, optical imaging is too low-resolution to identify individual
¢ plaques. Two-photon imaging, however, can reveal individual amyloid plaques at very high resolution (1 pm)'?
i though the field of view of the technique is limited and does not allow recording of images from the whole brain'!.

Continuous efforts are ongoing to implement amyloid plaque detection by high-resolution magnetic reso-

: nance imaging (MRI). MRI-based monitoring of amyloid plaques can be divided into three research fields. Some

i studies are based on the endogenous contrast of the plaques, in both mouse models of amyloidosis
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humans'® ", This approach is limited by a low sensitivity threshold and is strongly dependent on the iron load of
the plaques which locally shortens relaxation times'® '*. Also, the possibility to detect plaques by MRI in human
tissues on the basis of their endogenous contrast is still disputed'® ™*!. Thus, MR contrast agents seem to be
required to facilitate amyloid plaque detection. The first option is to use MR contrast agents specifically targeting
amyloid plaques, modulating their MR signal and so increasing their contrast with the brain parenchyma®-*,
The second option uses non-targeted gadolinium (Gd) contrast agents such as gadoterate meglumine (Dotarem®,
Guerbet, France) that is administered in cerebral ventricles after stereotaxic injection’ or intravenously in asso-
ciation with a non-invasive and safe permeation of the blood-brain barrier using ultrasound”. With this method,
called Gd-stained MRI, once the contrast agent has reached the brain, amyloid plaques appear as black spots since
the hydrophilic Gd-contrast agent increases the signal of tissues surrounding the plaques but do not access their
hydrophobic core?. As the volume of brain tissue is high compared to the volume of plaques, these agents induce
a high signal increase in the brain. This can be converted into resolution enhancement to record high resolution
images. Several in vivo studies in mice have shown that this method reveals amyloid plaques that otherwise can-
not be detected by non-enhanced MRI** ", Recently, it was used to characterize longitudinally the efficacy of an
anti-amyloid immunotherapy?’. Gd-stained MRI has also been used to detect amyloid plaques in primates’ and
to detect prion plaques in post mortem brain samples from Creutzfeldt-Jakob patients®, but it has never been used
to label amyloid plaques in human-AD brains.

Numerous models of amyloidosis with different plaque typologies are used for preclinical investigations. The
choice of transgenic mouse model, as well as the stage of AS pathology, significantly contributes to the outcome of
predlinical studies. Here, we investigated the extent to which Gd-stained MRI allows detection of different types
of amyloid lesions including compact, diffuse and intracellular amyloid deposits in five mouse models of amyloi-
dosis (APPg /PS1yy.q . APP/PST 3y, APP23, APPg, 1y, 3xTg). Vascular abnormalities often co-exist with amyloid
plaques in mouse models of amyloidosis as in AD patients™. A peptide may accumulate into the vessel wall of
cerebral arteries leading to cerebral amyloid angiopathy (CAA) and microhemorrhages. We also examined the
capacity of Gd-stained MRI to detect these lesions. Finally, we explored the capacity of Gd-stained MRI to detect
amyloid plaques in post mortem human-AD brains. The brain samples were then evaluated by histology to assess
the impact of size, compactness, and iron load of amyloid plaques on their detection by MRI. Amyloid plaques
from APPg /PS1y, 460, APP/PSI 43 and human-AD brains had the most similar histological characteristics and
could be detected by Gd-stained MRI. Also, we found that the key features associated to amyloid plaque detection
by Gd-stained MRI are their size, compactness but not their iron load.

Results

Heterogeneity of amyloid plaque detection in mice. Gd-stained MRI was performed on five mouse
models of amyloidosis (APPs; /PS1y 46, APP/PS1 49, APP23, APP, 15 and 3xTg) and C57Bl/6 amyloid-free con-
trol animals. In vivo MRI was acquired at a resolution of 29 x 29 x 117 um?® after intracerebroventricular injection
of gadoterate meglumine. Ex vivo MRI was recorded at a resolution of 25 x 25 x 100 pm’ after incubation of the
brains in a Gd solution. In vivo and ex vivo MRI without Gd-staining were also performed in APPg, /PS1y461
mice. Following ex vivo MRI acquisitions, brains were processed by histology to label amyloid plaques or iron
(Figs 1,2).

Asalready reported”®, Gd-staining increased the signal-to-noise ratio in MR images (Suppl. Fig. S1). This pro-
tocol revealed several hypointense spots that could not be detected without contrast agent (Suppl. Fig. S1). These
spots were mainly found in the cerebral cortex, hippocampus, thalamus and amygdala (Figs 1-3) on in vivo or
ex vivo images of APP, /PS1y,, (Fig. 1A.B, Suppl. Fig. S1), APP/PS1;, (Fig. 1E,F) and APP23 (Fig. 11,]) mice.
Figure 3 focuses on images of 35 and 80-week-old animals and shows the increased spot density with age. In the
youngest animals, hypointense spots were mainly visible in APPg, /PS1y,,,; mice (Fig. 3A) although discrete spots
could be detected in the two other strains (Fig. 3B,C). In the oldest animals, the density of hypointense spots was
highest in APPg; /PS1y,,,, mice (Fig. 3D) although APP23 mice displayed the largest spots (Fig. 3F). Hypointense
spots observed by MRI were identified as amyloid deposits by co-registering MR images with A3-stained his-
tological sections (Figs 1, 2). APPg, /PS1y46, APP/PS1,s and APP23 exhibited mainly compact plaques with
a dense 3-amyloid core (Fig. 1, inserts in C, G, and K). Plaques from APP23 mice were the largest but were less
numerous than those of the other two strains. The smallest plaques that could be detected by in vivo MRI meas-
ured 36 um, 37 um and 46 um for the APPg /P51y 460, APP/PS1,5 and APP23 mice, respectively. On ex vivo
images, the detection thresholds were 36 pm, 30 um and 49 pm for the APPg /PS1y;,,, , APP/PS1,,, and APP23
mice, respectively. Iron deposition was also evaluated for each mouse strain either by using Perls-DAB staining
alone (Figs 1, 2) or a double staining based on Perls-DAB and Congo red (Fig. 4). APP; /PS1,4,,4 and APP/
PS1,p mice displayed high focal iron accumulations while in APP23 mice iron staining was weak (Figs 1, 4).
Registration between MR images and histological sections showed that, some amyloid plaques seen by MRI cor-
responded with iron deposits (Figs 1, 4, black arrows and circles), while some others could not easily be matched
with iron-positive elements (Figs 1, 4, red arrows and circles). This suggests that iron is not mandatory for amy-
loid plaque detection after Gd-staining.

Correlative studies were performed to further evaluate relationships between the loads of hypointense
spots detected by in vivo MRI, amyloid plaques and iron deposits in animals in which amyloid plaques could
be detected in vivo (APPg /PS1y46, APP/PS1 4 and APP23). We found a significant correlation between the
hypointense spots load and the amyloid load (R?=0.82; p < 0.01, Fig. 5A), but no correlation between the
hypointense spots load and the iron deposits load (R?=0.35, p > 0.05, Fig. 5B). We then further evaluated the
proportion of iron-positive plaques detected by Gd-stained MRI. Amyloid plaques bigger than the detection
threshold (=36 um) were categorized into one of the following four categories: iron-positive plaques detected
by MRI, iron-negative plaques detected by MRI, iron-positive plaques not detected by MRI and iron-negative
plaques not detected by MRI (Fig. 6). Seventy-six percent of cortical amyloid plaques seen on histological sections
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MRI Histology
Perls-DAB

Figure 1. Comparison between detection of amyloid plaques by Gd-stained MRI and immunohistochemistry
in APP, /PS1,,461, APP/PS1 5, and APP23 mice. Gd-stained in vivo (column 1) or ex vive (column 2)

MR images were registered with 3-amyloid (BAMI0, column 3) and iron-stained (Perls-DAB, column 4)
histological sections in APPg; /PS1,y, (A-D), APP/PS1 5 (E-H) and APP23 (I-L) mice. Inserts in columns

3 and 4 display typical plaques for each strain. Hypointense spots (white arrows and circles) are visible in the

in vivo and/or ex vivo MR images of APPg;/PS1y,q (A,B), APP/PS1, (E,F) and APP23 (L]) mice. They can
be registered with amyloid plaques (black and red arrows and circles) on BAM10-stained sections (C,G,K).
Iron staining reveals iron deposits that can be registered with hypointense spots and amyloid plaques in APPg, /
PS1y1461 (D), APP/PSI 4o (H) and APP23 (L) mice. Some amyloid plaques containing iron (black arrows

and circles) are visible on MR images. Some others are iron-free (red arrows) and are also detected by MRI
indicating that iron is not necessary for MR detection. Scale bars: 500 pm for main images and 50um for inserts.

were detected by Gd-stained MRI (Fig. 6A). Among these, 67% were iron-positive and 33% were iron-negative
(Fig. 6B). Few differences were observed between the APPg /P81y, APP/PS1,; and APP23 mice (Fig. 6).
24% of amyloid plaques seen on histological sections were not detected by Gd-stained MRI (Fig. 6A). We cannot
exclude that this lack of detection was related to an imperfect registration between MR images and histological
sections because of their different thicknesses (117 and 40 um, respectively) and because of partial volume effects.
Among these 24% of amyloid plaques not detected by Gd-stained MRI, 58% were iron-positive and 42% were
iron-negative (Fig. 6C).

In APP;,, 5, mice, hypointense spots were never detected either on in vivo or ex vivo images (Fig. 2A,B). On
histological sections, these mice displayed large, diffuse and poorly circumscribed plaques (Fig. 2C, red shape,
Fig. 4H) and did not display any obvious iron deposits at the level of the plaques (Figs 2D, 4H).

In 3xTg mice, hypointense spots were not detected in most brain regions (Fig. 2E,F). In 3xTg mice younger
than 70 weeks, amyloid deposits were mainly intracellular and measured less than 20 um (Fig. 2G, red arrows).
These intracellular deposits were not detected by Gd-stained MRI. Perls-DAB staining did not show iron accu-
mulation within these deposits (Figs 2H, 4]). In older animals, a strong extracellular amyloidosis was observed by
histology in most of the brain areas, but only plaques of the subiculum were detected by Gd-stained MRI. These
subicular plaques were congophilic and iron-positive while plaques from other brain regions, not detected by
MRI, were diffuse and iron-negative (Suppl. Fig. 52).

Control animals did not display any hypointense spots on MR sections (Fig. 21,]), amyloid plaques (Fig. 2K)
or focal accumulations of iron (Fig. 2L) on histological sections.

Visuvalization of CAA and cerebral microhemorrhages by Gd-stained MRI. CAA and microhem-
orrhages are often detected in mouse models of amyloidosis. We thus evaluated whether they could be visualized
by Gd-stained MRI. Blood vessels were associated with linear or punctuate hypointensities on in vivo and ex
vivo Gd-stained MR images of the five studied models (Fig. 7A-C) but also of amyloid-free control animals
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Figure 2. Comparison between detection of amyloid plaques by Gd-stained MRI and immunohistochemistry
in APPg, ;. 3xTg, and C57Bl/6 amyloid-free mice. Gd-stained in vivo (column 1) or ex vivo (column 2)

MR images were registered with 3-amyloid (BAMI10, column 3) and iron-stained (Perls-DAB, column 4)
histological sections in APPg,;,, (A-D), 3xTg (E-H) and C57Bl/6 amyloid-free (I-L) mice. Inserts in columns 3
and 4 display typical plaques for each strain. MR images of APPs,»; mice do not present with hypointense spots
(A,B). BAM10 and iron staining show large diffuse A3-positive lesions (C, red shape) devoid of iron deposits
(D). 3xTg mice do not present with hypointense spots on MR images (E,F). BAM10 and iron staining show
intracellular A3 deposits (G, red arrows) devoid of iron (H). In C57Bl/6 amyloid-free mice, no hypointense
spots on MR images (L,]) or amyloid plaques on BAM10 sections (K) are detected. Scale bars: 500 um for main
images and 50 um for inserts.

(Fig. 7D,E). Registration between MR images and histological sections showed that the hypointense nature of
blood vessels was not related to the presence of amyloid angiopathy (Fig. 7B,C).

To evaluate the appearance of microhemorrhages on Gd-stained MR images, we compared MRI recorded
before and after Gd-staining. As previously reported*-*, on non-stained MRI, microchemorrhages were visible
as rare hypointense spots (Fig. 7EG). After Gd-staining, microhemorrhages identified in pre-contrast images
remained detected in addition to amyloid plaques. Differentiation between these two lesions could be made on
the basis of their size and large microbleeds were the only ones that could easily be differentiated from plaques
(Fig. 7H,1). Signal from smaller microbleeds was close to that of plaques (Fig. 7H,1).

Amyloid plaque detection in human-AD brains.  Brain samples from three AD patients were imaged
by ex vivo Gd-stained MRI. Hypointense spots were detected in the cortex but not in the white matter of these
patients (Fig. 8A,B,E,F). Registration between MRI and histological sections showed that most of the hypointense
spots seen on MR images corresponded to amyloid plaques (Fig. 8B,C,EG, blackand red arrows) or blood vessels
(Fig. 8B,C,EG, blue circles). Hypointense spots within blood vessels can be explained by the presence of blood
within the vessels in non-perfused post mortem samples. On histological sections, amyloid plaques measured 10
to 200um with most plaques smaller than 25 um. The smallest plaques that could be detected by MRI measured
25um.

Finally, Perls-DAB staining revealed iron deposition in most of the human plaques detected by MRI
(Fig. 8B-D,EG, black arrows). However, as in mice, some iron-free plaques were detected by MRI (Fig. 8B-D,
red arrows). Double labelling of histological sections with Perls-DAB staining and Congo red revealed two types
of iron deposits associated with plaques, i.e. some punctate accumulations in the entire plaques (Fig. 8H) and
ramified intracellular accumulations surrounding the plaques (Fig. 81).
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Figure 3. Hypointense spots on MRI sections of 35-week-old (A-C) and ~80-week-old (D-F) APPg/PS1y 1415
APP/PS1 4 and APP23 mice. Hypointense spots (white arrows) are detected in the brain of 35-week-old APPg/
PS1,416 (A), APPPS1 (B), and APP23 (C) in the cerebral cortex (CC), hippocampus (HIP), thalamus (TH)
and amygdala (AM). These spots increase in number and size in older animals (D-F). Scale bars: 500 um.

Discussion

We compared amyloid lesions in five transgenic mouse models of amyloidosis as well as in human-AD brain sam-
ples and explored the ability of Gd-stained MRI to detect amyloid plaques in these brains. Detection of amyloid
plaques by Gd-stained MRI was strikingly different among the various models used in this study and in humans.
Amyloid plaques were detected in vivo and ex vivo in APPg/PS1, ., APP/PS1 40, APP23 and to a lesser extent
in 3xTg mice but never in APPg,; mice. In human-AD brains, amyloid plaques could be detected by post mortem
Gd-stained MRL.

Our histological evaluation showed that APPg; /PS1yy46., APP/PS1,5 and APP23 mice displayed mainly com-
pact plaques. Similar lesions were the most frequently found in the human-AD brain samples studied. Striking
differences were observed in the two other strains. Diffuse plaques were detected in APPg,;,, mice, whereas intra-
cellular amyloid deposits were found in the 3xTg mice. Intracellular amyloid plaques have been observed in
humans* ¥, but are not the most widely reported as they might occur in early stages of AD*. Regarding iron,
we detected iron deposits in association with the amyloid plaques of APPg /PS1y, .6, APP/PS1 5, APP23, 3xTg
mice and of humans. Different iron loads were found in the different models, which is consistent with data from
other studies. Jack ef al. reported strong iron deposits in the plaques of APPg; 12576/ PS1at1461 mice™ while
Meadowcroft et al. reported a very reduced iron load in the plaques of APPg; . 1576)/PS1 4545 mice’™. In humans,
some studies reported a close relationship between amyloid plaques and iron depositions'® while some others
suggested high or low iron levels in amyloid plaques even within the same subject*’. In fact, the relationship
between amyloid plaques and iron depositions in humans is still not consensual*!. Our study supports the pres-
ence of iron in some but not all amyloid plaques. Moreover, the shape of the iron deposits is highly variable with
focal deposits in mice, while in humans we detected punctate iron accumulations in the entire plaques as well as
ramified accumulations surrounding the plaques.

One of the main purposes of our study was to compare MRI and histological characteristics of amyloid
plaques in different mouse strains to investigate the critical parameters required for Gd-stained detection of
amyloid plaques. The size of amyloid plaques is an important factor that influences their MR detection. Amyloid
plaque detection was more efficient in the strains having the largest plaques as observed in APPg /PS1,4,46, APP/
PS14:5 or APP23 with detection thresholds of 36 and 30 um for in vive and ex vive images, respectively, which cor-
responds approximately to 1.2 times the voxel size. This threshold can explain the poor detection achieved in the
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Figure 4. Comparison between detection of amyloid plaques by Gd-stained MRI and histological sections
double-stained for amyloid and iron in five mouse strains. Gd-stained MR images (left) were registered with
histological sections double-stained for 3-amyloid (Congo red) and iron (Perls-DAB) (right) in APPg; /P81y
(A,B), APP/PS1 4 (C,D), APP23 (EF), APPg, 5, (G,H) and 3xTg (L,]) mice. Hypointense spots (white arrows
and circles) were visible in the MR images of APPg /PS1y,.5 (A), APP/PS1,5, (C) and APP23 (E) mice. They
could be registered with congophilic amyloid plaques on histological sections (B,D,F, black and red arrows and
circles). No congophilic plaques were detected in APPs,,p; (H) and 3xTg (J) mice. Iron staining revealed iron
deposits that co-localize with amyloid plaques (black arrows and circles) in APPg /P81y, (B), APP/PS1 g
(D) and APP23 (F) mice. Some other plaques were iron-free (red arrows and circles) and were also detectable
MRI indicating that iron is not necessary for their detection. No iron accumulation was observed in APPg,

(H) and 3xTg (J) mice. Scale bars: 500 pm for main images and 50 pum for inserts.
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Figure 5. Relationships between amyloid load quantified from in vivo Gd-stained MR images, and from
amyloid-stained histological sections (BAM10) (A) or from iron-stained histological sections (Perls-DAB) (B).
Amyloid load measured from Gd-stained MRI showed a correlation with BAM10 staining (R*=0.82; p < 0.01)
but was not correlated with Perls-DAB staining (R*=0.35; p >0.05).
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Figure 6. Detectability of amyloid plaques by Gd-stained MRI according to their iron content. Cortical amyloid
plaques with a diameter =36 um were categorized into one of the following four categories: iron-positive
plaques detected by MRI (MRI+Iron +, black), iron-negative plaques detected by MRI (MRI + Iron —, red),
iron-positive plaques not detected by MRI (MRI — Iron+, grey) and iron-negative plaques not detected by MRI
(MRI — Iron —, pink) in APP; /P51y, 46, APP/PS1 0 and APP23 mice (A). Among amyloid plaques detected
by Gd-stained MRI, 59%, 75% and 68% contained iron in APPg;/PS1y, 4, APP/PS1;, and APP23 mice,
respectively (B). Among amyloid plaques not detected by Gd-stained MRI, 50%, 71% and 50% contained iron

in APPg; /PS1y 461, APP/PS1 g and APP23 mice, respectively (C).

3xTgmice. In this strain, only the largest plaques could be detected, while most of the amyloid deposits that were
intracellular and smaller than 20 pm were not seen by MRI. In human-AD brains, the minimum visible plaque
size was similar to that in mice (i.e. 25 um for human-AD and 30 pm for mice).

Our study also showed that the compactness of amyloid plaques seemingly impacts their detection by the
Gd-staining procedure. Amyloid plaques were detected in models with compact plaques, but not in models with
large diffuse A3 deposits (i.e. APPs,p; or 3xTg mice). The mechanism of contrast enhancement is assumed to be
due to the hydrophobic property of amyloid plaques that limits the penetration of the contrast agent within them.
Because this hydrophobicity is related to the concentration of the amyloid peptide, diffuse deposits are probably
less prone to be revealed by Gd-stained MRI than compact plaques. Interestingly, previous studies have shown
that diffuse deposits are not detected by MRI without contrast agents in mice*? or in human brains*. Thus, it
seems that Gd-stained MRI does not improve the ability to detect diffuse plaques as compared to contrast-agent
free MRL

Finally, our study showed that iron accumulation is not necessary for plaque detection after Gd-staining.
Indeed, in mice, 33% of the amyloid plaques detected with Gd-stained MRI contained little or no iron. Also, in
human-AD brain samples, although most of the plaques detected by Gd-stained MRI contained iron deposits,
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Figure 7. Visualization of CAA and cerebral microhemorrhages by Gd-stained MRI. Linear hypointense
elements corresponding to blood vessels were detected on MR images of mouse models of amyloidosis (A-C,
arrows). Registration between MR images (B) and histological sections (C) showed that some blood vessels
seen on MRI were matched with CAA-positive vessels (red arrows) while some others were matched with
CAA-negative vessels (black arrows). MR images of C57B1/6 amyloid-free mice showed similar hypointensities
(D, arrows) that were matched with blood vessels (E, arrows) confirming that CAA was not responsible of the
hypointense nature of blood vessels by Gd-stained MRL Sparse focal signal attenuations were observed on MR
images before Gd-staining (F). They could be registered with microhemorrhages on Perls’ stained histological
sections (G, boxes). Microhemorrhages easily seen on MRI before Gd-staining (H, arrows) could be matched
with some hypointense spots on Gd-stained MRI (1, arrows). Large microhemorrhages (1, 2) were easily
distinguished from amyloid plaques on MR images but small microbleeds (3) and amyloid plaques were similar
in appearance. Scale bars: 500 pum (A-F,H,I) and 100 um (G).

some plaques devoid of iron were detected. In ex vivo experiments without contrast agents, previous studies
reported that in some transgenic mice (i.e. APPg;;. 14576/ PS1 g16: mice and APPg; . 145576 /PS1y 46.) plaques
that do not contain iron can be detected'® *2. However, in most in vive studies without contrast agent, iron is con-
sidered as critical for plaque detection'* '***, Since iron accumulation in plaques is age-dependent and variable
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Figure 8. Amyloid plaque detection by Gd-stained MRI in human Alzheimer’s disease brains. Gd-stained post
mortern MR images (A,B,E,F) were registered with histological sections stained for 3-amyloid (BAM10, C), iron
(Perls-DAB, D) or double-stained for 3-amyloid and iron (Congo red/Perls-DAB, G). Grey and white matter
{GM and WM respectively) could easily be identified in Gd-stained MRI (A,B,E,F). Numerous hypointense
spots were visible in the grey matter of AD patients (A,B,E,F). Slices were registered according to orientation
and landmarks such as blood vessels (blue circles). Most of the hypointense spots (black and red arrows) seen
on MR images (A,B,E,F) can be registered with 3-amyloid lesions (black and red arrows) on BAM10 (C) and
Congo-red/Perls-DAB (G) stained histological sections. Iron staining (Perls-DAB) revealed iron deposits that
co-localize with amyloid plaques (D,G, black arrows) in most of the human plaques. Some other plaques were
iron-free (C,D, red arrows) and were also detected by MRI indicating that iron is not necessary for detection.
Perls-DAB-stained sections demonstrate two types of iron accumulation near amyloid plaques (H,I): punctate
(H) or intracellular deposits (I). Scale bars: 1000 um (A,E), 200 um (B-D,F,G) and 50 pm (H,I).

according to brain region, one of the advantages of Gd-stained MRI is to allow plaque detection without depend-
ing on iron accumulation which is a covariate related to aging and not to plaque load.

‘We then examined the capacity of Gd-stained MRI to detect microhemorrhages and CAA. Microhemorrhages
are often associated with aging and amyloid pathology in mice and in humans™. These lesions are hypointense
on MR images**-**, and could thus be misinterpreted as amyloid plaques on Gd-stained MR images. We showed
that large microbleeds are distinguishable from amyloid plaques based on their superior size. Small microbleeds
are the only lesions that could be confounded with amyloid plaques. Their number is however low compared to
that of plaques, and exclusion of these lesions is always possible by recording T2* or susceptibility-weighted MR
images before Gd-staining. Regarding CAA, we observed that blood vessels appeared as hypointense structures
by in vivo MRI owing to the paramagnetic properties of blood, independently of the presence of CAA. On post
mortem MR images, the hypointense nature of blood vessels could reflect the presence of A peptidein the vessel
wall but also a small amount of blood trapped in the vessels. Gd-stained MRI is thus not appropriate to detect
amyloid angiopathy.

In this article, we also showed for the first time that Gd-stained MRI is able to detect amyloid plaques in
human-AD brain tissues. Several significant technical barriers must be solved for this method to become suitable
for use in living human subjects, including the ability to administer the contrast agent in the brain as well as res-
olution and imaging time considerations. The aim of this article is not to propose immediate solutions for these
issues and we acknowledge that today the application of Gd-stained MRI as a routine method can be envisioned
only in animal models. Gd-stained MRI can be repeated over the lifetime of animals and individual plaques can
be followed-up longitudinally?®. This method can thus be used to study amyloid biology or anti-amyloid thera-
pies®. Here, we showed that among the models used in our study, APP, /PS1,;,,,, APP/PS1,, and APP23 are the
models of choice to apply Gd-stained MRI and amyloid plaque detection in these models provides similar results
to those obtained with human brain samples.

In conclusion, this study clearly highlights differences among amyloid plaques found in different mouse mod-
els of amyloidosis, and provides a better understanding of the origin of contrast induced by amyloid plaques in
Gd-stained MRI. We also showed that Gd-stained MRI can be used to detect amyloid lesions in models with large
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compact amyloid plaques such as APPg /PS1,,,5, APP/PS1:5 or APP23 mice independently of their iron load,
and suggest that detection of amyloid plaques by Gd-stained MRIin APPg /PS1y,4; and APP/PS1 g is the most
similar to that in human-AD brains.

Material and Methods

Animals. We selected male mice from five transgenic strains presenting with compact amyloid plaques
(APP /PS1,y 146 (n=16), APP/PS1 e (n=06) and APP23 (n =4)), diffuse amyloid plaques (APP;, 5 (n=6)) and
intracellular amyloid deposits (3xTg (n=7)). C57B1/6 amyloid-free mice (n =2) were used as controls. In vivo
and ex vivo Gd-stained MR images from brains of these animals were recorded to detect amyloid plaques. Two
APPg /PS4 were also imaged in vivo and ex vivo before Gd-staining. Ages of the animals were selected to
image the youngest animals with already well-established lesions (based on preliminary histological studies and
on published pathophysiological characteristics of each strain) and the oldest animals available in our colony
(approximately 100-week-old animals). A cohort of 75 week-old APPg /PSIM, 4 mice (n=5) was further eval-
uated to study microhemorrhage detection. Their brains were studied before and after Gd-staining. An overview
of the selected strains is presented below.

APPg /PS1,46. mice co-express human APP with Swedish double mutation (KM670/671NL) and London
mutation (V7171) and human presenilin 1 (PS1) with M146L mutation under the control of a neuron-specific
Thy1 promoter. This leads to a 3-fold higher expression of the human APP transgene than endogenous murine
APP. These mice develop dense-cored amyloid plaques that reach a significant level in the neocortex and in the
hippocampus at ~26 weeks*. These plaques have already been widely evaluated with Gd-stained MRI* # * and
they can be detected in ~26-week-old animals®. These mice were imaged from 24 to 78 weeks (n=6and 5 for
amyloid plaque and microhemorrhage detection, respectively).

APP/PS1,;, mice co-express human APP with the Swedish double mutation (KM670/671NL) and human PS1
deleted in exon 9 under the control of the mouse prion protein promoter. Significant amyloid plaque burden is
seen in the hippocampus and cortex by 36 weeks™ and increases with age*. These mice develop amyloid plaques
with a dense core, surrounded by dystrophic neurites*. These mice were imaged from 35 to 126 weeks (n =#6).

APP23 mice express human APP with the Swedish double mutation (KM670/671NL) driven by the mouse
Thy1.2 promoter allowing a neuron-specific expression of the transgene. This leads to a 7-fold higher expression
of the human mutated APP than the endogenous murine APP¥. APP23 mice develop a significant amyloidosis
between 24 and 56 weeks*” *8, Then, dense-cored amyloid plaques increase in size and number with age, mainly
in the neocortex and the hippocampus®’. These mice were imaged from 39 to 77 weeks (n =4).

APPs,p; mice express human APP containing three mutations: Swedish (KM670/671NL), Dutch (E693Q)
and lowa (D694N), under the control of the mouse Thyl promoter. These mice display mainly diffuse amyloid
plaques and a significant number of plaques is reached at 52 weeks*®. These mice were imaged from 52 to 114
weeks (n =6).

3xTg mice express three mutated transgenes (APP yer0i671n0 MAPT pyg 1, and PSEN1y46,) to comparable
levels in the same brain regions. Consequently, they display both amyloid and neurofibrillary tangle pathologies.
Amyloidosis starts at 12 weeks in the neocortex and at 24 weeks in the hippocampus, before neurofibrillary tangle
formation. At this age, amyloid is mainly intraneuronal. Extracellular amyloid deposits become readily evident at
52 weeks*”. These mice were imaged from 44 to 112 weeks (n=7).

C57Bl/6 are amyloid-free mice used as controls. These mice were imaged at 48 and 79 weeks (n=2).

All animal experiments were conducted in accordance with the European Communities Council Directive
(2010/63/UE). Animal care was in accordance with institutional guidelines and experimental procedures were
approved by local ethics committees (authorization 12-062; ethics committee CETEA-CEA DSV IdF).

Human-AD brain samples. Human post mortem brain samples from the cerebral cortex and adjacent white
matter of three AD patients were obtained from the Gie-Neuro-CEB brain bank. This brain bank is run by a con-
sortium of patients associations including France Alzheimer, with the support of Fondation Plan Alzheimer and
IHU A-ICM. All methods using human brains were carried out in accordance with French guidelines and regula-
tions. The informed consent forms were signed by either the patients themselves or their next of kin in their name,
in accordance with French bioethical laws. The Brain Bank GIE NeuroCEB has been declared at the Ministry of
Higher Education and Research and has received approval to distribute samples (agreement AC-2013-1887).

Surgical procedure.  Animals were anesthetized with amixture of isoflurane (1-2%) and air (1 L/min). After
their heads were shaved, the mice were placed on a stereotaxic frame using ear bars and a tooth bar to secure
them. A heating pad maintained physiological temperature throughout the procedure. After a midline incision
of the skin, the coordinates of the bregma were recorded for anterior-posterior (A/P) and lateral (L) references.
The skull was bilaterally perforated with a Dremel at coordinates A/P —0.2 mm and L+ 1 mm, according to a
stereotaxic atlas®!. Blunt Hamilton syringes were used to inject gadoterate meglumine (DOTAREM®, Guerbet,
Aulnay-sous-Bois, France) into the lateral ventricles at coordinate —1.75 mm relative to the surface of the dura
mater. A total volume of 1 pL (0.5 mmol/mL) was injected into each side at a rate of 0.1 puL/minute. Upon comple-
tion of the injections, needles were not moved for 10 minutes to allow the diffusion of the contrast agent. Then,
needles were slowly withdrawn to minimize any outflow from pressure release and the skin was then sutured
back.

In vivo MRl experiments. I vivo MRI was performed with a 7T spectrometer (Agilent, USA) interfaced
with a console running Vnmr] 3.2, The spectrometer was equipped with a rodent gradient insert of 700 mT/m.
A birdcage coil (RapidBiomed, GmbH, Germany) and a mouse brain surface coil (RapidBiomed, GmbH,
Germany) were used for emission and reception, respectively. A high-resolution 3D-Gradient Echo sequence was
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used to achieve a resolution of 29 x 29 x 117 um® (matrix=>512 x 512 x 128, repetition time (TR) = 50 ms, echo
time (TE) = 13 ms, flip angle = 20°, number of averages (Nex) = 2, bandwidth = 25 kHz, acquisition time=1h
49 min)**. Allthe MR images were recorded starting at 60 minutes after administration of the Gd contrast agent.
During MRI experiments, animals were anesthetized with a mixture of isoflurane (0.75-1.5%) and carbogen (95%
0,-5% CO,). Their breathing rate and their body temperature was monitored. Carbogen was used to reduce the
signal coming from circulating blood*.

All animals were sacrificed after in vivo MRI experiments using a high dose of sodium pentobarbital (100 mg/
kg) and then fixed with a transcardiac perfusion 0f 4% paraformaldehyde (PFA). The brains were then removed,
immersed in 4% PFA overnight at 4°C, and preserved in PBS 0.1 M at 4°C until ex vivo MRI experiments.

Ex vivo MRI experiments. Brains were incubated in a Gd solution (DOTAREM® diluted to 2.5mM in
PBS) for 48 hours before MR experiments. Then, they were placed in a tight plastic tube filled with an apro-
tonic perfluorocarbon-based fluid (Fluorinert®, 3 M™) that provides a black background. A high-resolution
3D-Gradient Echo sequence was used to achieve a resolution of 25x25 x 100 l.m‘l3 (matrix =512 x 512 x 128,
TR =40 ms, TE= 15 ms, flip angle = 20°, Nex =2, bandwidth = 25 kHz, acquisition time=11h 39min).

To detect microhemorrhages, ex vivo MR images were recorded to achieve a resolution of 50.8 x 50.8 x 50.8
pm? (matrix =256 x 256 x 512, TR=40 ms, TE = 15 ms, flip angle = 20°, Nex = 8, acquisition time=11h
39 min).

Histology. Brains were cryoprotected in 30% PBS-sucrose solution for 72hours, cut into 40 pm thick coronal
sections on a freezing microtome and mounted on slides (Ultrafrost, Thermo-Fisher®). Sections were stained for
3-amyloid deposits (BAMI10 immunohistochemistry and Congo red staining) and for iron deposits (Perls-DAB
staining).

For BAM10 immunohistochemistry, sections were first rinsed in PBS 0.1M and then in 30% hydrogen per-
oxide (H,0,). Then, they were pretreated with 0.2% octylphenol ethylene oxide condensate (Triton X-100™,
Sigma-Aldrich®). After this pretreatment, they were incubated with an anti-amyloid primary antibody (mon-
oclonal BAM10, dilution 1:1000, Sigma®) for 48 hours and then with a secondary antibody (biotinylated IgG
anti-mouse, BA-9200, dilution 1:1000, Vector® Laboratories, Burlingame, USA) for 1 hour. Before revelation (VIP
substrate kit for peroxidase, Vector® Labs), the reaction was amplified for 1hour with a biotin-avidin complex
(ABC Vectastain kit, Vector® Labs)*. For Congo red staining, sections were pretreated with 1% NaOH in 80%
EthOH saturated with NaCl for 30 min. Then, they were again immersed in the same solution saturated with
Congo red for 30 min. For Perls’ staining, endogenous peroxidases were first inactivated by immersion in a meth-
anol/H,0, solution. Then, sections were stained with 2% potassium ferrocyanide (P9387, Sigma-Aldrich®) and
2% hydrogen chloride for 20 min. Iron staining was finally intensified using DAB (1 g/1), Tris (0.2 M) and 30%
H,0, for 20 min™.

Microhemorrhage detection was evaluated on 20 pm thick-sections. The sections were stained by incubation,
for 30 minutes at 40°C, in a freshly prepared Perl’s reagent: potassium ferrocyanide (10%) in hydrochloric acid
(20%). After 3 washings in distilled water, they were counterstained for 5 minutes in a filtered nuclear fast red
solution (Vector, H-3403, Burlingame, USA).

Correlation between in vivo MRI, ex vivo MRI and histology. MR images were manually registered
to histological sections using the “3D/Volume viewer” plugin from ImageJ*°. This plugin enables manual rotation
ofthe 3D MR volume in any direction. We identified typical landmarks such as layers of the hippocampus, blood
vessels or amyloid plaques on histological sections. The 3D MR images were then manually rotated until we could
identify these landmarks in the MR images. The minimum plaque size resolvable by in vivo or ex vivo MRI was
established by measuring plaque diameters on the registered BAM10 stained sections employing ZEN lite 2012
analysis software (Zeiss, Oberkochen, Germany). Freehand boundaries were drawn around the plaques and their
diameter estimated from the averagelength of the major and minor axes from the resulting ellipsoid'®.

The properties of the plaques detected by MRI were determined after registration between MRI and histo-
logical sections double-stained for A3 and iron in APPg /PS1,,, APP/PS1,.,, and APP23 mice. Only cortical
amyloid plaques with a diameter =36 pm (which corresponds to the minimum plaque size resolvable in vivo)
were considered. A total number of 369 amyloid plaques detected on histological sections were classified into four
categories. 1. [ron-positive plaques detected by MRI, 2. Iron-negative plaques detected by MRI, 3. Iron-positive
plaques not detected by MRI, 4. Iron-negative plaques not detected by MRI.

Amyloid load quantification from MR and histological sections.  Amyloid load was quantified from
in vivo MR images and histological sections of APP¢ /PS1, s (n=15), APP/PS1,: (n=35), and APP23 (n=4)
mice. For MR images, cortical amyloid load was calculated by using a method similar to that reported by Jack
et al. . A total of 32 regions of interest (ROLs) per animal were analyzed for in vivo and ex vivo samples: 8 slices
equally spaced along the rostro-caudal axis with 4 circular ROIs (diameter ~900um) drawn in the cortex on each
of these slices (2 in each hemisphere). Hypointense spots were manually counted in each ROI, excluding hypoin-
tense elements that could be tracked over more than 2 adjacent slices, or that had a tube-like shape, suggesting
that they were blood vessels. The area of each hypointense spot was measured in each ROL. Plaque load was deter-
mined as the ratio of the total area of hypointense spots over the area of the ROL

For histological sections, amyloid and iron load were quantified by the same method used for quantification
ofamyloid load on MR images after digitization of amyloid and iron-stained sections with a Zeiss Axio Scan.Z1
(Oberkochen, Germany) whole slide imaging microscope at a lateral resolution of 0.5 jum.
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Abstract

Preclinical applications of resting-state functional magnetic resonance imaging (rsfMRI) offer the
possibility to non-invasively probe whole-brain network dynamics and to investigate the
determinants of altered network signatures observed in human studies. Mouse rsfMRI has been
increasingly adopted by numerous laboratories world-wide. Here we describe a multi-centre
comparison of 17 mouse rsfMRI datasets via a common image processing and analysis
pipeline. Despite prominent cross-laboratory differences in equipment and imaging procedures,
we report the reproducible identification of several large-scale resting-state networks (RSN),
including a murine default-mode network, in the majority of datasets. A combination of factors
was associated with enhanced reproducibility in functional connectivity parameter estimation,
including animal handling procedures and equipment performance. Our work describes a set of
representative RSNs in the mouse brain and highlights key experimental parameters that can

critically guide the design and analysis of future rodent rsfMRI investigations.
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Introduction

The brain is the most complex organ, consisting of 86 billion neurons (Azevedo et al., 2009),
each forming on average 7000 synapses. Approaching the complexity of the brain is rendered
difficult due to the limited access to the tissue and the imperative for minimally invasive
procedures in human subjects. Resting-state functional magnetic resonance imaging (rsfMRI)
has gained attention within the human neuroimaging community due to the possibility to
interrogate multiple resting-state networks (RSNs) in parallel with a relatively high spatial and
temporal resolution (Biswal et al., 1995, 2010; Fox and Raichle, 2007). Functional connectivity
(FC), i.e. the statistical dependence of two or more time series extracted from spatially defined
regions in the brain (Friston, 2011), is the principal parameter estimated from rsfMRI studies.
The importance of FC to neuroscience research can be understood through its widespread use
to describe functional alterations in psychiatric and neurological disorders, e.g. for review
(Buckner et al., 2008; Greicius, 2008). However, despite an extensive characterization of the
functional endophenotype associated with diseased states, limitations with respect to
invasiveness and terminal experiments generally preclude the establishment of detailed

mechanisms in humans, as can be achieved with animal models.

Since its onset in 2011 (Jonckers et al., 2011), mouse rsfMRI has developed in a number of
centres and has grown to become a routine method with a number of applications, reviewed in
(Chuang and Nasrallah, 2017; Gozzi and Schwarz, 2016; Hoyer et al., 2014; Jonckers et al.,
2015, 2013; Pan et al., 2015). Prominently, mouse rsfMRI has been used to investigate an
extensive list of models, including Alzheimer’s disease (Grandjean et al., 2014b, 2016b, Shah et
al., 2013, 2016c; Wiesmann et al., 2016; Zerbi et al., 2014), motor (DeSimone et al., 2016; Li et
al., 2017), affective (Grandjean et al., 2016a), autism spectrum (Bertero et al., 2018, Haberl et
al., 2015; Liska et al., 2018; Liska and Gozzi, 2016; Michetti et al., 2017; Sforazzini et al., 2016;
Zerbi et al., 2018; Zhan et al., 2014), schizophrenia (Errico et al., 2015; Gass et al., 2016), pain
(Buehlmann et al., 2018; Komaki et al., 2018), reward (Charbogne et al., 2017; Mechling et al.,
2016), and demyelinating disorders (Hlbner et al., 2017). Another application of mouse rsfMRI
is the elucidation of large-scale functional alterations exerted by pharmacological agents
(Razoux et al., 2013; Shah et al., 2016a, 2015). Finally, the method has been used to address
fundamental questions. These include the investigation of the structural basis underlying FC
(Bergmann et al., 2016; Grandjean et al., 2017b; HUbner et al., 2017; Schroeter et al., 2017;
Sforazzini et al., 2016; Stafford et al., 2014), the nature of the dynamical event encoded in the
resting-state signal (Belloy et al., 2018a, 2018b; Bukhari et al., 2018; Grandjean et al., 20173;
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Sethi et al., 2017), as well as strain (Jonckers et al., 2011; Schroeter et al., 2017; Shah et al.,
2016b), and the impact of sedation or awake conditions on the underlying signal and
connectivity patterns (Bukhari et al., 2017; Grandjean et al., 2014a; Jonckers et al., 2014; Wu et
al., 2017; Yoshida et al., 2016). This body of work obtained mainly over the past 5 years reflects
the growth and interest into this modality as a translational tool to understand mechanisms
underlying RSNs organisation in the healthy and diseased states, with the promise to highlight
relevant targets in the drug development process and to advance fundamental knowledge in
neuroscience.

Despite a growing interest in the field, rsfMRI studies in animals have been inherently difficult to
compare. On top of centre-related contributions analogous to those observed in human studies
(Jovicich et al., 2016), comparisons in rodents are further confounded by greater variability in
preclinical equipment (e.g. field strength, hardware design), animal handling protocols and
sedation regimens employed to control for motion and stress. Discrepancies between reports,
such as the anatomical and spatial extent of a rodent homologue of the human default-mode
network (DMN) (Becerra et al., 2011; Gozzi and Schwarz, 2016; Guilfoyle et al., 2013; Hubner
et al., 2017; Liska et al., 2015; Lu et al., 2012; Sforazzini et al., 2014; Stafford et al., 2014;
Upadhyay et al., 2011), or the organisation of murine RSNs (Jonckers et al., 2011), have stark
consequences for the interpretations of the results. To meet a growing need to establish
standards and points of comparisen in rodent fMRI, we carried out a multi-centre comparison of
mouse rsfMRI datasets. Multiple datasets representative of the local centre acquisitions were
analysed with a common preprocessing pipeline and examined with seed-based analysis (SBA)
and independent component analysis (ICA), two common brain mapping methods used to
investigate RSNs. The aims of our work were to identify representative mouse RSNs, to
establish a set of reference pre-processing and analytical steps and good-practices, and to
highlight protocol requirements enabling more sensitive and specific FC detection in the mouse

brain.
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Results

Dataset description and preprocessing validation

A total of 17 datasets were included in this study. Dataset selection was restricted to 15
gradient-echo echo planar imaging acquired on C57BI/6J mice, any gender, any age, any
sedation protocol (Supplementary table 1). Cortical signal-to-noise ratio (SNR) ranged from
17.04 to 448.56, while temporal SNR (tSNR) ranged from 8.11 to 112.68 (Supplementary
figure 1ab). A comparison between SNR and tSNR indicated a positive association between
the two measures (pearson’s r = 0.75, t = 18.30, df = 253, p = 2.2e-16). Due to the lack of
orthogonality between the two factors, only SNR was considered in the remaining of the
analysis. Mean framewise displacement (FWD) ranged 0.0025 mm to 0.15 mm
(Supplementary figure 1c). A summary of representative estimated motion parameters is
shown in the supplementary material (Supplementary figure 2). Each preprocessing output
was visually inspected. Automatic brain extraction generated plausible brain masks.
Normalisation was carried out to the Allen Institute for Brain Science (AIBS) template
(Supplementary figure 3). Spatial coverage along the anterior-posterior axis varied across
datasets. The following analysis is thus restricted to areas fully covered by all scans,
corresponding to approximately 2.96 and -2.92 mm relative to Bregma. Moereover, distortions
made it impossible to cover the amygdala region in full. No marked differences in the
performance of each preprocessing steps were identified between datasets. The brain masked,

spatially smoothed, temporally filtered, and normalized scans were further processed as follows.

Vascular and ventricle signal regression enhances functional connectivity specificity

Denoising procedures are an integral step in all FC analyses relying on rsfMRI acquisitions.
Nuisance signal originates from multiple sources, including physiological and equipment related
noise (Murphy et al., 2013). No consensus exists both in human and rodent fMRI fields
regarding optimal noise removal procedures. In this study the following six nuisance regression
medels were designed and compared with the aim to select one model based on objective
criteria for the remaining of the analysis. The first nuisance model includes only motion
cerrection and parameter regression (MC). Global signal regression (GSR) was added to the
motion parameter in a second model. Signal from either white-matter (WM), ventricle (VEN), or
vascular (VASC) masks (Supplementary figure 4bcd) were combined with motion parameters
in additional regression models. Finally, based on results obtained with these approaches, a
combination (VV) model including VEN and VASC signal regression was included for the

comparison. The effectiveness of nuisance regression models and the specificity of the resulting
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networks at the subject level were assessed based on the outcome of a SBA using the anterior
cingulate area (ACA, Supplementary figure 4a) as seed region. This seed was selected as a

central node of the putative rodent DMN (Gozzi and Schwarz, 2016).

a Global signal regression

b vascular + ventricle signal regression

Anterior Cingulate Area (ACA)
o N |20

t-statistic (p<0.001, vox. corrected)

Functional connectivity relative to a seed in the Anterior cingulate area Functional connectivity relative to a seed in the Anterior cingulate area

ity
HEEEEN -

Percentage
FC

’ Denoise method Distance relative to the seed [mm]
M Specific FC [l Unspecific FC [ll Spurious FC [l No FC

Figure 1 | Denoising strategies and their impact on functional connectivity (FC) specificity. a-b,
Seed-based analysis for a seed in the anterior cingulate area (ACA) following either global
signal regression (GSR, a) or vascular+ventricle signal regression (VV, b). The spatial maps
obtained lead to a set of regions for which the BOLD signals were positively associated to the
BOLD signal of the ACA. These included the prefrontal cortex, retrosplenial area (RSP), dorsal
striatum. Under V'V, the connectivity profile extended to peri-hippocampal areas. Significant anti-
correlation (negative t-statistic, blue) are also present in the primary somatosensory areas (SSp)
under GSR but not VV condition. Individual scans were classified as presenting “Specific”,
“Unspecific”, “Spurious”, or “No” FC relative fo the ACA seed (¢, see Supplementary figure 5
for details). Comparison of each FC category depending on the denoising strategies revealed
that motion correction and GSR lead to lowest percentage of “specific FC” at 30%, while that
percentage was highest under VV condition (38%). FC as a function of distance to the ACA
seed indicates comparable rate of decline between denoising strategies (d). Green arrowhead
indicates the position of the ACA seed, black arrowheads indicate ROls spaced 0.4 mm apart.
Voxelwise corrected t-statistic for one-sample t-tests (p<0.001, corrected) are shown as a
colour-coded overlay on the AIBS reference template. Descriptive statistics are shown as mean

+ 1 standard deviation.
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The statistical maps of the one-sample t-test across all individual maps following GSR (Figure
1a) indicated positive FC along rostro-caudal axis, through the ACA and extending to the
retrosplenial area (RSP), with anti-correlations in adjacent primary somatosensory areas (SSp).
Comparatively, in the VV nuisance model, a more extended network was revealed to include
posterior parietal cortical areas (Figure 1b), while anti-correlations in the SSp did not reach
statistical significance. To assess the specificity of the obtained functional networks, subject-
level FC parameter (z-statistic) were extracted from ROIls located in the RSP and left SSp. The
former was defined as a specific ROI, i.e. a ROl where positive FC is expected, while the latter
was defined as a non-specific ROI, i.e. a ROl where low or negative FC is expected. The
decision to consider these two areas as belonging to separable network systems reflects
several lines of converging evidence: a) these regions are not linked by major white matter
bundles or direct axonal projections in the mouse brain (Oh et al., 2014), b) they reflect
separable electrophysiological signatures in mammals (Popa et al., 2009) c) they belong to
separable functional communities (Liska et al., 2015) and are similarly characterized by the

absence of significant positive correlation in corresponding human RSN (Fox et al., 2005).

Detailed FC within the specific ROl for the GSR and VV nuisance model are shown as a
function of FC within the corresponding non-specific ROl at the single-subject level
(Supplementary figure 5). In the VV condition, 88/255 (i.e. 38%) of individual scans fell into the
“specific FC” category while both MC and GSR reach lowest percentage (30%) of scans
exhibiting “specific FC” relative to the ACA seed (Figure 1c). Cut of the 98/255 scans
categorised as presenting “specific FC” relative to the ACA seed, up to 14/15 scans originated
from the same dataset (median = 6/15). Two datasets did not contain scans that met the
definition. Correspondingly, the 98 scans were also unevenly distributed according to the
different acquisition parameters, including field strength (4.7T N = 1/15, 7T N = 41/120, 9.4T N =
38/90, 11.7T = 18/30, X* = 13.76, df = 3, p-value = 0.0032), coil type (room-temperature N =
26/105, cryoprobe N = 72/150, X? = 13.13, df = 1, p-value = 0.00029), breathing condition (free-
breathing N = 58/180, ventilated N = 40/75, X* = 9.10, df = 1, p-value = 0.0028), and sedation
condition (awake N = 7/15, isoflurane/halothane N = 18/90, medetomidine N = 26/75,
medetomidine+isoflurane N = 47/75, X* = 32.42, df = 3, p-value = 4.28e-07). Hence, scans
presenting “specific FC” patterns were more often found in datasets acquired at higher field
strengths, with cryoprobes, in ventilated animals, and under medetomidine+isoflurane

combination sedation.



bioRxiv preprint first posted anline Feb. 8, 2019; doi: http://dx.dai.org/10.1101/541060. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-ND 4.0 International license.

To test how FC is affected as a function of distance to the seed and nuisance model, FC in the
ACA and RSP along the anterior - posterior axis was extracted (Figure 1d). Comparable rate of
decrease was observed in all conditions, with GSR displaying an overall decrease of FC
throughout. This is consistent with the overall decrease in FC induced by GSR relative to VV in
the specificity analysis (Supplementary figure 5). In summary, the VV nuisance model
enhanced specificity of SBA-derived DMN, as indicated by higher incidence of scans in the
“specific FC” category. Based on this criterion, this nuisance model was used in all the
subsequent analyses.

Seed-based analysis identifies common and reproducible murine resting-state networks

We sought to identify common murine RSNs by means of SBA and to compare reproducibility
across datasets. Seeds positioned in representative anatomical regions of the left hemisphere
(Supplementary figure 4a) were used to reveal the spatial extent of previously described
mouse resting-state networks. The seeds were selected to represent different cortical
(somatosensory, motor, high order processing), as well as subcortical systems (striatum,
hippocampal formation, thalamus). To obtain high-specificity and high-confidence group-level
SBA maps, we first probed only the 98/255 scans listed as containing “specific FC” in the
previous analysis. We next extended these analyses to include all the 255/255 scans
(Supplementary figure 7). For datasets comparisons, all 15 scans from each dataset were

included to reflect inter-dataset variability in the incidence maps.

All group-level SBA maps exhibited a strong bilateral and homotopic extension (Figure 2a,
Supplementary figure 6). A seed in the ACA revealed a network involving the prefrontal cortex,
RSP, dorsal striatum, dorsal thalamus and peri-hippocampal areas. This recapitulates
anatomical features reminiscent of the human, primate and rat DMN (Gozzi and Schwarz, 2016;
Hutchison and Everling, 2012; Sforazzini et al., 2014; Stafford et al., 2014). Comparable regions
were observed with a seed in the RSP, a region evolutionarily related to the postericr cingulate
certex found in the human DMN (Supplementary figure 6). The anterior insular seed was
found to co-activate with the dorsal cingulate and the amygdalar areas, corresponding to the
putative rodent salience network (Gozzi and Schwarz, 2016), while the primary somatomotor
region (MQ) defined a previously described latero-cortical network that appears to be
antagonistic to midline DMN regions, and that has been for this reason postulated to serve as a

possible rodent homologous of the primate task-positive network (Figure 2a)(Liska et al., 2015;
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Sforazzini et al., 2014). Corresponding network across all scans (255/255) recapitulated
features identified in the 98/255 scans listed as containing “specific FC”, but appeared to be
characterized by much lower spatial specificity (Supplementary figure 7). Maps derived from
individual datasets revealed that 70% (12/17) of the datasets presented the features listed
above (Figure 2b, Supplementary figure 8). Incidence maps indicate, on a voxel basis, the
percentage of the dataset presenting a significant FC. They confirmed the different extent of
network detection in the different dataset. In summary, this analysis revealed the commonly
shared spatial extent of mouse RSNs derived from SBA but also indicates that a small subset of
the datasets failed to present these features with sufficient sensitivity or specificity.

a Seed-based analysis one-sample t-test b Seed-based analysis incidence

t-statistic (p<0.05, vox. corrected) Incidence (% dataset, p<0.05, uncorrected)

Figure 2 | Seed-based analysis (SBA) for 3 selected seeds positioned on the left hemisphere.
One-sample t-test maps of individual maps reveal the full extent of SBA-derived resting-state
networks in the mouse brain across 98/255 scans that presented “specific FC” following
vascular+ventricle signal regression. Functional connectivity (FC) relative to a seed located in
the anterior cingulate area reveals the extent of the murine default-mode network, including the
dorsal caudoputamen, dorsal thalamus, and peri-hippocampal areas. The seed in the insular
area reveals significant FC in dorsal cingulate and amygdalar areas, corresponding to areas
previously associated with the human salience network. Inter-hemispheric homotopic FC is

found relative to the MO seed, together with lateral striatal FC. incidence maps, indicating the
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percentage of dataset presenting significant FC in one-sample t-test (p<0.05, uncorrected),
reveal that 12/17 of datasets recapitufated the features stated above. Out of these, 5 were not
considered to overlap specifically (Supplementary figure 6). Voxelwise corrected t-statistic for
one-sample t-tests and incidence maps are shown as a colour-coded overlay on the AIBS
reference template.

Sedation protocol and SNR affect connectivity strength

The datasets analysed here were acquired at varying field strengths, coil designs, EPI
sequence parameters, animal handling, and with different anesthesia protocols, i.e. either
awake or sedated states. Hence the acquisitions were not purposefully balanced to test for
specific effects. To identify factors assocciated with FC strength, a simplified linear model was
designed including the following explanatory factors: sedation and breathing conditions, SNR,
and moticn (mean framewise displacement). Limitations in orthogonality and representation of
specific acquisition factors such as field strength, coil design, EPlI sequence parameters,

number of volumes, gender and age precluded a more extensive model.

Individual-level FC values (z-statistic) were extracted from SBA maps estimated from the ACA
seed using a ROI located in the RSP and shown as a function of different acquisition
parameters (Figure 3). Sedation protocol (F47, 251y = 18.29, p = 3.5e-13) and SNR (F 247, 245) =
12.39, p = 5.1e-4) were significantly associated with FC, while the remaining factors, breathing
condition (F247, 245y = 3.48, p = 0.063) and motion (F47, 245 = 0.082, p = 0.77) were not. The
awake and medetomidine+isoflurane combination led to higher FC compared to the other two
sedation categories. With respect to SNR, high FC values started to be observed at SNR > 50,
suggesting that lower SNR may not be sufficient to detect relevant fluctuations. Interestingly,
these effects were found consistently across the different ROI pairs considered
(Supplementary table 2), thus confirming the importance of sedation conditions and SNR, and

suggesting that breathing conditions impact mildly FC sensitivity.

These animal handling conditions and sedation protocols highlighted here may not be
applicable to all studies or laboratories due to local legislation, equipment availability, or
technical knowledge. Distributions of FC values may hence provide useful reference points.
Connectivity strength between the ACA and RSP, representing a central feature of the rodent
DMN, reached z = 2.77, 5.71, and 10.46 at the 50", 75", and 95" percentile respectively

(Pearson’s r = 0.15, 0.26, 0.43, when SBA is carried out with a correlation analysis instead of a
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general linear model). Additional SBA parameter distributions are provided for other ROI pairs in
Supplementary table 2. The parameters of the acquisitions featured in this analysis offer an
objective criterion to evaluate and compare sensitivity to FC in a new dataset or in previous
publications, insofar comparable metrics are available.
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Figure 3 | Functional connectivity (FC) in the retrosplenial cortex relative to a seed located in
the anterior cingulate area, as a function of acquisition parameters. A statistically significant
association was determined between sedation effect and FC (@, Fp47 251, = 18.29, p = 3.5e-13)
and between SNR and FC (¢, Fpur24 = 12.39, p = 5.1e-4). Neither breathing condition nor
motion effects were significant with FC (b, d). Due fo limitations in the representation of each
fevel within a factor, coil design (e) and magnetic field (f) were omitted from the final statistical
model. Free = Free-breathing, Vent = Mechanically ventilated, Cryo = cryoprobe, RT = room-
temperature.

Network-specific functional connectivity is found in all datasets

Evidence for robust distal FC could not be established in all datasets with SBA. To investigate
the presence of network-specific FC also in datasets characterized by weaker long range
connectivity, a dual regression combined with group-level ICA (drlCA) approach was
undertaken (Filippini et al., 2009). To obtain an enriched data-driven reference atlas, a group
ICA atlas was generated out of the 98 “specific FC” scans selected in the SBA above, using 20

230
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dimensions. The atlas revealed 9 cortical components (Figure 4a, Supplementary figure 9,
Supplementary table 3), 5 overlapping with the latero-cortical network (somatomotor area
(MO) and 4 SSp areas), 3 overlapping with elements of the DMN (prefrontal, cingulate/RSP,
and temporal associative areas) and 1 overlapping with the insular area (Al). Additionally, 5 sub-
cortical components were revealed, overlapping with the nucleus accumbens (ACB),
caudoputamen (CP), pallidum (PAL), hippocampal region (HIP), and thalamus (TH)
(Supplementary figure 10). The components recapitulate many of the features identified with
SBA (Figure 4b), namely a strong emphasis on homotopic bilateral organization. The
components identified here also presented strong similarities to a previous analysis (Zerbi et al.,
2015). Due to uneven brain coverages across datasets, rostral and caudal RSNs could not be
examined, including olfactory, auditory, and visual networks. To obtain individual-level
representation of these components, a dual regression approach was implemented using the
reference ICA identified above. These group-level ICA were used as masks to extract time
series which were then regressed into individual scans using a general linear model. To
investigate specificity relative to a DMN-related component, FC relative to the cingulate/RSP
component was extracted from the ACA ROI (Specific ROI, z = 8.33, 14.41, and 22.32, 50t
75" and 95" percentiles) and SSp ROI (Unspecific ROI). “Specific FC” was determined in 79%
(201/255) of the scans, “Unspecific FC” in 16%, “Spurious FC” in 1.5%, and "No FC” in 3.1%
(Figure 4c). “Specific FC” in 15/15 scans was determined in 2 datasets (Median = 12/15). The
“Specific FC” category was also more evenly distributed relative to acquisition protocols and
equipments: Field strength (4.7T N = 14/15, 7T N = 89/120, 9.4T N = 73/90, 11.7T N = 25/30, X?
=4.01, df = 3, p-value = 0.25), coil type (room-temperature N = 88/105, cryoprobe N = 113/150,
X?=2.17, df = 1, p-value = 0.14), breathing condition (free-breathing N = 138/180, ventilated N
= 63/75, X? = 1.29, df = 1, p-value = 0.25), and sedation condition (awake N = 13/15,
isoflurane/halothane N = 65/90, medetomidine N = 55/75, medetomidine+isoflurane N = 68/75,
X? = 10.56, df = 3, p-value = 0.014). Importantly, statistical inference revealed that significant
within-component FC could be established in 17/17 datasets for all 14 components (Figure 4d,
Supplementary figure 11, Supplementary figure 12). This suggests that network-specific
inferences can be probed in all rsfMRI datasets, and that driCA is a powerful approach enabling
robust FC detection in all datasets, including those that may not robustly exhibit distal

connectivity patterns.
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Figure 4 | Group-level independent component analysis (ICA) estimated across 98/255 “specific
FC” scans reveals canonical murine components (a). All components presented a marked
bilateral organisation. Nine components were found to overlap principally with the isocortex
including regions attributed to Iatero-cortical, salience and DMN networks by SBA, 3
components overlapped with the striatum, one with the hippocampal areas, and one with the
thalamus. Detailed representations of the Cingulate / Retrosplenial area component (Cg/RSP
b). Remaining components are presented in Supplementary figure 9, 10. FC relative to
Cg/RSP is found specifically in the anterior cingulate area but not in the primary somatosensory
in 79% of the individual scans following dual-regression (c). One-sample t-test within datasets
indicates 100% of datasets presented significant FC (p < 0.05, uncorrected) within the Cg/RSP
component. Incidence for the remaining components are presented in Supplementary figure
11, 12 Al = insular area, MO = somatomotor area, SSp = primary somatosensory area, PFC =
prefrontal cortex, Cg/RSP = cingulate + retrosplenial area, Tea = temporal associative area, CP
= caudoputamen, ACB = nucleus accumbens, PAL = pallidum, HIP = hippocampal region, TH =

thalamus.

Discussion

Rodent rsfMRI has been a growing research field in neuroscience over the past 10 years
(Chuang and Nasrallah, 2017; Gozzi and Schwarz, 2016; Hoyer et al., 2014; Jonckers et al.,
2015, 2013; Pan et al., 2015). The fast-paced development of the field has yielded a number of
exciting results, yet the comparability of these findings remains unclear. The results presented
here indicate that, despite major differences in cross-site equipment, scan conditions, sedation
protocols and experience in the implementation of these procedures, mouse rsfMRI networks
converge toward spatially defined motifs encompassing previously described neuroanatomical
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systems of the mouse brain. Importantly, we also highlight the possibility to use rsfMRI to probe
distributed network systems of high translational relevance, including a rodent DMN, salience
network, and latero-cortical network. While not reliably identified in all datasets and scan
conditions, these large-scale networks were found to colocalize into well delineated boundaries
in the majority of scans and datasets respectively, recapitulating previous descriptions in
rodents (Gozzi and Schwarz, 2016; Lu et al., 2012; Sforazzini et al., 2014; Stafford et al., 2014),
monkeys (Hutchison and Everling, 2012) and humans (Buckner et al., 2008).

Interestingly, most (70%) of the datasets converged toward spatially defined common RSN
when long-range FC relative to a seed was assessed. When the analysis was restricted to local
connectivity, all datasets converged. These results indicate that group-level, or second-level
inferences, may be assessed irrespective of acquisition protocol or animal handling procedures
in all datasets using robust analysis strategies. At the subject level, “specific FC” relative to the
DMN was found in 38% of the scans, indicating that first-level inference on long-range FC is
within reaches in some, but not all datasets. Sedation and equipment performance leading to
increased SNR were the major factors associated with both FC sensitivity and specificity,
together with breathing conditions. Awake animals presented higher FC overall, however
datasets acquired with medetomidinetisoflurane combination together with mechanical
ventilation were associated with greater specificity within elements of the DMN. Importantly, the
results converged irrespective of sedation or awake protocols. This underlines that all datasets
should be examined with the same expectations and criteria to further enhance results
comparability. Hence, the set of standards provided here (e.g. spatial maps and FC parameter
distributions), will allow the calibration of future multi-centre projects and assist in designing

meta-analysis and replication studies, the gold standards in evidence-based research.

In addition to acquisition procedures, the adoption of analysis standards must be encouraged. A
MRI template (Dorr et al., 2008) transformed into the AIBS standard space provides a common
space that extends beyond animal MRI studies, including the seamless implementation of AIBS
resources (Bergmann et al., 2016; Grandjean et al., 2017b; Oh et al., 2014; Richiardi et al.,
2015; Stafford et al., 2014). Moreover, analysis based on robust methods (Zuc and Xing, 2014),
such as drICA (Filippini et al., 2009), together with considerations for statistical analysis (Eklund
et al., 2016), and sharing datasets on online repositories (Nichols et al.,, 2017) provide a
comprehensive evidence-based roadmap to improve the comparability of acquisitions carried

out between centres and enhance the robustness and reproducibility of future results. In
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particular, all the dataset analyzed in the context of this study will be shared and therefore
provide references for scientists developing customized rsfMRI protocols.

Several major limitations within this study should be acknowledged. First and foremost, the lack
of consensus quality assurance parameters for the estimation of FC led us to devise a strategy
to examine FC specificity. Because this study grouped together a set of existing scans, factors
were not entirely orthogonal and it was not possible to model a number of potentially relevant
effects impacting FC metrics, such as specific sequence parameters (e.g. number of volumes),
as well as biologically relevant factors including sex, age, and mouse strain. Finally, lack of
distal FC in some datasets could not be attributed to specific animal handling protocols or
equipment performance. This indicates that additional experimental factors not considered here
may be better predictors estimating this particular kind of FC. For example, the implementation
of procedures to control the arterial level of carbon dioxide may be critical to prevent
hypercapnic conditions, a feature that is associated with reduced FC connectivity (Biswal et al.,
1997) and that is often observed in freely breathing anesthetized rodents. Despite these
limitations, the work presented here is likely to enhance the true scientific value of mouse
rsfMRI by establishing standards and how to attain them. With these, the field is set to meet its
goals toward the establishments and understanding of the cellular and molecular mechanisms

of large-scale brain functional reorganisation in the healthy and diseased brain.
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Material and methods

Comparison dataset acquisition

All animal experiments were carried out with explicit permits from local regulatory bodies.
Seventeen datasets, consisting of 15 individual pre-acquired rsfMRI scans each, were acquired
with parameters reflecting each centre standards. A summary of equipment, acquisition
parameters, and animal handling procedures is listed in Supplementary table 1. Scans were
acquired on dedicated Bruker magnets operating at 4.7T (N = 1 dataset), 7T (N = 8), 9.4T (N =
6), 11.7T (N = 2), with either room-temperature coils (N = 7) or cryoprobes (N = 10). Gradient-
echo echo planar imaging (EPI) sequences were used to acquire all datasets, with repetition
time (TR) ranging 1000 - 2000 ms, echo time (TE) 10 - 25 ms, and number of volume 150 -
1000. Acquisitions were performed on awake (N = 1) or anesthetized C57BI/6J mice (both male
and female) with either isoflurane 1-1.25% (N = 5), halothane 0.75% (N = 1), medetomidine 0.1-
0.4 mg/kg bolus and 0.2-0.8 mg/kg/h infusion (N = 5), or a combination of isoflurane 0.2-0.5%
and medetomidine 0.05-0.3 mg/kg bolus and 0-0.1 mg/kg/h infusion (N = 5). Awake mice were
fitted with @ non-magnetic head implant to fix the heads to a compatible cradle (Yoshida et al.,
2016). Animals were either freely-breathing (N = 12) or mechanically ventilated (N = 5).
Datasets are publicly available in BIDS format on openneuro.org (project ID

Mouse_rest_multicentre, hitps://openneuro.org/datasets/ds001720).

Data preprocessing
Volumes were analysed in their native resolution. Firstly, image axes were reoriented into LPI
orientation  (3dresample, Analysis of Functional Neurclmages, AFNI_16.1.26,

https:/afni.nimh.nih.gov) (Cox, 1996). Temporal spikes were removed (3dDespike), followed by

motion correction (3dvolreg). Brain masks (RATS_MM, https://www.iibi.uiowa.edu) (Oguz et al.,

2014) were estimated on temporally averaged EPI volume (fsimaths). Motion outliers were
detected based on relative framewise displacement estimated during motion correction.
Volumes with spikes or framewise displacement greater than 0.100 mm, corresponding to
approximately 0.5 voxel of the average in-plane resolution, were labelled in a confound file to be
excluded from later seed-based analysis and dual-regression. Linear affine parameters and
nonlinear deformations with greedy SyN diffeomorphic transformation (antsintroduction.sh) were
estimated relative to a reference T2 MRI template (Dorr et al., 2008) registered into the AIBS

Common Coordinate Framework (CCF v3, http://Awww.brain-map.org/) resampled to 0.200 mm?®.

Normalisation to AIBS space was carried out on brain masked EPI directly using ANTS

(Advanced Normalization Tools, http:/picsl.upenn.edu/software/ants/) (Avants et al., 2014,
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2011). Anatomical scans corresponding to each EPI acquisition were not available in all cases.
Despite this limitation, plausible registrations of murine EPI directly onto a T2 MRI template
were rendered possible due to the relatively simple structure of the lissencephalic cerebrum and
high EPI quality. Individual registered brain mask were multiplied (fsimaths) to obtain a study
mask. The analysis was bounded within this study mask, i..e the brain areas covered by all
individual scans. References to anatomical areas are made with respect to the AIBS atlas. All
brain masks and registrations were visually inspected and considered plausible.

Six different denoising approaches were applied: i) 6 motion parameters regression (MC), or the
following together with motion parameters, i) white matter (WM), iii) ventricle (VEN), iv) vascular
(VASC), v) vascular + ventricle (VV), or vi) global (GSR) signal regression. White matter and
ventricle masks were adapted from the AIBS atlas (Supplementary figure 4cd), a vascular
mask was obtained by averaging and thresholding hand-selected individual-level independent
components registered to AIBS space (Supplementary figure 4b). Inverse transformations
were applied to each mask. Average time series within masks were extracted (fs/imeants) and
regressed out (fs/_regfilf). Finally, spatial smoothing was applied with a isotropic 0.45 mm kernel
(3dBlurinMask), and bandpass filtering was applied between 0.01 - 0.1 Hz (3dBandpass). The
smoothing kernel was selected to correspend approximately to 1.5 x voxel dimension of the
lowest in-plane resolution. The bandpass filter was applied to all datasets to enhance
comparability between datasets, despite indications that medetomidine leads to a shift in resting
fluctuation frequencies (Grandjean et al., 2014a; Kalthoff et al., 2013; Paasonen et al., 2018).
The denoised and filtered individual scans were normalised to AIBS reference space

(WarpTimeSeriesimageMultiTransform).

Noise was estimated by extracting the signal standard deviation from manually defined regions-
of-interest (RQIs) in the upper corners of at least 3 slices, carefully avoiding ghosting artefacts
or tissues (brain or otherwise). Mean signal was extracted from the 20" acquisition volume
using a cortical mask spanning over the whole isocortex (defined by AIBS atlas) and registered
in individual spaces to estimate signal-to-noise ratio (SNR). The same cortical mask was used

to extract standard deviation of temporal signals to estimate temporal SNR (tSNR).

Seed-based analysis and independent component analysis
Seeds on the left hemisphere were defined in AIBS space based on the AIBS atlas using 0.300

mm?® spheres, corresponding to 27 voxels (Figure S1a). Mean BOLD signal time series within a
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seed were extracted (fsimeants) and regressed into individual scans to obtain z-statistic maps
(fsl_glm). Multi-session temporal concatenation ICA was carried out using MELODIC
(Multivariate Exploratory Linear Optimized Decomposition into Independent Components, v3.14)
using 20 components. Group-level component classification was adapted on a set of rules
defined in (Zerbi et al., 2015). The following were considered plausible resting-state networks:
(i) components with either bilateral organisation or (ii) unilateral components with a
corresponding separate contralateral component, (i) minimal crossing of relevant brain
boundaries such as white matter tracts, (iv) spatial extent covering more than one slice. The
following were considered as implausible resting-state networks: (i) components overlapping
mainly with either white matter, ventricle, or vascular masks (Supplementary figure 4bcd), (ii)
components mainly localised on brain edges. Dual-regression was carried out using the
eponymous FSL function to obtain individual-level representations of 14 selected plausible

group-level components (Filippini et al., 2009).

Statistical analysis and data representation

Voxelwise statistics were carried out in FSL using either non-parametric permutation tests
(randomise) for across datasets one-sample t-tests using 5000 permutations and voxelwise
correction, or uncorrected parametric one-sample t-tests for within-dataset comparisons
(fsl_gim). Voxelwise statistical maps are shown as colour-coded t-statistics overlays on the ABI
template resampled at 25um? isotropic using MRIcron (Rorden et al., 2007). Statistical analysis
carried out on parameters extracted from ROIls was performed in R (v3.4.4, “Someone to Lean

on’, R Foundation for Statistical Computing, Vienna, Austria, hitps://R-project.org) using a linear

model (Im). A simplified model was designed including the following fixed effects. breathing
conditions (2 levels: ventilated or free-breathing), sedation conditions (4 levels: awake,
isoflurane/halothane, medetomidine, medetomidine + isoflurane combination), SNR (continuous
variable), mean FWD (continuous variable). Interactions effects between these factors were not
modeled. Fixed effects significance was tested using likelihood ratio test. Scan parameter
occurrence rates were assessed with Chi-square test (chisq.fesf). Residual analysis was
performed with QQ-plots to inspect normal distribution, Tukey—Anscombe plots for the
homogeneity of the variance and skewness, and scale location plots for homoscedasticity (i.e.,
the homogeneity of residual variance). The assumption of normality of the residuals was
considered plausible in all statistical tests. Plots were generated using ggplot2 (v2.1.0) package

for R. Significance level was set at p<=0.05 cne-tailed with family-wise error correction at a
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voxelwise level, unless specified otherwise. Descriptive statistics are given as mean + 1
standard deviation.
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Résumé : Le microcébe murin (Microcebus
murinus) est un primate attirant I'attention de la
recherche neuroscientifique. Son anatomie
cérébrale est encore mal décrite et ses réseaux
cérébraux n'ont jamais été étudiés. Le premier
objectif de cette thése était de développer de
nouveaux outils menant a la création d’un atlas
numérique 3D du cerveau du microcébe. Cet
atlas est un outil fondamental car pouvant étre
utilisé pour extraire automatiquement des
biomarqueurs cérébraux de diverses
neuropathologies. Par la suite, nous avons mis
en place des protocoles IRM et informatiques
pour analyser la connectivit¢ neuronale du
microcebe murin. Nous avons évalué pour la
premiére fois les réseaux cérébraux de cet
animal et révélé que son cerveau est organisé
en régions fonctionnelles intégrées dans des
réseaux fonctionnels a plus grande échelle.

Ces réseaux ont été classés et comparés a des
réseaux similaires chez [I'homme. Cette
comparaison multi-espéces a mis en évidence
des régles d'organisation communes mais aussi
des divergences. L'imagerie du glutamate par
transfert de saturation et par échange chimique
(gluCEST) est une méthode permettant de créer
des cartes 3D de la distribution du glutamate.
Dans une troisiéme étude, nous avons comparé
lactivité neuronale locale, la connectivité
fonctionnelle et le contraste gluCEST dans
diverses régions du cerveau. Nous avons ainsi
mis en évidence différentes associations entre
ces trois biomarqueurs. Enfin, limpact du
vieillissement sur la connectivité fonctionnelle,
lactivité neuronale locale et le contraste
gluCEST a été évalué en comparant deux
cohortes de microcébes murins.

Title : Characterization of mouse lemur brain by anatomical, functional and

glutamate MRI
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Abstract : The mouse lemur (Microcebus
murinus) is a primate that has attracted attention
within neuroscience research. Its cerebral
anatomy is still poorly described and its cerebral
networks have never been investigated. The
first objective of this study was to develop new
tools to create a 3D digital atlas of the brain of
this model and to use this atlas to automatically
follow-up brain characteristics in cohorts of
animals. We then implemented protocols to
analyze connectivity in mouse lemurs so we
could evaluate for the first time the cerebral
networks in this species. We revealed that the
mouse lemur brain is organised in local
functional regions integrated within large scale
functional networks.

These latter networks were classified and
compared to large scale networks in humans.
This multispecies comparison highlighted
common  organization rules but also
discrepancies. Additionally, Chemical Exchange
Saturation Transfer imaging of glutamate
(gluCEST) is a method that allows the creation
of 3D maps weighted by the glutamate
distribution. In a third study, we compared local
neuronal activity, functional connectivity and
gluCEST contrast in various brain regions. We
highlighted various associations between these
three biomarkers. Lastly, the impact of aging on
local neuronal activity, functional connectivity
and gluCEST has been analyzed by comparing
two cohorts of lemurs.




