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Si les animaux n'existaient pas, ne serions-nous pas encore plus incompréhensibles à nous-

mêmes ?  

Georges-Louis Leclerc de Buffon 
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Summary and aim of the thesis 

 

Animal models are routinely used to mimic diseases in order to explore the impact 

of pathological processes on brain networks or to measure the effect of a new therapy. 

The mouse lemur (Microcebus murinus) is a primate that has attracted attention within 

neuroscience research. This small animal is a model for studying cerebral aging and 

various diseases such as diabetes-related encephalopathy, Parkinson's disease, or 

Alzheimer's disease. It has a key position on the phylogenetic tree of primates and is 

used to investigate primate brain evolution. Its cerebral anatomy is still poorly 

described and its cerebral networks have never been investigated. 

The first objective of this study was to develop new tools to develop a 3D digital 

atlas of the brain of this model and to use this atlas to automatically follow-up brain 

characteristics in cohorts of animals. A common question for the study of cohorts of 

animals by MRI is the ability to register large series of images including images 

recorded with different protocols. We developed a Python package called sammba-

MRI to generate specific cerebral templates and to coregister various images to this 

template. This package offers an efficient integration of existing coregistration methods 

(ANTS, AFNI). This package was used to create a template of mouse lemur brains to 

create a digital atlas of the mouse lemur brain. This atlas and several other available 

mammalian atlases have permitted to compare the regional brain volumes amongst 

species. Measures from MRI atlases indicate that white matter to cerebral volume 

index increased from rodents to small primates to macaques, reaching their highest 

values in humans. 

Studies of cerebral connectivity have contributed to many breakthroughs in the 

understanding of brain function in normal as well as in pathological conditions such as 

Alzheimer’s or Parkinson’s diseases. The second objective of this work was to 

characterize cerebral connectivity in mouse lemurs. This study was based on the 

evaluation of mouse lemur brains after resting-state blood-oxygen level dependent 

(BOLD) functional magnetic resonance imaging (fMRI). Patterns of low-frequency 

signal oscillations recorded with this technique are similar in brain structures 

functionally connected. Dedicated MR protocols were developed and sammba-mri was 

used to coregister fMRI images. Then, we created a methodology to extract and 
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characterize, for the first time, cerebral networks in the mouse lemur. We showed that 

their brain is organised into local functional regions integrated into large scale 

functional networks. They were classified as default-mode-like, control-executive-like, 

motor, visual, basal ganglia and thalamic networks and compared to large scale 

networks in humans. We highlighted common organisation rules but also 

discrepancies between these two species. 

The biological parameters associated to the organization of brain region into 

networks are still poorly understood. In a last part of the study, we characterized the 

relationship between resting-state fMRI and glutamate levels assessed by Chemical 

Exchange Saturation Transfer imaging of glutamate (gluCEST). We highlighted a 

relationship between the amplitude of low-frequency fluctuations (ALFF), a measure of 

cerebral activity issued from rsfMRI as well as hubness and glutamate level, which 

suggests that glutamate has a critical role on organization and regulation of brain 

function. A relationship between hubness, local neuronal activity and an index of 

glutamate level in the brain is consistent with the well-established role of glutamate as 

an excitatory neurotransmitter. More precisely we found that glutamate is strongly 

associated to ALFF in the cortical and subcortical brain regions. In the cortex, 

glutamate is also associated to functional connectivity (hubness). We also highlighted 

age-related changes for these parameters. They concern alterations of ALFF in the 

default mode network and reduction of glutamate in the globus pallidus. We also 

highlighted an age-related reorganization of the cortical/subcortical relationships 

between ALFF and functional connectivity. 
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I. Introduction 

I.1. Overview of the mouse lemur primate 

The mouse lemur (Microcebus murinus; Figure 1) or gray mouse lemur is a 

prosimian non-human primate (NHP). It was first described in 1777 by the English 

illustrator John Frederick Miller. Phylogenetically the mouse lemur is classified in the 

Primate order, the Strepsirrhini sub-order, the infra order of the Lemuriforms and the 

family of the Cheirogaleidae. The Lemuriforms infra order is entirely endemic to 

Madagascar. The Cheirogaleidae are composed of 5 genera Microcebus, Mirza, 

Allocebus, Cheirogaleus, and Phaner weighing from 30g to 600g. They are all 

quadrupeds and mostly have an elongated body and short legs. They are nocturnal 

species and sleep in small nests or holes in a tree (Mittermeier et al., 2008). Although 

the mouse lemur is probably the most abundant mammalian species native to 

Madagascar, its trade for commercial purposes has been prohibited since 1975 by the 

Convention on International Trade of Endangered Species (CITES). 

 

Figure 1 | Mouse lemur. 

Morphologically the mouse lemur is characterized by its small size, around 25 to 

28 centimetres including a tail length of 13 to 14.5 centimetres. Its body mass varies 

during the seasons (summer ≈ 75 grams, winter ≈ 120 grams). Seasonal variations 

can be reproduced in captivity by changing the photoperiod: long days (light >12h/day) 

correspond to summer i.e. the dry season and a short day (light <12h/day) correspond 

to winter i.e. the rainy season. These physiological variations are also characterized 

by torpor, a lower temperature and a hypometabolism in winter which facilitates the 

accumulation of fat reserves (Kobbe et al., 2014). These physiological modifications 

are uncommon in a primate species. The mouse lemur’s diet in the wild is composed 
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of leaves, flowers, nectar, fruits and insects. In captivity it is composed of gingerbread, 

fruits (such as banana and apple), eggs and concentrated milk. Like many mammalian 

species, the mouse lemur has seasonal breeding (end of the dry season) with at most 

3 estrus lasting 1 to 5 days for the females. The gestation latency (60 days) results in 

1 to 4 progenies weighing around 5 grams. Young mouse lemurs reach maturity quickly 

(≈ 6 to 8 months).  

The mouse lemur has a short lifespan in comparison to homologous primates, but 

has a remarkable longevity for a mammal of its size. The lifespan of the mouse lemur 

is around 4 years in the wild, due to high predation, but can reach 12 years in captivity 

(Perret, 1997). Interestingly, the mouse lemur is considered old at around 6 years and 

displays age-related alterations. As it ages, a decrease in its sensory function (hearing, 

olfaction, visual acuity) and motor activity are observed (Beltran et al., 2007) (Nemoz-

Bertholet et Aujard, 2003) (Languille et al., 2012). MRI studies also described important 

cerebral atrophies linked to an increase of the cerebro-spinal fluid (CSF) surrounding 

the brain and within the ventricles (Dhenain et al., 2000)(Figure 2). This atrophy occurs 

in 60% of the aged lemurs (Kraska et al., 2011) with an important variability of atrophy 

patterns. 

 

Figure 2 | Aged related atrophy in the mouse lemur brain. 

Anatomical MRI images of a non-atrophied (5.5 years, a) and atrophied (8.8 years, b) mouse 

lemur brain. The arrow shows CSF inclusion surrounding the cerebral cortex. Adapted from 

(Kraska et al., 2011). 

Cognitive alterations related to the atrophy severity in the hippocampus and the 

entorhinal cortex are reported in the aged mouse lemur (Picq et al., 2012). Numerous 

studies have explored Alzheimer-like pathology (N. Bons et al., 2006; Kraska et al., 

2011) while aging in the mouse lemur. The Alzheimer’s disease-like pathological 
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changes were mainly defined by the accumulation of amyloid plaques occurring in 

about 20% of the aged lemurs (Noëlle Bons et al., 1992) and some rare tauopathy 

(Giannakopoulos et al., 1997). More recently, mouse lemurs were used to artificially 

induce Parkinson's (Mestre-Frances et al., 2018) or Alzheimer's diseases (Gary et 

al., 2015). Mouse lemurs were also used to evaluate different therapies. Pifferi et al. 

found that an Omega-3 fatty acid supplementation (Fish oil) enhances the resting-state 

glucose consumption of the lemur’s brain (Pifferi et al., 2015). Another recent study 

found that caloric restriction increases lifespan of the lemurs but affects their brain 

integrity (Pifferi et al., 2018). Moreover, the key position of mouse lemurs on the 

phylogenetic trees of primates, makes this animal an important model to investigate 

primates’ brain evolution (Montgomery et al., 2010). 

Despite its use to evaluate physio-pathological changes, several improvements 

remain to be performed to characterize this animal. First, its brain was characterized 

using 2D anatomical atlas (N. Bons et al., 1998) (Zilles et al., 1979) (Le Gros Clark, 

1931). New digital atlases are required to improve the possible use of this animal. 

Cerebral function is also poorly assessed in mouse lemurs. Here, we developed 

dedicated tools to create a 3D digital atlas of its brain. We also developed new 

protocols to characterize cerebral connectivity in mouse lemurs. We finally 

characterized glutamate-based mechanisms associated to the organization of their 

brains in neuronal networks and reported age-related changes modulating their 

cerebral function. Further presentation of the rationale leading to each study is 

presented before the presentation of an article focusing on each study. 

I.2. Magnetic resonance imaging: from anatomy to brain networks 

I.2.1. Magnetic resonance imaging: basics 

Magnetic resonance imaging (MRI) is a non-invasive and non-ionizing technique 

that is used to create images of the body. It is routinely used in the clinic for diagnosis 

and in preclinical research to explore different tissue characteristics/contrasts. In 

addition to anatomy, MRI permits the detection of several physiological properties such 

as, spatial diffusion of water, metabolite concentration or blood flow and oxygenation. 

Nuclear magnetic resonance was discovered by Bloch and Purcell in 1946 (Bloch, 

1946) (Purcell et al., 1946). The theory is that most atomic nuclei such as hydrogen or 
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phosphorus have a property called “spin” or spin angular momentum. Spin can be 

orientated when absorbing the energy produced by a magnetic field. Thus, applying a 

magnetic field (B0) upon nuclei polarize and align their spin parallel (low-energy state) 

or perpendicular (high-energy state) to this field (Grover et al., 2015). However, not all 

nuclei are aligned to B0 and the proportion of the aligned nuclei results in a net 

magnetization (M). The higher the magnetic field of the MRI, the higher the net 

magnetization. The energy state of a nucleus can be changed by applying a 

radiofrequency field (B1). These radiofrequencies are commonly applied in pulses 

lasting microseconds that cause energy transition of the nucleus from low to high. The 

absorbed energy is subsequently emitted by the nucleus, generating an oscillating 

current within a reception coil and this process is called “free-induction decay” (FID). 

The resonance frequency needed to induce a transition of energy can be calculated 

by the equation of Larmor. The Larmor frequency (ω0) is dependent on a constant for 

each nucleus (γN) and the strength of the magnetic field (B0).  

ω0 =  γN. B0 

Thus, the frequency required to resonate a nucleus in a given magnetic field can be 

established for each magnetic field. The localization of MR signal is performed using 

gradient to create B0 field strength variations. The signal is encoded into two 

dimensions (frequency and phase) to create a 2D image or slice using the Fourier 

transform equation. The combination of this principle with the slice selective excitation 

pulse allows the spatial localization of the signal within a three-dimensional (3D) space.  

Differentiating two tissues with anatomical MRI is often based on their relaxation 

properties that modify the signal intensity. The hydrogen nucleus (single proton) is the 

most studied nucleus because of its abundance in fat and water. A difference in 

relaxation properties between two tissues, changes the rate at which each nucleus 

returns to its thermal equilibrium. This process is called T1 relaxation or longitudinal 

relaxation and measures the time until the magnetization returns to its thermal 

equilibrium. The transverse relaxation (T2) is the disappearance of the transverse 

magnetization. It is due to the energy exchange between spins, which induces a loss 

of phase coherence in the transverse plane and therefore a progressive disappearance 

of the transverse magnetization. The T2
* is referred to as T2 but also considers local 

inhomogeneity of the magnetic field and the tissue susceptibility. Modifying several 
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parameters in a sequence such as the time between two excitatory radiofrequency 

pulses (repetition time) and time between the excitation pulse and the signal peak 

(echo time) “weights” the image toward a contrast T1 or T2. As an example, using T1 

contrast, brain tissues can be separated based on their distinctive contrasts producing 

low signal intensity within the brain ventricles (dark), medium intensity within the gray 

matter, and high intensity within the white matter (bright). This T1/T2 difference is one 

of the mechanisms that provide contrast by MRI. 

Practically, acquisition of MR images reposes on the use of dedicated acquisition 

sequences that are particular setting of pulse sequences and pulsed field gradients 

that allow to record spins in a particular state. The two basic sequences are spin-echo 

and gradient echo sequences. The spin echo-sequence is based on the application of 

a 90° pulse followed up by a 180° pulse, prior to acquisition of the signal from an echo. 

This sequence can be adjusted to give T1-weighted, proton density, and T2-weighted 

images. Gradient echo sequences were initially based on a single pulse varying from 

5 to 90 degrees followed-up by an echo that is recorded. This sequence provides T1-

weighted, proton density, and T2*-weighted images. Larger flip angles give more T1 

weighting to the image and the smaller flip angles give more T2* weighting to the 

images. These basic sequences have been largely complexified to provide new 

contrasts and faster imaging schemes. 

I.2.2. BOLD signal 

Blood oxygenation level dependent (BOLD) imaging is the standard technique used 

to generate images in functional MRI (fMRI) studies. It relies on the measure of 

cerebral blood flow and oxyhemoglobin/deoxyhemoglobin state of haemoglobin that 

evolve when neurons from a brain region are activated (Boniface, 2002). The reason 

fMRI is able to detect this change is due to a fundamental difference in the 

paramagnetic properties of oxyhemoglobin and deoxyhemoglobin. Deoxygenated 

hemoglobin is paramagnetic whereas oxygenated hemoglobin is not leading to 

different signal in images (Figure 3). Heavily T2* weighted sequences are used to 

detect this change, which is in the order of 1-5% (Gore, 2003). 
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Figure 3 | BOLD signal: magnetic susceptibility to vascular oxygenation.  

The MRI signal within the deoxygenated tissue is lower because of the field inhomogeneity 

generated by the deoxyhemoglobin paramagnetic properties. The field inhomogeneity lead to 

a faster decay of the signal. From (Gore, 2003) 

BOLD signal was discovered in 1990 by Ogawa et al. (Seiji Ogawa et al., 1990). 

They described tubular hypo-intensities in the rodent cortex that were visible with a 

T2*-weighted sequence but not with a T2-weighted (Figure 4)Erreur ! Source du renvoi 

introuvable.. They also highlighted for the first time, the paramagnetic effect of the 

deoxygenated blood on the MRI contrast (S. Ogawa et al., 1990). 

 

Figure 4 | Blood vessel detection with a gradient echo sequence in the rat brain. 

Gradient echo epi (a) and spin echo epi (b) image acquired in an anoxic mouse brain. Tubular 

intensities corresponding to blood vessels can be detected with gradient echo epi sequence. 

From (Seiji Ogawa et al., 1990) 
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Following the initial work by Ogawa et al., several groups characterized the 

relationships between neuronal activation by a task and evolution of the BOLD signal. 

They showed that following a stimulus, the BOLD signal show a small initial dip, 

followed by a tall peak, and then a variable post-stimulus undershoot (Barth et Poser, 

2011) (Figure 5). 

 

Figure 5 | BOLD hemodynamic response function following a single brief stimulus. 

From (Barth et Poser, 2011). 

The initial dip origin remains highly debated. It might reflect a quick extraction of the 

blood oxygen prior to any cerebral blood flow increase. The initial dip is found in many 

non-human species such as rats, cats and monkeys and is specific towards neuronal 

activity (K.-S. Hong et Zafar, 2018). The main response or peak is usually delayed by 

approximately 2 seconds. This interval could correspond to the time in which the blood 

travels from arteries to draining veins and capillaries (Logothetis, 2003). The bulk of 

the BOLD response is mediated by a variety of biological mechanisms contributing to 

the hemodynamic response such as: blood flow, blood volume, increases in 

deoxyhemoglobin concentration and oxygen metabolism. After the stimulus, a 

decrease of the BOLD signal is typically observed and called undershoot. The 

undershoot origin is also disputed and supposedly reflects an increase of the cerebral 

blood flow overcompensating for the oxygen increase (Logothetis, 2003).  

Thus, the BOLD signal is assumed to indirectly measure the neuronal activity in a 

process called neurovascular coupling (Murakami et al., 2018).  
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I.2.3. From BOLD signal to evoked functional MRI 

BOLD signal is largely used to characterize cerebral activity following activation with 

various stimuli (i.e. motor (Bandettini et al., 1994), speech (Hinke et al., 1993) or 

cognitive tasks (Buckner et al., 1996). The use of this technique to infer on brain 

function relies on block task paradigm. It corresponds to a series of trials (i.e resting 

and activity task) performed during a period of time. The signal acquired during these 

two blocks can be compared statistically. Blamire et al. was one of the first studies 

detecting a BOLD signal increase in the visual cortex in response to an external 

stimulus (flashing checkerboard) (Blamire et al., 1992) (Figure 6).  

 

Figure 6 | BOLD response to stimuli in the visual cortex. 

BOLD signal total response from voxels extracted in the visual cortex. The BOLD signal peak 

exhibits a delay between the task (ON = 2 seconds) and its response. From (Blamire et al., 

1992).  

One of the major steps toward the wide use of BOLD fMRI was the development of 

fast imaging sequences permitting the acquisition of multiple images during a resolute 

period of time (Cohen et Weisskoff, 1991) in order to perform efficient blocked task 

paradigms. 

I.2.4. From BOLD signal to resting-state functional MRI 

Further analyses of BOLD-fMRI signal have also led to another major discovery, i.e. 

the existence of spontaneous and elaborated patterns of neuronal activity in the human 

brain at rest (B. Biswal et al., 1995). By exploring the correlated activity of the motor 

cortex for a finger-tapping experiment, Biswal et al. found during a baseline session 

that interhemispheric coordinated activity occurs even in the absence of stimuli (B. 
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Biswal et al., 1995)(Figure 7). Rapidly, this technique is coming to be used to describe 

a large set of brain areas connected by spontaneously coordinated activities at rest. 

These connected areas are defined as resting-state networks (Guye et al., 2008). The 

default-mode network, salience network, sensory motor network, visual networks are 

amongst the most widely described networks. We will focus on the description of 

cerebral networks characterized in humans (“I.4.1. Organization and function of 

cerebral networks in humans”) and in animals (“I.4.2. Organization and function of 

cerebral networks in non-human primates”). The analysis of resting-state networks is 

based on image processing algorithms that will be described in the following paragraph 

 

Figure 7 | BOLD correlation in the motor cortex under activation and at rest. 

This figure displays on the left (a) the correlated voxel corresponding to the activation paradigm 

(finger tapping). Coordinated activity is observed in the right and the left hemisphere of the 

motor cortex. Similar coordinated activity was observed at rest (b) and in similar areas. From 

(B. Biswal et al., 1995). 

I.3. Overview of the methods used to characterize cerebral networks by resting-

state fMRI 

I.3.1. Overview of image acquisition schemes for rsfMRI 

fMRI technique is based on the images acquisition at low spatial resolution. Thanks 

to this low spatial resolution, it is possible to obtain an excellent temporal resolution 

which produces images of the whole brain every 1 to 5 seconds. The total acquisition 

time of an fMRI scan can last a few minutes (usually between 5 and 15 minutes) 

resulting in hundreds of images covering the entire brain (or one 4D image with three 

spatial dimensions and one temporal dimension). The different slices of a single brain 
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image are not acquired at the same time. An interleaved acquisition (1, 3, 5…) is 

commonly used to reduce the “slice cross-talk artefacts”. The intensity of the voxels of 

a 4D fMRI image varies by a low percentage over time. However, this small variation 

can be detected with the algorithms described in the following paragraphs. 

I.3.2. From signal to functional connectivity analysis 

Functional connectivity is the connectivity between brain regions that share 

functional properties. More specifically, it can be defined as the temporal correlation 

between spatially remote neurophysiological events, expressed as deviation from 

statistical independence across these events in distributed neuronal groups and areas 

(B. B. Biswal et al., 1997). Several algorithms have been implemented to analyze this 

connectivity. We will present the most widely used algorithms. 

I.3.2.1. Seed-based correlation analysis 

Seed-based correlation analysis is one of the most common methodologies for 

functional network characterization (Greicius et al., 2003) (Figure 8). This method was 

first adopted by Biswal et al. to explore Pearson's correlation coefficients between 

voxelwise signals and ROIs or “seeds” (B. Biswal et al., 1995). The seed is a small 

area, used to extract and average the BOLD signal. It can be defined by creating either 

a sphere corresponding to the coordinates of brain regions or by using regions 

predetermined by a brain atlas. The Pearson's correlation coefficients can be 

measured between the signal extracted within the seed and the voxelwise signals. The 

reconstruction of the Pearson's correlation coefficients corresponding to each voxel in 

the 3D space of the brain image highlights areas connected to the seed. 
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Figure 8 | Human default mode network characterized by seed-based correlation 

analysis. 

Map of the resting-state default mode networks highlighted by the voxels connected to the 

posterior cingulate cortex (seed, blue arrow). Significant clusters are found in (A&C) inferior 

parietal cortex, (B) orbitofrontal cortex, ventral anterior cingulate cortex, (D&G) medial 

prefrontal cortex, (E) dorsolateral prefrontal cortex, (F) parahippocampal gyrus, (H) 

inferolateral temporal cortex. From (Greicius et al., 2003). 

I.3.2.2. Analyses based on BOLD signal spatial decomposition 

Network organization can also be explored by using spatial decomposition 

algorithms. Two main algorithms were developed in order to extract brain networks on 

raw images: (1) independent component analysis (ICA) and (2) dictionary learning. 

Both produce a set of activation 3D maps that permit the characterization of the 

cerebral networks. Although these algorithms are more complex than the seed based 

correlation analysis, the identification of co-activated areas remains based on the same 

basic principle.  

(1) ICA was the first algorithm developed and adapted for fMRI images. This 

computational algorithm assumes that several areas of the brain can be 

separated into different spatially or temporally independent sources of signal 

called components. One of the assumptions of ICA is that the components 

display a non-Gaussian signal. The two broadest definitions of independence for 

ICA are the maximization of the non-Gaussianity and the minimization of mutual 

information.  
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(2) The dictionary learning method identifies a sparse representation 

(component) of an array that can form a linear combination. The array or 2D 

matrix is extracted using an fMRI image (column = brain voxels; rows = time 

points). One advantage to dictionary learning is that it allows repeated use of 

brain voxels, meaning that the same voxel could be included in different 

components. This property provides an improved flexibility of decomposition. 

Both methods have succeeded in separating functional regions from rsfMRI 

datasets. Their limitation is that the number of components has to be estimated prior 

to the analysis and this assumption greatly affects the ICA or dictionary learning results 

(Figure 9). Clear segmentation differences between two similar components could 

appear. For example, the components of Figure 9 (A; 24) and (B; 69) define the same 

network (executive) and are characterized by the anterior cingulate cortex. Their 

extraction using 27 (A) and 70 (B) components leads to the non-detection of several 

co-activated areas in (A; 24) compared to (B; 69). The other limitation specific to ICA, 

is that this algorithm struggles to reveal networks with partly neuro-anatomical overlaps 

(W. Zhang et al., 2019). This issue is a limitation for ICA since brain networks are not 

segregated in space but interact with each other. Indeed, the brain is a heterogeneous 

entity with intermixed neurons and various axonal projections within the same region. 
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Figure 9 | Group-ICA analysis at rest: Assumption of the number of components. 

Group-ICA in humans based on 27 components (A) where 16 were found non-artefactual and 

70 components (B) where 12 were found non-artefactual. From (Tian et al., 2013).  
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I.3.2.3. Analyses based on graph analysis and hub identification 

Graph theory is another technique to characterize local functional regions as well 

as large-scale networks. With graph theory, whole brain networks (graph) are defined 

as a set of nodes (basic elements of the system) and edges (allowing relationships 

between nodes). The correlations of the BOLD fMRI signal between the different nodes 

provides an index of functional connectivity (FC) (C. F. Beckmann et al., 2005; J. S. 

Damoiseaux et al., 2006) and are represented by the edges of the network. 

In graph theory, large scale networks can be defined as modules or communities, 

which are groups of nodes densely connected by edges and sparsely connected with 

nodes from other modules. One of the most common methods to divide a network into 

communities is called modularity maximization. Modularity is a metric comparing the 

number of edges of a community and evaluating their differences with equivalent 

random communities (M. E. Newman, 2006). High modularity means dense connection 

within a module and sparse connection between nodes of different modules. 

Modularity maximization assigns a different community to each node and evaluates 

the gain of modularity if node A is removed from its community and placed in 

community X (D. B. Vincent et al., 2008). The community detection is useful for the 

automatic partition of a network into distinct communities that are relevant to the 

neurological organization of the brain (Figure 10). However, modularity maximization 

suffers from methodological limitations such as the existence of partitions that are 

equally optimal. Also, this algorithm cannot classify nodes in different modules 

(overlapping nodes) which is a problem for biological relevance (see chapter: I.3.2.2. 

Analyses based on BOLD signal spatial decomposition). 
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Figure 10 | Four modules detected in the human brain. 

The detected modules were based on a network in which each voxel represents a node. These 

four networks are consistent with the current knowledge of the human brain organization 

explored with other techniques. From (Moussa et al., 2012). 

Whole brain networks can also be characterized using various descriptors of 

topological properties. For example, "hubness" describes the degree of node 

centrality or its influence in the network which is supposedly related to its importance 

for brain function. Eigenvector centrality was used as a hubness descriptor in our 

studies. However, a wide variety of descriptors exist, representing different hubness 

features in a given graph. Standard hubness metrics are: 

- Eigenvector centrality that detects nodes highly connected to other highly 

connected nodes (Lohmann et al., 2010). Eigenvector centrality measures the 

centrality of a node according to the number of links it has with other nodes in 

the network. Eigenvector centrality also considers the connection quality of a 

node, the number of links it has, and so on for the whole network. Eigenvector 

centrality calculates the extended connections of a node, so it favors nodes that 

influence the entire network and is not limited to direct connections. 
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- Degree centrality simply represents the number of edges of a node (or the 

mean of their value on a weighted graph). Degree centrality find highly 

connected nodes that are likely to hold most of the information which can 

connect quickly with the larger network. 

- Closeness centrality identifies the shortest path between two nodes and 

calculates the sum of its edges. It is estimated for a given node, by averaging 

the sum of the edges of the shortest path between the node and all other nodes 

in the graph (van den Heuvel et al., 2010). 

- Betweenness centrality detects the amount of times a node appears on the 

shortest path along other nodes. It considers the influence of a node as its 

"bridges" property. To do this, it detects the shortest paths of the entire network 

and counts number of times a given node lie into it (van den Heuvel et al., 2010). 

This metric is probably the most commonly used to characterize hubness. 

- Current flow betweenness centrality is a betweenness centrality measure 

that also considers the influence from all the paths across nodes. This algorithm 

provides more weight to the shortest path but also considers the other 

connections. Interestingly, the information is considered to spread as an 

electrical current (M. E. J. Newman, 2005). 

To our knowledge, there is no consensus for the best hub metric to characterize 

brain networks. 

Small-worldness is another index of topological properties of the network. It 

defines large scale specialization and global information transfer efficacy. It can be 

characterized using two small-world coefficients (σ and ω) (NetworkX (Hagberg et al., 

2008))(Figure 11).  

σ is defined as σ =  
𝐶/Crand

𝐿/Lrand
 (Watts et Strogatz, 1998)  

ω is defined as ω =
𝐿

Lrand
−

𝐶

Crand
 (Telesford et al., 2011). 

With C and L being, respectively, the average clustering coefficient (a measure of 

network segregation) and the average shortest path length (a measure of integration) 

of the network. Crand and Lrand are their equivalent derived random networks. Small-
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world networks have σ values superior to 1 and ω values close to 0 (Telesford et al., 

2011). The small-world coefficients are disrupted in several neuropathologies such as 

Alzheimer’s disease (X. Zhao et al., 2012) or schizophrenia (Anderson et Cohen, 

2013). 

 

Figure 11 | Comparison of different networks based on their large scale topological 

properties. 

Equivalent lattice (A), real (B), random (C) networks. The networks that are considered as 

small-world are the lattice (σ= 3.49) and the real world (σ= 4.67). From (Telesford et al., 2011). 
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I.4. Functional connectivity in mammalian species 

I.4.1. Organization and function of cerebral networks in humans 

Resting-state networks have been largely described in humans (Figure 12) (B. Biswal 

et al., 1995; B. B. Biswal et al., 2010; Fox et Raichle, 2007). Their study has contributed 

to many breakthroughs in understanding the relationship between human cognition 

and brain architecture (Mather et al., 2013). 

The most studied resting-state network is the DMN (Figure 12 ; Figure 26 ; Figure 8). 

It was first described by Raichle et al. (Raichle et al., 2001) using positron emission 

tomography (PET). This network is particularly engaged during rest and is 

suspended/deactivativated during stimulated brain activity (Hampson et al., 2006; 

Tambini et al., 2010). The main regions implicated in the DMN are posterior cingulate 

cortex, medial prefrontal cortex, and medial, lateral, and inferior parietal cortices. The 

DMN is possibly involved in memory consolidation (Huo et al., 2018) or other cognitive 

functions such as mindfulness (Doll et al., 2015), self-referential and introspective state 

(Greicius et al., 2003). The DMN is often divided into two major networks (anterior and 

posterior DMN). The anterior DMN is more active during self-directed thoughts and the 

posterior DMN during passive rest (C. G. Davey et Harrison, 2018). Also, Davey et al. 

investigated the DMN during self-related processes and found that the posterior 

cingulate cortex is mainly implicated in the coordination of the mental representations. 

The medial prefrontal cortex is a regulator or ‘gateway’ function of self-representations 

(C. G. Davey et al., 2016). Furthermore, the DMN may prove to be implicated in and/or 

be an indicator of healthy and non-healthy brain aging including several pathological 

processes such as Alzheimer’s or Parkinson’s diseases (Buckner et al., 2005; Gao et 

Wu, 2016). Moreover, the pattern of deposition of one the major lesions in Alzheimer’s 

disease (amyloid plaques), co-localizes with the DMN (Buckner et al., 2005).  
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Figure 12 | Major resting-state networks of the human brain. 

Adapted from (Raichle, 2011) 

The executive-control network (Figure 12) embeds regions from the superior and 

middle prefrontal cortex, anterior cingulate cortex, paracingulate gyri, ventrolateral 

prefrontal cortex and subcortical regions of the thalamus (Christian F. Beckmann et al., 

2005; Mazoyer et al., 2001). The executive network is especially active during tasks 

involving target-directed, intellectual activities and participation in cognitive control. 

Anti-correlated activity is reported in this network at rest (Seeley et al., 2007a). Patients 

with attention-deficit/hyperactivity display a higher functional connectivity within the 

anterior cingulate cortex related to a decrease in their symptoms (Francx et al., 2015). 

The attention network (Figure 12) is commonly divided into two separate fronto-

parietal networks (dorsal and ventral) that both involve different areas of the frontal 

cortex (Vossel et al., 2014). The dorsal attention network embeds the intraparietal 

sulcus, as well as the frontal eye field. This network is implicated in attention processes 

such as the selection of stimuli (spatial cueing of color, shape, motion direction). Also, 
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this network is involved in the control of appropriate response, potentially mediated by 

a selection (top-down) of the cognitive stimuli and actions (Hopfinger et al., 2000). The 

ventral attention network involves the ventral frontal cortex and the temporo-parietal 

junction (Vossel et al., 2014). This network seems dedicated to the spatial attention of 

new stimuli (visual, sound and tactile) (Vossel et al., 2006). Therefore, the main 

function evoked for this network is the reorientation of the attention to relevant stimuli 

(Stevens et al., 2005). 

The salience network (Figure 12) includes regions in the dorso-medial prefrontal 

cortex, anterior cingulate cortex, insula, and temporo-parietal junction. This network is 

associated with mindfulness and the regulation of the dynamic changes with other 

networks implicated in mindfulness (DMN or the control-executive) (Doll et al., 2015). 

The main function of the salience network is probably to regulate the switch between 

networks. It participates in answering to salient events by facilitating the access to 

working memory, attention or motor systems (Menon et Uddin, 2010). Other roles of 

this network are related to moral reasoning (Chiong et al., 2013), resistance to 

temptation (Steimke et al., 2017) and more global emotional and empathic functions 

(Seeley et al., 2007b). Dysfunctions of the network are associated with 

neuropsychiatric disorders such as autism, schizophrenia and frontotemporal 

dementia (Uddin, 2014). 

The visual network (Figure 12) was divided into two main large- scale networks (J. 

S. Damoiseaux et al., 2006): (1) medial visual cortical areas composed of the primary 

visual area located in the calcarine sulcus, medial extrastriate nucleus and lingual 

gyrus (Christian F. Beckmann et al., 2005) as well as co-activated areas in the lateral 

geniculate nucleus precuneus regions. The thalamus is proposed as a “relay station” 

from the visual input to the primary visual cortex (Christian F. Beckmann et al., 2005). 

(2) lateral visual cortical areas including mainly non-primary visual areas such as the 

occipital pole and the occipito-temporal cortex as well as superior parietal regions. This 

set of regions is assumed to have a role in visuo-spatial attention or visual attention 

(Christian F. Beckmann et al., 2005). Some studies have demonstrated that lesions 

within the parietal regions can disturb spatial attention (Nachev et Husain, 2006). 

The sensory-motor network (Figure 12; Figure 7) was the first rsfMRI found by 

Biswal et al. (B. Biswal et al., 1995) using seed-based analysis. This network is mainly 
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composed of regions from the pre and postcentral gyri (Brodmann areas 1, 2 and 3) 

and the supplementary motor area. The sensory-motor network display high 

interhemispheric correlations (Bharat B. Biswal, 2012). The primary sensory cortex and 

the primary motor cortex can be subdivided into areas responsible for the processing 

of sensory and motor information dedicated to specific areas of the body such as the 

nose, eyes, toes, etc. (Grodd et al., 2001). 

The auditory network (Figure 12) involves the primary and secondary auditory 

cortices and is dedicated to the process of auditory stimuli. An asymmetry of this 

network is highly debated (Andoh et al., 2015). 

The basal ganglia network is mainly composed of the caudate nucleus, putamen, 

pallidum, substantia nigra and subthalamic nucleus (Afifi, 2003). This network is 

associated with a variety of functions such as motivational, emotional, motor and 

cognitive processes (Bednark et al., 2015). This network is highly damaged in 

Parkinson's disease and Huntington's disease (Wen et al., 2012) and the functional 

connectivity matrix of this network was used to classify Parkinson's disease patients 

versus healthy controls with 81% accuracy (Rolinski et al., 2015). 

This list of networks is not exclusive and other major networks have been described 

in humans. We cannot describe all these networks here. 
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I.4.2. Organization and function of cerebral networks in non-human primates 

Cerebral networks have been described in non-human primates as in humans. The 

first characterization of cerebral networks in anesthetized non-human primates at rest 

found four large scale networks (J. L. Vincent et al., 2007) classified as the DMN, 

oculomotor, somatomotor and visual. They were anatomically close to those previously 

described in humans. This major discovery highlighted that the brain functional 

organization transcends the consciousness and reflects an evolutionarily conserved 

property of the primate brain. 

 

Figure 13 | Default mode network discovered for the first time in the macaque 

brain. 

Significant voxels correlated to the posterior cingulate cortex (seed-based analysis) in 

anesthetized macaque using BOLD fMRI. Adapted from (J. L. Vincent et al., 2007). 

These results were quickly confirmed by Rilling et al. using [18F]-

fluorodeoxyglucose PET on awake chimpanzees at rest (Rilling et al., 2007) and later 

with [15O]H2O PET in macaques (Kojima et al., 2009). In 2009, the posterior cingulate 

cortex activity measured by electrophysiology was found to be suppressed during task 

performance and returned to a higher resting baseline at rest in macaques (Hayden et 

al., 2009). Hutchison et al. was the first to analyze fMRI images with ICA (20 

components) on the macaque (Macaca fascicularis) cortex and found 11 relevant 

components ((R. M. Hutchison et al., 2011); Figure 14) 
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Figure 14 | Eleven independent components extracted from fMRI images of the macaque 

brain. 

The ICA was performed using 20 components, 11 were selected as relevant and named as 

follows: A: precentral–temporal; B: fronto-parietal; C: posterior-parietal; D: occipito-temporal; 

E: frontal; F: superior-temporal; G: cingulo-insular; H: paracentral; I: parieto-occipital; J: 

postcentral; K: hippocampal. From (R. M. Hutchison et al., 2011) 
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A meta-analysis of macaque fMRI images has allowed a comparison of the 

reduction of activity during goal-directed behavior within the DMN rather than the 

functional connectivity analysis at rest or under anaesthesia (D. Mantini et al., 2011). 

This publication was followed by a meta-analysis synthesizing all the DMN 

organization descriptions of macaques published before 2012 (R. M. Hutchison et 

Everling, 2012). This article found a diversity of anatomical clusters included in this 

network (Figure 15). 

 

Figure 15 | Synthesis of the macaque DMNs observed in rsfMRI literature. 

(A) (J. L. Vincent et al., 2007), (B) (Margulies et al., 2009), (C) (J. L. Vincent et al., 

2010), (D) (Teichert et al., 2010), (E, F) (R. M. Hutchison et al., 2011), (G, H) (D. 

Mantini et al., 2011). From (R. M. Hutchison et Everling, 2012).  
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Different articles reported common features as well as discrepancies between the 

macaque DMN. (J. L. Vincent et al., 2007) and (Margulies et al., 2009) found similar 

correlated activity (seed-based analysis) in the lateral temporoparietal cortex, the 

posterior parahippocampal cortex, the dorsal medial prefrontal cortex and the anterior 

cingulate cortex; (D. Mantini et al., 2011) and (J. L. Vincent et al., 2010) found similar 

correlated activity in the dorsal medial prefrontal cortex and in the inferior parietal 

lobule. However, the lateral temporoparietal cortex and the posterior parahippocampal 

cortex were absent; (Teichert et al., 2010) and (R. M. Hutchison et al., 2011) did not 

find medial and dorsal frontal and hippocampal regions. Differences features of the 

macaque DMN were explained by the limitations of seed-based analyses and by the 

use of different seeds in various studies. Indeed, different seeds locations or sizes 

could potentially impact the reproducibility of the features (R. M. Hutchison et Everling, 

2012). The use of ICA was proposed as a solution to provide more reproducible results.  

In chimpanzees, DMN regions similar to those reported in humans were proposed 

(medial prefrontal cortex, posterior cingulate cortex and precuneus) (Barks et al., 

2015). The DMN is also found in awake marmosets, recruiting the retrosplenial and 

posterior cingulate cortices, medial parietal area, premotor and posterior parietal areas 

and areas surrounding the intraparietal sulcus (Belcher et al., 2013). 

Other large scale networks similar to those detected in humans are observed in 

the non-human primates at rest. For example, using different seeds in the cingulate 

cortex Hutchison et al. identified four large scale networks (somatomotor, executive, 

attention-orienting and limbic) ((R. M. Hutchison et al., 2012); Figure 16). 
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Figure 16 | Four large scale networks extracted from the macaque brain using various 

seeds in the cingulate cortex. From (R. M. Hutchison et al., 2012) 

The salience network has also been described in the macaque brain but its 

identification is not justified on a behavioral/functional basis (Touroutoglou et al., 2016).  

In the awake marmoset, the diversity and the number of networks extracted with 

ICA (eleven) was exceptionally high (higher-order visual, basal ganglia, primary visual, 

dorsal (medial) somatomotor, higher-order visual, higher-order midline visual, default 

mode, salience, orbitofrontal, cerebellar, ventral (lateral) somatomotor, frontal pole). 

The frontal-parietal network was recently described in the marmoset brain and is 

characterized as a major network (high hubness score) (Ghahremani et al., 2016). 

As evoked for the DMN and other networks, difficulties occurred in describing the 

spatial limits between distinct networks and in identifying their functions. These 

difficulties generated different conclusions concerning the identifications of several 

large scale networks. A standardized methodology will be necessary in order to obtain 

reproducible results across laboratories. 
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I.4.3. Organization and function of cerebral networks in rats 

As in non-human primates, rat cerebral networks were first discovered under 

anaesthesia. One of the first studies to observe correlated areas with fMRI signals in 

rats was performed with a 9.4T MRI. It found two networks corresponding to the 

sensorimotor and visual networks (Pawela et al., 2008). One year after this discovery, 

Zhao discovered a caudate/putamen network in rats (F. Zhao et al., 2008). Later, a 

large list of reproducible networks that were extracted with ICA was proposed by 

Hutchiston et al. under two types of anaesthesia ((R. M. Hutchison et al., 2010); Figure 

17). 

 

Figure 17 | Reproducible cerebral networks in rats under two types of anaesthesia. 

Rat networks were extracted from rsfMRI images using an ICA with 40 components. From (R. 

M. Hutchison et al., 2010). 

  



41 

 

Modularity algorithms have also been used to describe the rat cerebral network 

organization. Using partial correlations, with 36 anatomical regions D'Souza et al. 

found two pure cortical (frontal, somato-motor) and four mixed large scale networks 

(hippocampal and perihippocampal cortices, basal ganglia, thalamic nuclei and pons, 

Q=0.39) (D'Souza et al., 2014). 

A similar organization was found in awake rats (N. Zhang et al., 2010) (Becerra et 

al., 2011) including a network analogous to the human DMN. The rat DMN was 

described in several publications (Upadhyay et al., 2011) (Lu et al., 2012). According 

to Lu et al., the co-activated clusters of the rat DMN are the orbital cortex, prelimbic 

cortex, cingulate cortex, auditory/temporal association cortex, posterior parietal cortex, 

retrosplenial cortex (corresponding to the posterior cingulate cortex in humans) and 

the hippocampus (Lu et al., 2012). As in non-human primates, rsfMRI networks have 

been compared to humans. Sierakowiak et al. (Sierakowiak et al., 2015) found four 

remarkable similarities between rat rsfMRI networks and human networks (DMN, 

motor, dorsal basal ganglia and ventral basal ganglia). These results are particularly 

interesting for the development of translational experiments to validate animal models 

of brain disorders. However, the DMN regions extracted from this study were different 

when compared to the study of Lu et al. This difficulty to identify a reproducible pattern 

of network organization is probably due to the multiple levels of systems and 

subsystems that may support distinct functions, as suggested by Hsu et al. and Smith 

et al. (Hsu et al., 2016) (Smith et al., 2009).  

The advantage of using rats is that numerous pathological models of brain disorders 

have been developed. As a consequence, alterations of the rat functional connectivity 

or of network organization are studied in various neuropathological models such as 

Alzheimer’s disease (Sanganahalli et al., 2013), Parkinson's disease (Westphal et al., 

2017), stress (Henckens et al., 2015) and aging (Ash et al., 2016). 
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I.4.4. Organization and function of cerebral networks in mice 

One of the first publications describing and comparing rat and mouse rsfMRI 

network organization highlighted the difficulties of cross-species comparison. The 

extracted maps remain highly dependent on the ICA components number that can 

skew the results (Jonckers et al., 2011). However, comparing two species with the 

same number of components remains potentially more accurate than using seed 

based-analysis. As for primates ((R. M. Hutchison et al., 2012); Figure 16) the 

localization of a seed within the same region could totally change the type of network 

detected. As a consequence, in order to accurately compare two equivalent networks 

across species, the anatomical correspondence of the seeds has to be known prior to 

the analysis. To our knowledge, these criteria are rarely met. The methodological 

strength of the study by Jonckers et al. was the use of two ICA component numbers 

which allowed them to evaluate the stability of the extracted maps across the two 

species and to identify that the components of the mouse brain are more unilateral 

than rats (Jonckers et al., 2011)(Figure 18). 

 

Figure 18 | Similar components are extracted in rats and mice. 

ICA applied to rat and mouse rsfMRI with 15 and 40 components. The components in the 

mouse brain seem to be more unilateral than in rats. From (Jonckers et al., 2011). 

These two levels of ICA (low and high number of components) have also been 

studied in several studies in humans (Smith et al., 2009), and mice (F. Sforazzini et al., 

2014). Sforazzini et al. explored the functional brain of mice by varying the number at 

a high level (20 components; Figure 19) and low level (5 components; Figure 20) (F. 
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Sforazzini et al., 2014). The ICA using 20 components resulted in maps encompassing 

several established neuro-anatomical systems of the mouse brain (Figure 19).  

 

Figure 19 | Functional regions identified via ICA in the mouse brain using twenty 

components. 

The ICA was performed on BOLD images. IC1: pre-frontal cortex, IC2, cingulate/retrosplenial 

cortex, IC3 and IC4, anterior and posterior parietal (somatosensory) cortex; IC5, anterior motor 

cortex, IC6, posterior motor cortex, IC7, thalamus, IC8, caudate putamen, IC9, dorsal 

hippocampus, IC10, cerebellum and brain stem. Abbreviations: aMc, anterior motor cortex; 

aPc, anterior parietal cortex; Cb, cerebellum; Cg, cingulate cortex; CPu, caudate-putamen; Hc, 

dorsal hippocampus; PFc, prefrontal cortex; pMc, posteriormotor cortex; pPc, posterior parietal 

cortex; Rs, retrosplenial cortex; Th, thalamus. From (F. Sforazzini et al., 2014). 
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Interestingly, the low level ICA applied to BOLD images (Figure 20; left) 

highlighted a putative DMN in mice that was very similar to the DMN-like network 

observed in the same study with a seed-based approach and CBV weighted images 

(Figure 20; right) 

 

Figure 20 | DMN identified with ICA in the mouse brain using five components. 

The ICA was performed on BOLD and CBV weighted images. Abbreviations: Acb, nucleus 

accumbens; Cg, cingulate cortex; OFc, orbitofrontal cortex; Pc, parietal cortex; Prl, prelimbic 

cortex; Rs, retrosplenial cortex. From (F. Sforazzini et al., 2014). 

This study also observed anti-correlations between the mouse DMN and the 

neighboring fronto-parietal regions which is consistent with literature based on human 

studies. However, as in rat and non-human primates, the regions thought to be 

involved in the DMN are highly debated. Sforazzini et al. found that the DMN includes 

the nucleus accumbens, cingulate cortex, orbitofrontal cortex, parietal cortex, prelimbic 

cortex and the retrosplenial cortex (F. Sforazzini et al., 2014). Stafford et al. found a 

DMN encompassing the parietal cortex, the lateral/medial orbital cortex and the 

cingulate area (Stafford et al., 2014). For Zerbi et al. this network covers the 

caudomedial entothinal cortex, cingulate cortex area, caudate putamen, medial 

entorhinal cortex, medial orbital cortex, parasubiculum, prelimbic cortex, retrosplenial 

dysgranular and granular cortex and the thalamus (Zerbi et al., 2015). 

As previously discussed for other species, these studies have clearly highlighed the 

difficulty in identifying reproducible cerebral networks. Morever, this difficulty is 

accentuated by the extremly small size of the mouse brain (around 400 mm3). Other 
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techniques such as the mesoscale structural connectome (i.e., an anterograde tracer 

mapping axonal projections) provides evidence towards the existence of a DMN in 

mice (Stafford et al., 2014). However, not all networks have been validated using 

tracers. In a similar study, Grandjean et al. found that interhemispheric homotopic 

cortical, hippocampal and cortico-striatal networks displayed direct neuronal 

connections. However, interhemispheric striatum functional connectivity exhibited 

indirect neuronal connections. In contrast, limited functional connectivity involved in 

the cortico-thalamic pathways was observed when direct anatomical connection was 

identified (probably due to anaesthesia) (J. Grandjean, Zerbi, et al., 2017).  

The small world property of the mouse brain has been added to the list of the 

similarities of brain organization with humans and other mammals (Mechling et al., 

2014). As in humans, the dynamic organization of intrinsic functional networks in the 

mouse brain was demonstrated in healthy animals and fluctuates to different degrees, 

depending the anaesthesia duration (J. Grandjean, Preti, et al., 2017). Moreover, the 

dynamic functional states of the networks were affected in animal models of chronic 

psychosocial stress (J. Grandjean, Preti, et al., 2017). 

The study of pathological models is probably one of the major applications for the 

study of the mouse fMRI networks. Several studies have already proved that 

alterations of functional connectivity can be measured in Alzheimer’s disease-like 

models (J. Grandjean, Schroeter, He, et al., 2014) (D. Shah et al., 2018) or in models 

of Huntington's disease (Q. Li et al., 2017). 

I.4.5. Organization and function of cerebral networks in other mammalian 

species 

Individually, resting-state network organization is characterized in several other 

mammalian species including ferrets (Zhou et al., 2016), rabbits (Schroeder et al., 

2016), dogs (Kyathanahally et al., 2015) and the prairie vole (Ortiz et al., 2018). It 

seems that all the mammalian species studied so far, possess a brain that can be 

spatially organized by their spontaneous neuronal activity. 
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I.4.6. Comparison of the resting-state organization between mammals 

I.4.6.1. Homologous resting-state organization in mammals 

Throughout evolution, brain regions could have been duplicated, fused, 

reorganized or expanded (R. M. Hutchison et Everling, 2012). Improving the accuracy 

of resting-state network identification and comparison of networks between species is 

critical to assess their evolution during species evolution. The description of functional 

architecture of each species is based on a variety of acquisitions, analyses, and 

anaesthesia (or awake) protocols. This lack of standardization is justified by the variety 

of brain sizes and anatomical organizations observed within mammals. For these 

reasons only, a few studies have compared the connectivity between different species 

and with similar approaches. 

To compare human and macaque resting-state networks, Mantani et al. developed 

a projection of the macaque brain to human space (Dante Mantini et al., 2013). Based 

on this technique, they described common and specific resting-state networks to each 

species. They suggested that resting-state networks common to macaques and 

humans concern ventral somatomotor, dorsal somatomotor, parafoveal visual, 

peripheral visual, early auditory, ventral attention, medial prefrontal, dorsal attention, 

default mode, lateral prefrontal and language regions. Resting-state networks 

specific to humans concern the left fronto-parietal, right fronto-parietal and cingulo-

insular. Resting-state networks specific to monkeys concern the caudate/putamen. 

However, the caudate/putamen has been found numerous times in humans (Afifi, 

2003).  

The identification of similar large scale networks between species has also been 

carried out in a large number primate species (Wey et al., 2014). This study identified 

five common networks in the capuchin, baboon, chimpanzee, and human: visual, 

sensory-motor, auditory, cerebellum and DMN. This study also quantified the strength 

of the interhemispheric connectivity in the fronto-parietal network of these four species. 

They highlighted that the intra-hemispheric connectivity is much higher in humans than 

in non-human primates. This result was supported by a measure of the inter-

hemispheric response of the fronto-parietal network during a working-memory 

oculomotor task which was more pronounced in macaques than in humans (Kagan et 

al., 2010). A strong interhemispheric functional connectivity between homologous 
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regions is always present in humans and primates suggesting a phylogenetically 

preserved mammalian characteristic (R. Matthew Hutchison et al., 2012). However, 

lateralized networks (i.e. fronto-parietal resting-state network) have only been 

demonstrated in humans. 

According to the few studies on functional organization in mammals, humans seem 

to display the largest variety of functional networks. The complexity and diversity of the 

behaviors is probably related to this large repertoire of networks. This complexity is 

also reflected by the volume of the white matter fiber tracts network (Nadkarni et al., 

2018). Moreover, direct evidence is in favor of a close relationship between the 

structural and functional organization in humans (Jessica S. Damoiseaux et Greicius, 

2009), in primates (Miranda-Dominguez et al., 2014) and in mice (J. Grandjean, Zerbi, 

et al., 2017).  

Determining the topologies, the critical regions or the network organizations that are 

conserved across species throughout evolution could indicate patterns that have 

essential, basic and/or developmental functions. Despite the lack of consensus 

concerning a standardized methodology in mammal fMRI, cross-species studies could 

provide essential clues towards understanding brain physiology. 

 



48 
 
 

 

 

 

 

 

 

 

 

 

 

Studies performed during this thesis 
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Overview and objectives 
 

i. Develop a pipeline to register large series of images including images 

recorded with different protocols and species 

 

ii. Develop a robust methodology to extract and characterise cerebral networks 

in the mouse lemur that can be adapted for other species 

 

iii. Evaluate the ability of the fMRI to differentiate young and aged lemurs 

 

iv. Evaluate a possible association between highly connected regions, local 

neuronal activity and an excitatory neurotransmitter 
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II.1. Study 1: 3D digital atlas of mouse lemur brain: Tool 

development and applications 

A first objective of this thesis was to develop a 3D digital atlas of the brain of mouse 

lemurs. This atlas was based on the use of MR images from a cohort of 34 mouse 

lemurs. A common question for the study of cohorts of animals by MRI is the ability to 

register large series of images including images recorded with different protocols. In 

clinical research, image coregistration to a standardize space is commonly performed 

by using tools such has SPM (K.J. Friston et al., 2007), FSL (Jenkinson et al., 2012), 

AFNI (Cox, 1996), ANTS (Tustison et al., 2014). Most of the fMRI studies in animals 

use in-house pipelines that are often adapted from humans. Here, we developed a 

Python package called sammba-MRI designed to generate specific cerebral templates 

and to coregister various images to this template. My work was dedicated to test the 

co-registration robustness of sammba-mri on various anatomical MR images, on 

various species and to develop its use. Here, we present the tools that we developed 

to create and use the atlas and then present the article that has been published in 

NeuroImage. 

  

https://www.linguee.fr/anglais-francais/traduction/robustness.html
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II.1.1. Atlas of the mouse lemur brain 

The brain of the mouse lemur was first described in 1931 by Le Gros Clark (Figure 21) 

(Le Gros Clark, 1931).  

 

Figure 21 | The mouse lemur brain 

Lateral view of the mouse lemur brain (A). Segmentation of the cortex of the mouse lemur 

based on its histological features (B). From (Le Gros Clark, 1931). 

Le Gros Clark segmented 19 cortical structures and found that the mouse lemur 

brain is characterized by a marked and deep Sylvian fissure. Le Gros Clark also 

observed that the differentiation of cortical structures was more pronounced than in 

non-primate species. However, the segmentation of the temporal cortex by Le Gros 

Clark was disapproved by Zilles (Zilles et al., 1979). Zilles produced a detailed 

description and another segmentation of the mouse lemur brain based on 

cytoarchitectonics. More recently, the first stereotaxic atlas of the mouse lemur brain 

was produced by Bons (N. Bons et al., 1998). This atlas provided more detail of the 

different anatomical structures and specified landmarks for stereotaxic injections. 

The main disadvantage of histological atlases is that they only offer two-

dimensions which limits the spectrum of analysis. The method commonly used to 

extract a signal from 3D MRI or histology image is manual segmentation guided by an 

atlas paper. This method is based on drawing regions of interest upon each slice of a 

3D image. It requires an expertise in biology to identify and extract relevant information. 

This work is also fastidious and limits the amount of data extracted as well as the 

number of anatomical regions segmented. It leaves a large amount of information 

untapped. Moreover, the manual extraction is dependent upon the operator, leading to 

an increase in variability of the extracted results. To overcome these disadvantages, 

https://www.linguee.fr/anglais-francais/traduction/differentiation.html
https://www.linguee.fr/anglais-francais/traduction/landmark.html
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an automatic extraction of the signal of interest based on a 3D digital atlas can be 

performed. In humans, several atlases registered on standardized template spaces 

already exists such as MNI (Fan et al., 2016) and Talairach (Brett et al., 2002). MR 

images recorded during biological studies can be registered on the standardized 

templates, which allows to indirectly register them to an abundant repertoire of 3D MRI 

brain atlases already available within these spaces. Note that the diversity of the 

human 3D digital brain atlases is important and is dependent on which method is used 

to segment the brain. The manual segmentation of atlases is often based on a paper 

atlas and is carried out by expert on an anatomical image template. Automatic 

segmentations can also be performed on various 3D images (anatomical, diffusion 

tensor imaging (connectome), fMRI, etc.) by different algorithms. As an example, if we 

reviewed several cortical atlas parcellations in MNI space (downloadable at 

http://www.lead-dbs.org/helpsupport/knowledge-base/atlasesresources/cortical-atlas-

parcellations-mni-space/), the number of structures varies from about ten to several 

thousand. This diversity calls for caution concerning the use of these different atlases. 

Two main questions before starting any study would be 1) what is the biological 

significance of the segmented regions? and 2) at what level of detail they are defined 

by? 

In mammals, atlases were also created for various purposes such as the 

segmentation and the quantification of stained tissue originating from 2D or 3D 

histology (Lebenberg et al., 2011) (Vandenberghe et al., 2016). MRI digital brain 

atlases of primates (Balbastre et al., 2017) or rodents (Dorr et al., 2008) in standardized 

space (templates) can also be downloaded easily on specific websites. MRI atlases 

can further be used to extract any signal as well as quantify the volume of different 

brain regions. However, such an atlas did not exist for the mouse lemur. For this 

purpose, an anatomical atlas of the mouse lemur brain was created in our first 

publication (Nadkarni et al., 2018). 

 

 

  

http://www.lead-dbs.org/helpsupport/knowledge-base/atlasesresources/cortical-atlas-parcellations-mni-space/
http://www.lead-dbs.org/helpsupport/knowledge-base/atlasesresources/cortical-atlas-parcellations-mni-space/
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II.1.2. Overview of the developed methodology 

Aligning MR images together or to a standardized space is an important step for 

many studies in humans or animals. This alignment is used to correct subject motion 

in the scanner, to compare data from longitudinal studies and data from different 

scanners. Also, this step is necessary to use digital atlases and to extract information 

of interest. The methodology developed here, is an adaptation for small mammals of 

different tools and algorithms commonly used to coregister human MR images. Our 

methodology was mainly based on AFNI algorithms (Cox, 1996).  

Image coregistration is based on the geometrical alignment of different images. The 

purpose is to superpose two voxels that correspond to the same anatomical structure. 

As an example, if we considered image A(x) and the target image (template) B(x), 

aligning voxels is finding a geometrical transformation T[x] so that A(T[x]) ≈ B(x). Note 

that all the transformations are registered and saved in the image header. The different 

geometrical transformations or movements can be classified based on their degrees 

of freedom (Figure 22). The rigid-body is a transformation comprising of translations 

and rotations (6 degrees of freedom). A coregistration based only on this 

transformation, assumes that the source and the target images display the same 

volumes and shapes. The diversity of the brain volumes and shapes forces an increase 

in the number of degrees of freedom. Affine is a transformation (12 degrees of 

freedom) that can distort voxels (scale, skew) and realign brain images with different 

sizes and shapes. Nonlinear transformation allows voxels to move in any direction 

(elastic transformations). However, if important transformations have to be made for 

the coregistration, the use of an excessive amount of the degrees of freedom 

maximizes the risk of errors. The common way to fix this issue is to apply the different 

movement parameters from low to high degrees of freedom. 
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Figure 22 | Voxel movement parameters 

Restraining the coregistration space in the brain (in comparison to the head) is 

another standard way to increase the accuracy of the coregistration. It limits the voxel 

movements in a more homogenous and within a smaller space that decreases the 

amount of coregistration errors. For this purpose, we use a mask that is an image 

composed of 0 (outside of the structure of interest) and 1 (inside the structure of 

interest). Skull-stripping is the technique used to extract a brain mask from a brain 

anatomical image (Figure 23). The brain is a relatively easy structure to extract with a 

good contrast to the surrounding tissue that can be extracted from the rodent’s head 

using RATS (Oguz et al., 2014) or the human’s head with AFNI (Cox, 1996). The skull 

was used to identify the brain and proxy its position in space. 

 

Figure 23 | Extracting the brain from anatomical images. 

As a first step a mask of the brain is produced using AFNI or RATS. Then, by using only the 

voxels within the mask, the brain can also be extracted from the first anatomical image.  

 

Voxels of a head image that overlap the brain mask can be extracted to create an 

anatomical brain image. Then, the brain anatomical image can be coregistered to a 

brain template by applying the different movement parameters in the correct order. The 
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complete process to which one might create a study template will be explained in this 

first publication. The creation of a template based on the anatomical images of our 

cohort presents the advantage to increase the quality of the coregistration. This can 

be explained by the contrast similarity between the study template and the anatomical 

images. The application of the whole process was developed to be scalable to many 

other mammalian species.  
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II.1.3. Published article: Nadkarni, N. A., Bougacha, S., Garin, C., Dhenain, 

M., & Picq, J. L. (2019). A 3D population-based brain atlas of the mouse 

lemur primate with examples of applications in aging studies and 

comparative anatomy. Neuroimage, 185, 85-95.  
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Abstract 

The gray mouse lemur (Microcebus murinus) is a small prosimian of growing interest for 

studies of primate biology and evolution, and notably as a model organism of brain aging. As 

brain atlases are essential tools for brain investigation, the objective of the current work was 

to create the first 3D digital atlas of the mouse lemur brain. For this, a template image was 

constructed from in vivo magnetic resonance imaging (MRI) data of 34 animals. This template 

was then manually segmented into 40 cortical, 74 subcortical and 6 cerebro-spinal fluid 

regions. Additionally, we generated probability maps of gray matter, white matter and CSF. 

The template, manual segmentation and probability maps, as well as imaging tools used to 

create and manipulate the template, can all be freely downloaded. The atlas was first used to 

automatically assess regional age-associated cerebral atrophy in a cohort of mouse lemurs 

previously studied by voxel based morphometry (VBM). Results based on the atlas were in 

good agreement with the VBM ones, showing age-associated atrophy in the same brain 

regions such as the insular, parietal or occipital cortices as well as the thalamus or 

hypothalamus. The atlas was also used as a tool for comparative neuroanatomy. To begin 

with, we compared measurements of brain regions in our MRI data with histology-based 

measures from a reference article largely used in previous comparative neuroanatomy studies. 

We found large discrepancies between our MRI-based data and those of the reference 

histology-based article. Next, regional brain volumes were compared amongst the mouse 

lemur and several other mammalian species where high quality volumetric MRI brain atlases 

were available, including rodents (mouse, rat) and primates (marmoset, macaque, and 

human). Unlike those based on histological atlases, measures from MRI atlases indicated 

similar cortical to cerebral volume indices in all primates, including in mouse lemurs, and lower 

values in mice. On the other hand, white matter to cerebral volume index increased from 

rodents to small primates (mouse lemurs and marmosets) to macaque, reaching their highest 

values in humans. 
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Graphical abstract 

 

Highlights 

• The mouse lemur primate is an original model for neuroscience studies and comparative 

anatomy. 

• We present an anatomical brain template, constructed from in vivo MRI scans of 34 mouse 

lemurs. 

• We created the first high resolution 3D atlas of the mouse lemur brain by delineating 120 

regions encompassing each voxel of the template. 

• The template, code developed to create and manipulate the template as well as 

segmentation maps are freely available. 

• The atlas was used to characterize age-related atrophy and to compare the mouse lemur 

brain with brains from other mammals. 

Keywords 

Atlas, Cerebral atrophy, Comparative anatomy, MRI, Mouse lemur, Template. 
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1. Introduction 

The gray mouse lemur (Microcebus murinus) is one of the smallest non-human primates 

(NHPs). Its small size (typical length 12cm, 60­120g weight) and rapid maturity (puberty at 6­8 

months) bring rodent­like practicality to primate experimentation. As a result, the mouse lemur 

is used as an NHP model organism for primate and human biology (Ezran et al., 2017). It has 

a life span of approximately 12 years, which is short for a primate, and displays age-associated 

cerebral atrophy that is correlated with cognitive alterations (Picq et al., 2012) as well as 

various neuropathological lesions (Kraska et al., 2011). As a consequence, it is used as a 

model of aging and age­related diseases in the brain (Languille et al., 2012). In particular it 

has been used to evaluate how cerebral aging is modulated by various biological factors or 

diseases, such as chronic caloric restriction (Pifferi et al., 2018) or diabetes (Djelti et al., 2016). 

Mouse lemurs can also be used to shed light on primate brain evolution (Montgomery et al., 

2010). Surprisingly, most studies of this (Barton and Harvey, 2000; Finlay and Darlington, 

1995) rely on the analysis of the same set of volumetric measurements made on a large variety 

of mammalian species by a single research group using perfused brains processed by 

histology (Stephan et al., 1981). Because of the tediousness of the evaluation of brain region 

volumes by histology, the experiments were not reproduced by other research groups, leaving 

scientists with a single lone source of data to provide reference measures. 

Given the importance of the mouse lemur for biomedical research and as a key species for 

studying primate brain evolution, it is critical to have a 3D digital brain atlas and associated 

template (standard image reflecting the population’s brain anatomy) for this species. However, 

today, reference atlases available to study mouse lemurs are based on histological sections 

(Le Gros Clark, 1931; Bons et al., 1998). Such atlases suffer from distortions caused by 

histological processing and do not cover the whole brain. Also, they are very unsuited to use 

with non-invasive imaging data from live individuals. A first MRI-based description of the mouse 

lemur brain was developed in the 1990s, but it is mainly a partial annotation of MR images of 

one post mortem brain sample (Ghosh et al., 1994). More recently, a population image based 

on 30 mouse lemur brains including probabilistic gray matter (GM), white matter (WM) and 

cerebro-spinal fluid (CSF) maps was developed, but it did not include annotated labels (Sawiak 

et al., 2014). Here we present the first 3D digital brain atlas and associated template of the 

mouse lemur. We used MR acquisitions from 34 young to middle-aged adult mouse lemurs to 

create the template: scans were iteratively mutually registered and meaned through linear then 

increasingly refined non-linear stages, a standard process that does not favor any one 
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individual, but rather produces an unbiased average of the population used to create it 

(Guimond et al., 1998; Guimond et al., 2000). The template was then segmented manually into 

120 structures based on a previous histological atlas (Bons et al., 1998) and other previous 

characterizations of mouse lemur brain anatomy (Le Gros Clark, 1931; Zilles et al., 1979). The 

template was also used to create probability maps of mouse lemur GM, WM and CSF. The 

template, atlas and probability maps are available for download in NIfTI-1 format at 

https://www.nitrc.org/projects/mouselemuratlas. The code developed to create and manipulate 

the template has been refined into general procedures for registering small mammal brain MR 

images, available within a python module sammba-mri (SmAll-maMMals BrAin MRI; 

https://sammba-mri.github.io). 

Two applications of the atlas are presented in this article. The first is an evaluation of age-

related regional cerebral atrophy in a mouse lemur cohort that was previously studied by voxel 

based morphometry (VBM) (Sawiak et al., 2014). We show that atlas-based registration 

detects age-related atrophy in regions very similar to those identified by VBM. The second 

application is a comparative anatomy study. Initially, we highlight that reference published 

histological reports of brain region volumes are very different to those found with our atlas. 

More interestingly, using morphometric analysis and comparison of measures of the ratios 

between various brain regions, we show that, despite its rodent-like size, the mouse lemur’s 

cortex/cerebrum index does not differ from those of other primates, and that major differences 

amongst primates concern more the WM/cerebrum indices. 

2. Materials and Methods 

2.1. Animals 

This study was carried out in accordance with the recommendations of the European 

Communities Council directive (2010/63/EU). The protocol was approved by the local ethics 

committees CEtEA-CEA DSV IdF (authorizations 201506051 736524 VI (APAFIS#778)). 34 

mouse lemurs (22 males and 12 females) were used for template creation. Age range was 15-

58 months, mean ± standard deviation 36.8 ± 9.2 months, so all were young to middle-aged 

adults at scan time (Languille et al., 2012). All mouse lemurs were born in a laboratory breeding 

colony (Brunoy, France, authorization n°E91-114-1), and maintained at steady ambient 

temperature (24–26°C) and relative humidity (55%). Full demographic information is provided 

in Table 1 in (Nadkarni et al, Submitted). 

  

https://www.nitrc.org/projects/mouselemuratlas
https://sammba-mri.github.io/
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2.2. MR acquisition 

One T2-weighted in vivo MRI scan was recorded for each animal. After an overnight fast, 

animals were immobilized for MRI by isoflurane anaesthesia (4% induction, 1-1.5% 

maintenance). Breathing rate was monitored to ensure animal stability until the end of the 

experiment. Body temperature was maintained by an air-heating system. Images were 

acquired using a 7 Tesla (T) Agilent system using a four channel phased-array surface coil 

(Rapid Biomedical, Rimpar, Germany) actively decoupled from the transmitting birdcage probe 

(Rapid Biomedical, Rimpar, Germany). The sequence was a 2D T2-weighted fast spin echo 

with a resolution of 230x230x230 µm: TR/TE = 10000/17.4 msec, RARE factor = 4, field of 

view (FOV) = 29.44 × 29.44 mm with a matrix (Mtx) = 128 × 128, 128 slices, number of 

averages (NA) = 6, acquisition duration 32 mins. 

2.3. Template creation and validation 

Raw k-space slice data from the 34 mouse lemurs were zero-filled to 256 × 256 and 

reconstructed to 3D NIfTI-1 format using custom python code. Images were then up-sampled 

in the through-slice direction as well to 256 slices, thus giving a final matrix of 2563, 115 µm 

isotropic resolution. 

The template generation pipeline is diagrammed in Fig. 1, and has been developed into the 

function anats_to_common available within the sammba-mri python module (https://sammba-

mri.github.io/generated/sammba.registration.anats_to_common.html#sammba.registration.a

nats_to_common). All steps used tools from freely available AFNI software 

(https://afni.nimh.nih.gov/ (Cox, 1996)), except for brain extraction, which was done with RATS 

(Oguz et al., 2014; Yin et al., 2010). Head images were bias corrected (Fig. 1b), brain extracted 

(Fig. 1c), and individual brain extracted image centers were shifted to the brain center of mass 

(Fig. 1d). Brains were then all rigid body aligned to a digitized version of a previous histological 

atlas (Bons et al., 1998) (Fig. 1e) and the transform was then applied to the original heads. 

The aligned heads were meaned to produce a first brain template (Fig. 1f). The previous rigid 

body registration step was performed a second time to align the 34 centered brains to the first 

template leading to a template 2 (Fig. 1g). Then, the 34 centered brains were affine aligned to 

template 2 leading to a template 3 (Fig. 1h). Finally, four cycles of non-linear registration were 

executed, the first to affine template 3, the rest to templates of heads from the previous non-

linear cycle, including initialization using the concatenated transforms of the previous cycles, 

and an adjustment after each cycle to correct for systematic biases in the non-linear transforms 

(Fig. 1i) leading to the final template. Note that non-linear registration used the AFNI tool 
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3dQwarp, which repeatedly composes incremental warps defined by Hermite cubic basis 

functions, first over the entire volume, then over steadily shrinking and overlapping patches, 

with the resulting final warp being a grid representation of a diffeomorphism between source 

and target images. In the non-linear cycles above, final patch size was relatively large in the 

first cycle and was reduced substantially with each subsequent cycle. The intermediate and 

final templates were all means in intensity space of transformed images. 

The contrast to noise ratio (CNR) was measured in the template and in raw images by 

evaluating the difference between the mean intensity of GM (in the caudate nucleus, 1920 

voxels, 1.45 mm3) minus mean intensity of WM (splenium of the corpus callosum, 500 voxels, 

0.38 mm3) divided by the standard deviation of the intensities in the tympanic bulla (1280 

voxels, 0.96mm3). 

Finally, adopting procedures of template validation from previous studies, landmark distance 

measures were used to validate the mouse lemur template (Black et al., 2001a; Black et al., 

2001b; Ella and Keller, 2015; Hikishima et al., 2011; McLaren et al., 2009; Quallo et al., 2010). 

Landmarks were identified at the level of the middle of the anterior (AC) and posterior (PC) 

commissures in the template, raw images and images normalized to the mouse lemur template 

(Anatomist freeware; http://brainvisa.info/index_f.html). The 3D Euclidean distances (AC-PC) 

between each of these landmarks and the equivalent landmarks in the mouse lemur template 

were calculated. 

Figure 1. Template generation pipeline. T2-weighted MRI scans of the brain were collected 

from 34 mouse lemurs. (a) Head images were bias corrected (AFNI-3dUnifize), (b) brain 

extracted (RATS), and (c) each individual head (and brain extracted images) center was shifted 

to the brain center of mass (AFNI-3dCM). (d) Brains were then all rigid body aligned to a 

digitized version of a previous histological template (Bons et al., 1998)(AFNI-3dAllineate) and 

the 6 degrees of freedom (DOF) transforms were then applied to the centered heads. (e) The 

aligned heads were averaged to produce a first template and similarly for the aligned brains. 

(f) The rigid body registration was performed a second time to align the 34 centered heads to 

the first created template leading to a template 2. (g) Then, the 34 centered brains were affine 

aligned to brain template 2 and the 12 DOF transforms were applied to the centered heads 

leading to template 3. (h) Finally, four cycles of non-linear registration were carried out, the 

first to affine template 3, then subsequently to match templates of heads from the previous 

cycle (AFNI-3dQwarp), including initialization by the concatenation of previous transforms, and 

an adjustment after each cycle to correct for systematic biases in the non-linear transforms 
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(AFNI-3dNwarpAdjust). These steps used a weight, created by using a mask of brain template 

3 dilated by 5 voxels (AFNI-3dmask_tool). 
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2.4. Segmentation of the MRI-based atlas 

The template image was up-sampled to 91 µm isotropic resolution, then segmented manually 

by a single person (JLP) using ITK-SNAP software (http://www.itksnap.org; (Yushkevich et al., 

2006)). Brain structures, except cortical areas, were defined according to the histological atlas 

of Bons (Bons et al., 1998) on the basis of the contrast in the anatomical images. Each 

structure was segmented slice by slice along either the coronal, axial or sagittal orientations 

depending on which orientation offered the best contrast for the structure. The boundaries of 

each structure were then checked, corrected using all three orientations and continuously 

updated until, after several iterations in each direction, the three-dimensional representation 

of the labelled structure was found to be smooth and non-jagged. Due to insufficient contrast 

within the cortex of the template image, the boundaries of cortical areas were approximated 

from the histological atlas of Le Gros Clark (Le Gros Clark, 1931), and even then only on 

coronal slices of the template because this histological atlas only contains some coronal 

sections and a rough lateral view of the mouse lemur cortex parcellation. After the delineation 

of the cortical areas on the coronal orientation was completed, the boundaries were carefully 

adjusted using the axial and sagittal orientations until achieving internal coherence among the 

three views. The study of the cytoarchitectonic structure of the mouse lemur cortex by Zilles et 

al. (Zilles et al., 1979) was used to make three small changes to the Le Gros Clark-based 

cortical parcellation: 1) the more rostral parts of the temporal pole were occupied by the 

prepyriform and periamygdalar areas instead of area 28 (entorhinal cortex), 2) areas 26 and 

29 were merged to form the retrosplenial area, 3) area 22 was identified as the whole auditory 

cortex corresponding to areas 41, 42 and 22 of Brodmann (Brodmann, 1999 (original in 1909)). 

In total, 120 regions were drawn. They included 40 cortical, 74 subcortical and 6 CSF regions. 

Each structure was outlined bilaterally. The names of the structures were based on the 

NeuroName ontology (http://www.braininfo.org; (Bowden et al., 2012)). Labels of all brain 

regions are provided in Table 2 in (Nadkarni et al, Submitted). 
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Table 1. List of brain structures and volumes (mm3, mean ± standard deviation) 

determined by transformation of atlas labels back to individual mouse lemurs. Animals’ 

age range was 15-58 months. Sex, age and identifier of individual animals is given in Suppl. 

Table 1. 

 

Region Structure 
All animals 

(n=34) 
Male (n=22) Females (n=12) 

    Left Right Left Right Left Right 

Cortical 
gray 

cerebral cortex 1-3 18.9±1.8 18.8±1.9 19.2±1.8 19.0±1.9 18.4±1.5 18.4±2.1 

cerebral cortex 4 26±2.7 27.0±3 26.1±2.8 27.0±3.4 25.7±2.5 26.9±2.1 

cerebral cortex 5 23.8±3.6 24.9±2.9 24.5±3.5 25.3±2.9 22.3±3.7 23.9±2.8 

cerebral cortex 6 34.5±3 35.9±3 34.7±3.2 34.2±2.6 36.0±3.1 35.5±2.8 

cerebral cortex 7 5.8±1.1 5.7±1 6.1±1.1 5.9±1.1 5.2±1.1 5.3±0.8 

cerebral cortex 8 7.9±0.9 7.8±0.9 8.0±0.9 7.8±0.9 7.8±1 7.7±1 

cerebral cortex 13-16 10.9±1.2 9.9±1.1 11.0±1.2 10.1±1.2 10.9±1.1 9.7±0.8 

cerebral cortex 17 46.2±5 47.1±5.1 46.6±5.3 47.7±5 45.5±4.6 46.0±5.5 

cerebral cortex 18 17.9±2.8 18.6±3.2 18.2±2.9 18.6±3.3 17.3±2.3 18.6±3.2 

cerebral cortex 20 2.6±0.6 2.6±0.5 2.5±0.4 2.5±0.4 2.9±0.9 2.9±0.5 

cerebral cortex 21 28.8±3.4 28.1±2.9 28.5±2.8 27.9±2.6 29.5±4.5 28.5±3.5 

cerebral cortex 22 (40-42) 32.8±3.7 34.5±3.6 33.1±3.5 34.5±3.9 32.2±4.3 34.5±3.2 

cerebral cortex 23 7.8±1.1 7.7±0.9 7.7±0.7 7.6±0.9 8.0±1.7 7.8±1.1 

cerebral cortex 24 6.9±0.9 6.4±0.9 6.9±1 6.4±0.9 6.8±0.7 6.5±0.7 

cerebral cortex 25 0.8±0.3 0.8±0.2 0.8±0.3 0.8±0.2 0.7±0.2 0.8±0.2 

cerebral cortex 26-29 8.7±1.2 8.9±1.2 8.8±1.3 9.1±1.3 8.4±0.8 8.6±0.9 

cerebral cortex 27 2.1±0.5 2.0±0.4 2.1±0.4 2.0±0.4 2.2±0.6 1.9±0.4 

cerebral cortex 28 19.1±2.1 18.5±1.8 19.4±2 18.8±1.7 18.4±2.1 17.8±2 

cerebral cortex 30 2.5±0.5 2.4±0.4 2.5±0.5 2.4±0.4 2.5±0.6 2.3±0.5 

cerebral cortex 
prepyriform and 
periamygdalar 

6.3±0.7 5.7±0.6 6.3±0.5 5.8±0.6 6.2±0.9 5.5±0.9 

Central 
gray 

Amygdala 12.6±1.1 13.5±1.2 12.7±1.1 13.6±1.2 12.5±1.1 13.2±1.1 

basal forebrain 3.6±0.6 3.7±0.6 3.6±0.5 3.7±0.6 3.5±0.6 3.6±0.6 

basal forebrain nucleus 0.3±0.1 0.3±0.1 0.3±0.1 0.3±0.1 0.2±0.1 0.3±0.2 

caudate nucleus 18.1±1.8 18.3±1.8 18.4±1.5 18.6±1.5 17.5±2.1 17.6±2.3 

claustrum 5.0±0.5 4.4±0.6 5.0±0.5 4.5±0.6 4.8±0.5 4.2±0.5 

globus pallidus 8.9±1.1 8.4±2.2 9.3±0.9 8.8±0.9 8.2±1.2 7.5±1.1 

habenula 0.5±0.2 0.5±0.1 0.5±0.2 0.5±0.1 0.5±0.2 0.5±0.1 

hippocampal formation 36.6±3.3 36.1±3.4 36.7±3.2 35.9±3.3 36.4±3.7 36.6±3.7 

hypothalamus 12.4±0.7 12.7±0.9 12.4±0.6 12.7±0.8 12.2±0.9 12.6±1.2 

mammillary body 0.4±0.1 0.4±0.1 0.4±0.1 0.4±0.05 0.4±0.1 0.4±0.03 
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nucleus accumbens 4.0±0.7 3.9±0.6 3.9±07 3.8±0.6 4.1±0.6 4.0±0.7 

putamen 18.0±2.7 18.3±2.3 18.1±2.6 18.5±2.2 17.7±3.0 18.0±2.6 

thalamus 45.4±3.5 44.1±3.3 46.0±3. 44.6±3.4 44.1±3.1 43.0±3.1 

septum 6.3±0.6 6.2±0.6 6.3±0.6 6.2±0.6 6.3±0.6 6.2±0.6 

subthalamic nucleus 0.1±0.03 0.1±0.03 0.1±0.3 0.1±0.4 0.1±0.3 0.1±0.4 

Cerebral 
white 

Anterior commissure 4.0±1.1 4.3±0.9 3.4±1.3 

corpus callosum 139.4±25 148.5±17.3 120.4±28.5 

fasciculus retroflexus 0.6±0.2 0.5±0.1 0.6±0.1 0.6±0.1 0.5±0.2 0.5±0.1 

fornix 4.6±0.5 4.8±0.5 4.7±0.5 4.9±0.5 4.5±0.5 4.7±0.6 

internal capsule 12.7±2.5 12.6±2.4 13.6±1.5 13.2±1.6 11.0±3.2 11.2±3.1 

mamillo-thalamic tract 0.4±0.2 0.4±0.1 0.4±0.1 0.5±0.1 0.3±0.2 0.4±0.1 

optic chiasm 2.1±0.3 2.1±0.3 2.2±0.3 

optic tract 4.2±0.6 4.3±0.5 4.3±0.5 4.4±0.6 3.9±0.5 4.1±0.6 

stria medullaris of the 
thalamus 

0.9±0.1 1.1±0.2 1.0±0.1 1.1±0.2 0.9±0.2 1.0±0.1 

stria terminalis 1.8±0.2 1.7±0.2 1.8±0.2 1.8±0.2 1.7±0.2 1.7±0.2 

Olfactory 

olfactory bulb 28.2±2.5 28.3±2.8 28.6±2.3 29±2.7 27.3±2.7 26.9±2.6 

olfactory tract 2.6±0.4 2.7±0.3 2.7±0.4 2.7±0.3 2.5±0.4 2.6±0.3 

olfactory tubercle 2.9±0.4 3.1±0.4 2.9±0.4 3.0±0.4 2.8±0.4 3.1±0.3 

Cerebellum 
arbor vitae of cerebellum 33.8±5.1 34.1±5.4 34.8±4.5 35.1±4.5 31.6±5.8 32.0±6.7 

cerebellum 68.1±6.3 70.3±6.5 68.1±7.1 70.4±7.2 68.0±4.7 70.2±5.1 

CSF and 
ventricles 

CSF (peri-brain) 327.6±16.4 330.8±13.9 320.8±19.7 

lateral ventricle 12±1.3 11.8±1.1 12.1±1.4 11.6±1.1 11.8±1.1 12.0±1.0 

third ventricle 9.4±1.7 9.5±1.6 9.2±2.0 

cerebral aqueduct 2.3±0.4 2.3±0.4 2.3±0.5 

fourth ventricle 2.9±0.6 2.9±0.6 3.0±0.7 

Brain stem 

central gray of the 
midbrain 

8.4±1.0 8.6±1.1 8.0±0.8 

cerebral peduncle 3.0±0.6 3.2±0.6 3.1±0.4 3.3±0.7 2.6±0.5 3.0±0.7 

substantia nigra 1.5±0.3 1.7±0.2 1.5±0.2 1.7±0.2 1.3±0.3 1.6±0.2 

superior colliculus 8.3±1.1 8.8±1 8.4±1.0 9.0±1.0 7.9±1.4 8.4±0.9 

inferior colliculus 11.6±1.2 11.4±1.1 11.8±1.1 11.5±1.0 11.3±1.4 11.1±1.3 

posterior commissure 0.4±0.1 0.4±0.1 0.3±0.1 

commissure of the inferior 
colliculus 

0.5±0.1 0.5±0.1 0.4±0.1 

medulla 26.7±2.8 27.7±1.7 24.7±3.5 

midbrain 24.0±2.3 24.6±2.3 24.1±2.3 24.9±2.3 23.9±2.2 23.8±2.2 

pons 47.5±4 49.5±3.9 48.0±3.8 49.9±3.9 46.5±4.5 48.7±4.2 
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2.5. Tissue probability maps 

Tissue probability maps were created using SPM8 (Wellcome Trust Institute of Neurology, 

University College London, UK, www.fil.ion.ucl.ac.uk/spm) with the SPMMouse toolbox 

(http://spmmouse.org) for animal brain morphometry as previously described (Sawiak et al., 

2014; Sawiak et al., 2013). Briefly, MR images from the 34 animals involved in the study were 

registered to a previously published SPM template of the mouse lemur brain (Sawiak et al., 

2014). Affine registration adjusted the images to control for different head positions and 

scanner geometry as well as overall brain size. Then unified segmentation iteratively warped 

the data whilst correcting for signal inhomogeneity due to the receiver coil. The images of the 

rigidly-aligned brains of each animal were then segmented using a k-means algorithm 

(MacKay, 2003) with 4 segments: background, GM, WM, and CSF. These maps were then 

averaged across individuals separately for each tissue type to produce mean GM, WM and 

CSF tissue probability maps. These maps were manually edited, particularly around the edges 

of the brain where partial volume effects lead to mislabeling of CSF as GM or WM voxels. The 

templates were also masked using masks derived from the segmented atlas, to conserve only 

brain and CSF structures. 

2.6. Evaluations and applications 

2.6.1. Quality of registration to other images 

Using sammba-mri (anats_to_template, https://sammba-

mri.github.io/generated/sammba.registration.anats_to_template.html#sammba.registration.a

nats_to_template), our MRI atlas was non-linearly registered to different MR images, including 

in vivo MRI recorded at different field strengths (4.7 and 11.7 T), and ex vivo high-resolution 

gadolinium-stained MRI. These images were collected from mouse lemurs unrelated to the 

atlas. Images at 4.7 T were recorded according to previously published protocols on a Bruker 

Biospec 47/30 system by using a surface coil (diameter = 30 mm) actively decoupled from the 

transmitting birdcage probe (Bruker GmbH) and a three-dimensional inversion-recovery fast 

spin-echo sequence of 234x234x234 µm nominal resolution (TR/TE = 2500/6 msec, TEw = 45 

msec, TI = 200 msec, RARE factor = 16, Mtx = 128 x 128 x 128, NA = 1). MR images were 

zero-filled to reach an apparent resolution of 117x117x117 µm. Images at 11.7 T were 

recorded on a Bruker Biospec 117/16 system (Bruker, Ettlingen, Germany) using a two-

dimensional multi-slice multi-echo sequence of 200x200x200 µm nominal resolution (TR/TE = 
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5000/5 msec, TEw = 17.5 msec, 6 echos, Mtx = 160 x 160, 75 slices, NA = 1). For each field, 

we present images from young non-atrophied animals (1.9 and 2.4 years at 4.7 and 11.7 T, 

respectively) and old atrophied animals (10.9 and 10.4 years at 4.7 and 11.7 T, respectively). 

Ex vivo gadolinium-stained MRI were recorded on a 7 T clinical magnet (Siemens, Syngo MR 

VB15) using a 2D gradient echo T2*-weighted sequence with a spatial resolution of 31 x 31 x 

120 µm (TR/TE = 200/20.8 msec, flip angle = 80°, Mtx = 768 x 648, 144 slices, NA = 1). Animal 

brains came from an in-house mouse lemur brain collection. The brains were extracted and 

formalin-fixed for at least 6 months after the death of the animals. They were then stained by 

a one-week soaking in a solution of Gadolinium (Dotarem, Guerbet, France) in PBS at 2.5 

mmol/l. This protocol enhances the signal- and contrast-to-noise ratios on MR images of fixed 

brains (Bertrand et al., 2013).  

2.6.2. Evaluation of cerebral atrophy 

The MRI brain atlas was then used to measure the volumes of individuals’ brain structures and 

evaluate age-related cerebral atrophy in a cohort of 30 mouse lemurs that had previously been 

evaluated by voxel-based morphometry (Sawiak et al., 2014). Animals from this cohort had 

ages ranging from 1.9 to 11.3 years old (7 "young" animals (2.2 ± 0.2 years), 11 "middle-aged" 

(4.8 ± 1.0 years) and 12 "old" (8.3 ± 1.7 years) animals). Compared to those used for atlas 

creation, images for these animals were recorded by MRI at a different field strength (4.7 T) 

with a 3D inversion-recovery fast spin-echo sequence using the same parameters as 

described in the previous section though without zero-filling (Dhenain et al., 2003; Kraska et 

al., 2011). 

A study template representative of the 30 animals was created by registering individuals’ 

images using the same procedure described earlier for template creation. The study template 

was then non-linearly registered to the earlier-created mouse lemur template. The mouse 

lemur atlas was then transformed to each individual’s original image by applying the 

concatenated inverted study-template-to-mouse-lemur-template and animal-to-study template 

transforms. CSF accumulations and infiltrations were identified by simple thresholding and 

used to correct the animal-specific atlases, which were then used to measure the volumes of 

different brain structures. These volumes were analyzed by linear regression in R (function lm, 

https://www.R-project.org) using the following model: 

Vij = β0 + β1j agei + β2j IVi + εij 
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where the dependent variable Vij is the estimated volume (in mm3) of region j for animal i, the 

independent variables being agei the age (in years) and IVi the intracranial volume (total 

volume of the individually-transformed mouse lemur atlas, which marks brain plus surrounding 

CSF, so total intracranial volume, in mm3) of animal i, and εij is the error term. 

2.6.3. Comparative anatomy  

Cerebral anatomy in the mouse lemur was compared to that of other mammals using available 

downloadable 3D digital MRI-based brain atlases of the mouse (Dorr et al., 2008), rat (Papp 

et al., 2014), marmoset (Woodward et al., 2018), macaque (Reveley et al., 2017), and 

compared to human data from MRI-based morphometric analysis (Filipek et al., 1994). The 

volumes of the hippocampal formation, striatum (caudate nucleus + putamen), cortex and 

cerebral WM (see list of structures in Table 1) were measured and expressed as a proportion 

of total cerebrum (cortical GM + central GM + cerebral WM, see Suppl. Table 2).  

3. Results 

3.1. Mouse lemur template and probability maps 

An MRI template of mouse lemur brains was generated from 34 animals aged 15-60 months 

old scanned at 7 T using a T2-weighted sequence with a final isotropic resolution of 115 µm 

(Fig. 2A, C, E, Fig 3A). The orientation of the template roughly corresponded to that of the 

reference Bons atlas (Bons et al., 1998). The image grid mid-plane coincided with the 

anatomical midsagittal plane, and the image grid horizontal plane passed through the centers 

of the AC and PC, corresponding to a standard anatomical coordinate system similar to 

Talairach space (Talairach and Tournoux, 1988). 

This template was used to create tissue probability maps for GM, WM and CSF (See Fig. 2 in 

Nadkarni et al, Submitted). The template and tissue probability maps are available from 

https://www.nitrc.org/projects/mouselemuratlas. Contrast to noise in the template reached 58 

between GM and WM. The quality of the template was improved as compared to individual 

images that had a GM/WM CNR of 13.2±2.6 (See Fig. 2 in Nadkarni et al, Submitted). The 

Euclidian AC-PC distance was 4740 µm in the template and in each of the individual images 

registered to the template. It was 4678±163 µm in the original images, which represents a 

1.3% difference between raw and template images. 

The usability of an atlas for imaging studies relies on the accuracy of registration to its template. 

Here, we tested the performance of our MRI-based atlas on non-linear registration with imaging 
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data obtained from in vivo T2-weighted MRI at different field strengths (4.7 T (Fig. 3E, F) and 

11.7 T (Fig. 3G, H)), as well as with ex vivo MRI recorded at 7 T (Fig 3D). Visual inspection of 

the registered images suggested good accuracy of registration to the template (Fig. 3A). 

3.2. Mouse lemur atlas 

The template was manually labelled (https://www.nitrc.org/projects/mouselemuratlas). A two-

dimensional representation of the atlas in three orientations is shown in Fig. 2B, D, F and 3B; 

a three-dimensional representation from the superior lateral view is shown in Fig. 2G. 74 

subcortical structures could be identified (See Table 2 in Nadkarni et al, Submitted). 40 cortical 

structures were outlined by interpreting borders defined in the Le Gros Clark atlas (Le Gros 

Clark, 1931) with some adjustments on the basis of updates in more recent atlases (Zilles et 

al., 1979). The volumes of each structure and their variation across the 34 animals used for 

template creation, including measures of cerebral asymmetry and sex difference, are shown 

in Table 1.  

3.3. Application to evaluating regional atrophy from atlas-based defined regions 

We assessed atrophied brain regions in a cohort of 30 mouse lemurs aged from 1.9 to 11.3 

years old that had previously been evaluated with other methods such as voxel-based analysis 

(Sawiak et al., 2014). Regions presenting with a significant atrophy are presented in Fig. 4 and 

Table 2. Nearly all of the changes were symmetric with both sides of the brain affected. Most 

cortical regions displayed some atrophy with age, with the most prominent including the insular 

(areas 13-16, Fig. 4C), frontal (area 6), parietal (areas 5 (Fig. 4D) and 7), occipital (areas 17, 

18), inferior temporal (areas 21, 28) and cingulate cortices (areas 23, 24, 25) (Table 2). With 

the exception of the visual cortex, the primary motor and sensory cortices were spared. 

Subcortical regions such as the thalamus (Fig. 4E), hypothalamus, caudate nucleus, and 

central gray of the midbrain were also particularly affected by aging. Interestingly, with some 

minor exceptions, the regions that were reported atrophied here are the same as those 

declared atrophied in a previous article focusing on this cohort (Table 2, (Sawiak et al., 2014)). 

These data confirm that in mouse lemurs 1) the cortex as a whole is more vulnerable to age-

related atrophy than subcortical regions, 2) the magnitude of age-related cortical shrinkage 

varies greatly among cortical regions, 3) atrophy of association cortices is prominent whereas 

motor and primary sensory (except the visual area) cortices are relatively spared, 4) multimodal 

association cortices such as areas 13-16 and the cingulate cortex -which are viewed as 

equivalent of prefrontal regions subserving executive functions (Le Gros Clark, 1931)- are also 

especially vulnerable to aging. 

https://www.nitrc.org/projects/mouselemuratlas
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Figure 2. Labeling of the mouse lemur atlas. Brain structure delineations are shown in 

coronal, sagittal and axial views (B, D, F) together with corresponding template images (A, C, 

E). Panel G displays a three-dimensional representation of the atlas from a superior lateral 

view. Scale bars equal 1 cm. For clarity, the label marking surrounding CSF is not displayed. 
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Figure 3. Registration of various in vivo and ex vivo MR images to the mouse lemur 

template. A-B. Coronal section of the mouse lemur MRI template (level of the anterior 

commissure, A) and associated section in the atlas (B). C displays an MR image from one of 

the 34 animals used to create this template. D displays 7 T gradient echo T2*-weighted, 

gadolinium stained images from an ex vivo brain registered on the template. E-F highlight 4.7 

T fast-spin echo T2-weighted MR images from 1.9 year-old (E) and 10.9 year-old (F) animals, 

registered on the template. G-H display 11.7 T-T2-weighted multi-slice multi-echo MR images 

from 2.3 year-old (G) and 10.4 year-old (H) animals, registered on the template. Scale bar: 5 

mm. 
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Figure 4. Age-related evolution of cerebral atrophy in various brain regions. (A). Dorsal 

(left), ventral (middle) and lateral (right) views of the cortex showing regions presenting with a 

significant age-related atrophy (colored labels) and spared cortical areas (white). (B) Dorsal 

(left), ventral (middle) and lateral (right) views of atrophied subcortical brain structures. (C-E) 

Age-related evolution of the volume of area 13-16 (insular cortex, C), area 5 (D) and thalamus 

(E). Statistical modeling was performed as described in Section 2.6.2, with numerical results 

given in Table 2. Annotations: ca = caudate nucleus, ce = cerebellum, g = central gray of the 

midbrain, h = hypothalamus, Prp-pa = prepyriform and periamygdalar area, t = thalamus. 
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Table 2. Brain structures presenting with age-related atrophy. Analysis was carried out as detailed in 

Section 2.6.2. Slope is the co-efficient estimated for the parameter age (β1j effectively in mm3 per year) 

and p-value is its associated p-value (p-value for the hypothesis test Ho: β1j = 0 versus H1: β1j ≠0, 

reflecting the significance of the regression coefficient associated to the age). NS: p > 0.05. 30 animals 

were used for this study Animals’ age range was 1.9 to 11.3 years old. 

name of  slope p-value Structures detected as atrophied by 
VBM analysis in (Sawiak et al., 2014) structure 

Insular cortex (13-16) -1.01 0.000039 + 

Frontal cortex 
   

    Area 6 -1.36 0.0019 + 

Parietal cortex 
   

    Area 5 -2.22 0.00000027 + 

    Area 7 -0.70 0.000000016 + 

Occipital cortex 
   

    Area 17 -3.55 0.00000370 + 

    Area 18 -0.69 0.011 + 

Retrosplenial cortex -0.63 0.000013 + 

Cingulate cortex 
   

    Area 23   left -0.24 0.0086 + 

    Area 24 -0.27 0.00058 + 

    Area 25 -0.10 0.00014 + 

Temporal cortex 
   

    Area 21 -1.20 0.0030 + 

    Area 28 -0.75 0.015 - 

    Area 20  NA NS + 

    Area 22 NA NS + 

Total cortex -14.46 0.00000030 NA 

    

Thalamus -2.50 0.000072 + 

Hypothalamus -0.90 0.00000001 + 

Caudate -0.75 0.0016 + 

Central gray of the midbrain -0.48 0.00000052 + 

Putamen -0.30 0.057 + 

Septum right -0.20 0.020 + 

Cerebellum right -1.53 0.035 - 
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3.4. Application to comparative neuroanatomy 

Most studies on brain evolution rely on the analysis of the same set of volumetric 

measurements made on a large variety of mammalian species by a single research group 

using histology-based measures (Stephan et al., 1981). Our 3D MRI-based brain atlas offered 

the opportunity to compare the volumes of brain regions assessed in this histology-based 

reference article to in vivo MRI-based data. This revealed large discrepancies between the two 

methods (Suppl. Table 1). For example, the size of the hippocampus is overestimated by about 

38% with histology-based measures whereas the size of the pallidum is under-estimated by 

about 38%. For the whole cortex, it is difficult to compare cortical prominence between the two 

methods since the histology-based dataset has the limitation of including the underlying WM 

and corpus callosum within the volume of the neocortex. 

In addition to measures of volumes within a single species, digital atlases offer new 

opportunities to compare cerebral volumes across different species (Suppl. Table 2). As a 

proof of principle, we found that, in our population of adult mouse lemurs, the cortex contributes 

54% of cerebral volume (Fig. 5). This value is close to that given by Filipek and al. for the 

human brain (Filipek et al., 1994). By using freely downloadable 3D MRI-based brain atlases 

of the mouse (Dorr et al., 2008), rat (Papp et al., 2014), marmoset (Woodward et al., 2018), 

and macaque (Reveley et al., 2017), it can be determined that the cortex is around 56±3% of 

cerebral volume in the four primate species as in the rat but only 51% in the mouse (Fig. 5, 

Suppl. Table 2). Fig. 5 also shows that overall, the mouse lemur brain is very close to that of 

the marmoset in terms of relative volumes of brain components and that primate brains differ 

from those of rodents in the relatively smaller volumes of the hippocampus and striatum, and 

relatively larger volumes of WM. These trends are especially marked in the human brain, in 

particular the large volume of WM. In addition to measures of brain volumes, another 

advantage of 3D digital brain atlases is that they allow an easy visualization of the 3D shape 

of each brain structure. As an illustration, Fig. 6A shows that the shape of the striatum is very 

different between rodents and primates. Also, within the primate group, it is very similar 

between the mouse lemur and the marmoset. In particular it can be noted that the putamen is 

flat and bent in these two primate species whereas it is rounded and domed in the macaque 

as well as in human. Likewise, it can be seen in Fig. 6B that the hippocampus is much thinner 

with a dorsal part that is much less developed in the macaque than in the mouse lemur, the 

shape being intermediate in the marmoset. 
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Figure 5. Volume fractions of hippocampus, cortex, WM and striatum plotted against 

total cerebrum volume in mouse, rat, mouse lemur, marmoset, macaque and human. 
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Figure 6. 3D shape comparison of the striatum and hippocampal formation in rodent 

and primate species. A: 3D visualizations of the striatum in mouse, rat, mouse lemur, 

marmoset and macaque as seen from a left anterior-superior view (green: caudate in primates, 

striatum in rodents, brown: putamen). B: 3D visualizations of the C-shaped hippocampal 

formation in mouse, rat, mouse lemur, marmoset and macaque as seen from a right anterior-

superior view. 
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4. Discussion 

Mouse lemurs are generating more and more interest as models of neurodegenerative disease 

and references for comparative anatomy. The use of these animals in biological research 

depends on the development of tools for high throughput and automatic analysis as well as for 

standardization. We presented here one such tool: the first 3D digital brain atlas of the mouse 

lemur primate, consisting of an MRI template and labels for the whole brain. We also presented 

two potential applications of this atlas to assess age-related cerebral atrophy and for 

comparative neuroanatomy. 

Compared to previous traditional 2D histology-based atlases of the mouse lemur brain, our 

MRI-based atlas has three main advantages: 1) a high resolution MRI template is provided for 

accurate registration to different imaging modalities and we showed that it can be used to 

register images recorded in various conditions (MRI recorded on 3 different scanners, from 4.7 

to 11.7 T, in vivo and ex vivo), 2) brain regions are directly delineated onto 3D MR images, 3) 

all the voxels from the brain were labeled, including WM areas, subcortical nuclei and cortical 

regions.  

In other species, including primates, several atlases have been based on ex vivo samples. 

Here, we developed an atlas based on in vivo images that do not suffer from the deformation 

of post mortem tissue processing. We also averaged data from several animals to reduce bias 

linked to individual differences.  

4.1. Accuracy of cerebral label attribution 

After the seminal work of Brodmann (Brodmann, 1999 (original in 1909)), cytoarchitectural and 

other histology-based labeling techniques were the standard methods used for brain 

parcellation. This strategy was used to annotate cortical region atlases (Le Gros Clark, 1931; 

Zilles et al., 1979) and non-cortical structures (Bons et al., 1998) in mouse lemurs. For our 

atlas, delineation of WM and subcortical structures was relatively accurate because of the 

strong contrast in the brain template. Delineation of cortical regions, however, was mainly 

based on the transfer of structures found in histological atlases (Le Gros Clark, 1931; Zilles et 

al., 1979). New techniques of brain parcellation such as registration of MRI to 3D histological 

sections or measures of anatomical or functional connectivity (Glasser et al., 2016) will allow 

future refinements of atlas labels. 
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4.2. Application of the mouse lemur atlas to automatically annotate brain regions 

Previous studies of cerebral atrophy in mouse lemurs were based on time-consuming manual 

segmentations (Kraska et al., 2011) or on VBM that can highlight atrophied structures, but that 

does not provide individual measures of the volume of atrophied structures (Sawiak et al., 

2014). Here we showed that using atlas-based registration, individual scans can be annotated 

automatically, eliminating the time consuming step of manual tissue segmentation, and 

enabling rapid and objective quantification of individual subjects’ brain region volumes. Using 

this method, a reanalysis of past data processed by VBM (Sawiak et al., 2014) produced similar 

results. The interest of this method is that, unlike VBM measures of atrophy, it provided 

individual measures of the volumes of each brain region and allowed a quantitative 

assessment of the atrophy. Caution should, however, be recommended after automatic 

annotation of brain regions, and in particular for small regions or for regions close to CSF, and 

it is always recommended to perform a visual assessment of the quality of the annotation. 

4.3. Application of the mouse lemur atlas for comparative neuroanatomy 

Comparative anatomy should be performed on reliable measures of brain structures to provide 

reliable interpretations. One of the obstacles when evaluating many different rare animals is to 

have access to anatomical data that are often difficult to record. For this reason, many studies 

(Barton and Harvey, 2000; Finlay and Darlington, 1995) have used measures from a 

histological study published in the 1980s (Stephan et al., 1981). The study was based on 

perfused brains, extracted out of the skull, embedded in paraffin and sectioned serially. The 

borders of brain structures were delineated from the stained histological sections. Calculations 

were performed to take into account distances between the sections and corrections applied 

for shrinkage resulting from fixation and embedding. Although it has been acknowledged that 

the different components of the brain may have sustained different degrees of shrinkage, these 

differences were considered negligible and not accounted for. We found substantial 

differences between the measures we made and the data reported in this reference article. 

One likely explanation is the post mortem artefacts associated with brain sampling and 

shrinkage resulting from fixation and embedding during histological preparation. An additional 

explanation may be differences in delineation of brain structures. It is impossible to evaluate 

how delineation was done in the reference article as technologies at the time did not allow 

digitization of large datasets. Delineation of an MRI template is expected to be less accurate 

than that of histological sections, but one of the advantages of MRI-based digital atlases is that 

the whole set of data is publicly available and can thus be corrected by other researchers. 
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Published datasets suggest that the ratio of the cortical to cerebral volume is highly different 

between humans (92%) and mouse lemurs (61%) (Stephan et al., 1981). Also, they report 

intermediate values for the marmoset, macaque and chimpanzee (76%, 85%, and 89%, 

respectively). These reference data support the theory of the corticalization of the human brain. 

Unexpectedly, our own analyses based on MRI-based atlases show similar cortical indices 

(56±3%) in four primates (mouse lemurs, marmosets, macaques and humans) while lower 

values were found in mice. Our results are not consistent with a corticalization theory of brain 

evolution. This is a good demonstration of the interest in revisiting previous comparative 

anatomy studies but using MRI-based atlases. Also, contrary to some previous assertions (see 

(Passingham, 1981) for example), we showed that mouse lemurs do not differ from other 

primates in the proportion of their cortex and must not be considered, in this respect, as "lower 

primates". Major differences between primates were found for the WM/cerebrum indices. 

These are bigger in macaques and humans, suggesting that WM increase, a marker for 

reinforced intracerebral connectivity, is a critical event for primate brain evolution, as already 

proposed by several authors (Schenker et al., 2005; Schoenemann et al., 2005). 

Hippocampus/cerebrum indices also decreased for the different primates. Our atlas of the 

mouse lemur is thus a key tool for future collaborative studies of primate brain evolution. 

5. Conclusion 

We constructed the first 3D digital atlas of the mouse lemur brain. It consists of a template 

constructed from in vivo MRI of 34 animals and labelled maps including all brain regions. It is 

freely distributed at https://www.nitrc.org/projects/mouselemuratlas and also includes GM, WM 

and CSF probability maps. The imaging tools used to create and manipulate the template are 

also available (https://sammba-mri.github.io). The labelled atlas itself has room for 

improvement. For example, future cortex parcellation could be based on the registration of our 

atlas to histological data. Newer brain imaging modalities such as structural or functional 

connectivity could also be included in future versions to improve understanding of primate 

brains. This atlas is an important tool for current and future automatic evaluation of pathologies 

in mouse lemur brains and for comparative anatomy. 

  

https://www.nitrc.org/projects/mouselemuratlas
https://sammba-mri.github.io/
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Supplementary Table 1. Comparison of the volumes (mm3) of various cerebral structures according 

to our 3D atlas and that of the reference histological evaluation (Stephan et al., 1981). 

 Current 3D atlas 
Reference 

histological-based 
evaluation 

Difference between histology-
based measures and 3D atlas 

Total brain 1668 1680 +0.7% 

Telencephalon 1180 1129 -4% 

Diencephalon 120 134 +12% 

Striatum  72.7 85.7 +18% 

Pallidum 17.3 10.7 -38% 

Amygdala 26.1 36.4 +39% 

Cerebellum 206.3 234.0 +13% 

Septum 12.5 15.3 +21% 

Hippocampus 72.7 100.0 +38% 

Thalamus 89.5 78.3 -12% 

Hypothalamus 25.1 29.8 +19% 

Olfactory bulb 56.5 43.0 -23% 

 

Supplementary Table 2. Total brain volume and volume fractions of hippocampus, cortex, WM and 

striatum against total cerebrum volume in mouse, rat, mouse lemur, marmoset, macaque and 

human. 

 

  
brain volume 

(mm3) 
hippocampus/ 

cerebrum 
cortex/ 

cerebrum 
WM/ 

cerebrum 
striatum/ 
cerebrum 

Mouse 426 0.095 0.51 0.09 0.072 

Rat 2314 0.100 0.55 0.10 0.083 

Mouse lemur 1668 0.063 0.54 0.17 0.063 

Marmoset 7678 0.055 0.57 0.18 0.046 

Macaque 74324 0.018 0.59 0.30 0.045 

Human 1380000 0.008 0.58 0.37 0.017 
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II.2. Study 2: Resting state cerebral networks in mouse lemur 

primates: from multilevel validation to comparison with 

humans 

Studies of cerebral connectivity have contributed to many breakthroughs in the 

understanding of brain function in normal as well as in pathological conditions such as 

Alzheimer’s or Parkinson’s diseases. One of the objectives of this thesis was to 

characterize cerebral connectivity in mouse lemurs. This study was based on 

evaluation of mouse lemur brains after resting-state blood-oxygen level dependent 

(BOLD) functional magnetic resonance imaging (fMRI). Patterns of low-frequency 

signal oscillations recorded with this technique are similar in brain structures 

functionally connected. Dedicated MR protocols were developed and sammba-mri was 

used to coregister fMRI images. This article was posted on bioRxiv (Garin, C. M., 

Nadkarni, N. A., Landeau, B., Chételat, G., Picq, J-L, Bougacha, S., & Dhenain, M. 

(2019). Resting state cerebral networks in mouse lemur primates: from multilevel 

validation to comparison with humans. I acquired the fMRI and anatomical images of 

the lemurs at 11.7T and coregistered them. I designed the multilevel validation 

methodology for the exploration and the analysis of the neuronal networks in lemurs 

and humans. I created, named and compared the functional atlas of these two species. 

BioRxiv https://www.biorxiv.org/content/10.1101/599423v1  

doi: https://doi.org/10.1101/599423) submitted to E-life. 

II.2.1. Introduction to the methodology: Animal preparation for fMRI acquisition 

fMRI connectivity relies on the analysis of correlations of BOLD fMRI signal 

evolution in different brain regions. This signal assesses neuronal activity through the 

evaluation of the hemodynamic response i.e. the ability of blood to release oxygen to 

active neurons at a greater rate than to inactive neurons. This measure is dependent 

on the relative levels of oxyhemoglobin and deoxyhemoglobin (oxygenated or 

deoxygenated blood) and is modulated by local blood volumes. For these reasons, 

controlling the physiological parameters during fMRI acquisition in animals has proven 

to be one of the crucial aspects to access reliable BOLD acquisition. In addition, fMRI 

https://www.biorxiv.org/content/10.1101/599423v1
https://doi.org/10.1101/599423
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acquisitions are highly sensitive to the subject’s movement. As a consequence, the 

first question that arises prior to any fMRI study in animals is: How to prepare an animal 

to monitor and control the physiological parameters during the image acquisition? 

II.2.1.1. Controlling for motion: trade-off between awake and 

anaesthesia-based connectivity 

In humans, several studies showed that small head motions can produce spurious 

but spatially structured patterns in functional connectivity (Jonathan D. Power et al., 

2014). In animals as well, it is critical to control for head motion. As animals are non-

compliant species, the most widely used method to control for head stability is to 

anesthetize them and to stabilize the head with bitebar and earbars. However, training 

for awake restraint techniques has been developed in rodents and primates. Briefly, 

these procedures are based on progressive acclimation to the scanner environment. 

Atraumatic devices such as head cylindrical head-holder or flat earbars can be used 

to fix the head (Liang et al., 2011). In primates, individualized plastic helmets have 

been constructed based on 3D anatomical images for a better stabilization of the head 

(Belcher et al., 2013). The quality of the mechanical set-up to fix the head is critical 

and according to Kalthoff et al. (Kalthoff et al., 2011), even with carefully fixed heads, 

motion remains the main source of noise in rats fMRI and it contributes to 30% of the 

non-neuronal signal variance (60% being attributed to residual noise). This residual 

motion is related to respiration that represents 5% of the total variance of rsfMRI signal 

(Kalthoff et al., 2011). It can be minimized by artificially-ventilating and paralyzing the 

animals, a process that results in excellent control of the motion artefacts (Ferrari et 

al., 2012), but that remains invasive and technically challenging. Cardiac motion 

induces low-frequency BOLD fluctuations and is another source of noise for rsfMRI 

signal interpretation (Murphy et al., 2013). 

II.2.1.2. Anaesthetics: mechanisms of action 

Because of the difficulties related to awake rsfMRI, anaesthesia remains the method 

of choice to control for head stability. Several options are available regarding the 

anaesthetic to be used. Anaesthetics have been classified into several classes 
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according to their targets: GABAA receptors, NMDA receptors, two-pore-domain K+ 

channels, and other modes of actions. 

GABAA receptors are the most widely used targets for anaesthetic. They are 

chloride channels that hyperpolarize neurons, making them less excitable and thus 

inhibiting the possibility of an action potential. Widely used anaesthetics such as 

isoflurane, propofol and barbiturates belong to GABAA receptors agonists (Franks, 

2008; Garcia et al., 2010). Each drug within this category displays a subtly unique 

pharmacological characteristic. For example, isoflurane and sevoflurane have opposite 

metabolic activities on cerebral blood flow and glucose consumption in various brain 

regions (Lenz et al., 1998). Alpha-chloralose is a drug that is widely used in the context 

of BOLD-fMRI because it provides robust metabolic and hemodynamic responses to 

functional stimulation and is also expected to act on GABAA receptors (Garrett et Gan, 

1998). 

NMDA receptors are also targets commonly used. The use of antagonists for these 

receptors, such as ketamine, is supposed to block excitatory synaptic activity and 

potentially lead to anaesthesia. The latter is probably related to the fact that ketamine 

binds preferentially to the NMDA receptors on GABAergic interneurons. Ketamine 

however, leads to a "dissociative anaesthesia" during which the perception of pain is 

dissociated from the perception of a noxious stimuli. It also has psychotomimetic 

effects at low concentrations leading to auditory and visual hallucinations (Franks, 

2008). Interestingly, ketamine increases regional brain activity, mainly in the anterior 

cingulate, the thalamus, the putamen, and the frontal cortex (Bonhomme et al., 2012; 

Långsjö et al., 2003). 

Two-pore-domain K+ channels are targeted by volatile anaesthetics (isoflurane, 

halothane, nitrous oxide) which have different affinities for subfamilies (TREK-1 or 

TASK) of these receptors (Patel et al., 1999). These channels modulate the potassium 

conductance that contributes to the resting membrane potential in neurons. The 

opening of this channels therefore facilitates a hyperpolarizing current, which reduces 

neuronal excitability leading to anaesthesia.  



91 
 
 

 

Among other targets, alpha2 adrenergic receptor agonists are targeted by 

xylazine, medetomidine, dexmedetomidine (Sinclair, 2003). The effect of these drugs 

is related to their action upon the receptors located in locus coeruleus. At this level 

they prevent the release of norepinephrine, a neurotransmitter that is necessary for 

arousal. The anaesthesia induced by these compounds resembles a state of non-REM 

sleep, i.e. the first four of the five stages of the sleep cycle (Franks, 2008). All of these 

drugs can be reversed by atipamezole (Sinclair, 2003). 

II.2.1.3. Impact of anaesthesia on global BOLD signal 

BOLD signal can be affected by heart rate, arterial CO2 concentration and body 

temperature. Different anaesthetics modulate various targets in the brain and have 

different impacts on peripheral receptors acting on respiration or cardiac regulation. 

Thus, they have different impacts on BOLD signal. For example, in mechanically 

ventilated animals under various anaesthetic conditions and for which arterial blood 

gases (PaCO2, PaO2) and pH were maintained constant, there was a higher BOLD 

signal in rats anesthetized with medetomidine or ketamine-xylazine in comparison to 

isoflurane (2%). This was explained by lower CBF, CMRO2, PtO2, vasodilatation in 

animals under isoflurane (Ciobanu et al., 2012). The use of mechanical ventilation has 

the advantage of avoiding hypercapnia (controlled with paCO2 monitoring) which has 

an impact on fMRI reproducibility (B. Biswal et al., 1997 ; Ramos-Cabrer et al., 2005). 

In spontaneously breathing animals, isoflurane causes dose-dependent respiratory 

depression leading to hypercapnia (increased paCO2) (Wren-Dail et al., 2017), that 

significantly decreases the BOLD signal and the variation of this signal induced by 

stimuli (Sicard et Duong, 2005). The hypercapnia also leads to vasodilatation and 

increases cerebral blood flow (Xu et al., 2011). The modulation of the cerebral blood 

flow could explain the decrease of the BOLD signal specificity to neuronal activity 

induced by stimuli (L. Uhrig et al., 2014). Interestingly, Uhrig et al. showed the different 

impacts of various anaesthetics on blood oxygenation in different brain regions. For 

example, ketamine leads to higher oxygenation in the cortex in comparison to the 

thalamus while the opposite occurs for propofol (Lynn Uhrig et al., 2014). This 

variability probably impacts the ability to detect networks connecting these regions. 

Thus, it seems that anaesthesia limits the ability to detect local BOLD signal variations. 
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However, resting-state BOLD connectivity was found not to be dependent on paCO2 

or paO2 in rats (Fatima A. Nasrallah et al., 2015). Despite this result, the use of a 1:(4 

or 5) oxygen and air mixture (D'Souza et al., 2014; J. Grandjean, Zerbi, et al., 2017; 

Kundu et al., 2014; Sierakowiak et al., 2015) in anesthetized animals was commonly 

observed. The use of oxygen in the mixture is probably useful to renew arterial blood 

gases and support normocapnic conditions.  

The impact of anaesthesia on other physiological parameters, such as temperature 

or the auto-regulatory range of the cardiovascular parameters (contributing to 1% of 

the variability) can modulate the quality of the measured connectivity. These 

parameters must be monitored to assure normal physiological conditions during image 

acquisition. The body temperature can easily be controlled with a heating cradle, pad 

or any additional heating system. 

However, few laboratories can afford all of these monitoring instruments. Controlling 

the temperature, the paCO2 and the movement parameters (before and after the 

acquisition) remains essential in assuring the animal’s physiological stability and the 

quality of the data.  

II.2.1.4. Impact of anaesthetics on neuronal network organization 

What is the impact of anaesthesia on brain network evaluations? In a recent study, 

Barttfeld et al. compared connectivity measures in awake and anesthetized conditions 

(Barttfeld et al., 2015). They showed that under anaesthesia, functional connectivity 

patterns inherit the structure of anatomical connectivity, exhibit fewer small-world 

properties, and lack negative correlations. Conversely, wakefulness is characterized 

by the sequential exploration of a richer repertoire of functional configurations, often 

dissimilar to anatomical structure and exhibiting positive and negative correlations 

among brain regions. In another study, the same authors showed that some regions 

such as the posterior cingulate cortex are disconnected following anaesthesia. Some 

large scale networks (DMN, frontoparietal network) also show decreased functional 

connectivity (Hudetz, 2012). Some other studies found that the functional connectivity 

is preserved in lower order sensory networks, with an increase of the functional 

connectivity in sensori-motor networks (L. Uhrig et al., 2014).  
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II.2.1.5. Anaesthetics used in rodents and primate for resting-state fMRI 

studies 

In rodents, isoflurane and medetomidine are the most commonly used anaesthetics. 

In addition to their different mechanisms of action (GABAA receptors agonist for 

isoflurane and alpha2 adrenergic receptor agonists for medetomidine), they have 

opposite vasoproperties (vasodilatation for isoflurane and vasoconstriction for 

medetomidine) which could impact neurovascular coupling differently. In rodents, 

isoflurane seems to preserve the interhemispheric and cortico-cortical functional 

connectivity but only at low doses (~1%) (Bukhari et al., 2017; J. Grandjean, Schroeter, 

Batata, et al., 2014). Medetomidine seems to present opposite effects such as a 

cortico-cortical FC disruption and a pronounced striatal FC (Bukhari et al., 2017; J. 

Grandjean, Schroeter, Batata, et al., 2014; Paasonen et al., 2018). The effect of 

isoflurane and medetomidine on the thalamo-cortical FC is still debated. Several 

studies suggested that a combination of isoflurane and medetomidine (med/iso) at low 

doses is the best compromise (Table 1, med/iso) to preserve the functional connectivity 

and to replicate the awake state (J. Grandjean, Schroeter, Batata, et al., 2014). Other 

anaesthetics used in rodents (propofol, urethane, chloralose) are presented in Table 1. 

They presented ambiguous effects on the functional connectivity and are not 

recommended any more. 

In primates, isoflurane is the most used anaesthetic (Grayson et al., 2016; R. 

Matthew Hutchison et al., 2013; Miranda-Dominguez et al., 2014; J. L. Vincent et al., 

2007). As in rodents, lower dose and anaesthesia duration are associated to increased 

ability to detect functional connectivity (Table 2) (Barttfeld et al., 2015; Uhrig et al., 

2018). Also, one should keep in mind that direct comparison of the impact of 

anaesthetics on cerebral networks is difficult because anaesthesia depth also 

modulates networks and can lead to misinterpretation of the results. 
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Anesthetics Doses Comparison Effects Studies Species 

isoflurane  

1% 

vs the awake 
state 

preserve interhemispheric FC 
(Jonckers et 
al., 2014) 

Mice vs anesthetics 

cortical and thalamo-cortical FC 
preserved but disruption of striatal 
FC 

(J. 
Grandjean, 
Schroeter, 
Batata, et al., 
2014) 

cortico-cortical FC preserved but 
disruption of thalamo-cortical FC 

(Bukhari et 
al., 2017) 

1% to 
2% 

increasing 
doses  

disruption of interhemispheric FC 
with increasing doses 

(Bukhari et 
al., 2018)  

1.3% 
vs the awake 
state 

cortico-cortical and striatal FC 
increase 

(Paasonen et 
al., 2018)  Rats 

      

medetomidine  
0.1 
mg/kg 

vs anesthetics 

disruption of thalamo-cortical FC 
but pronounced striatal FC 

(J. 
Grandjean, 
Schroeter, 
Batata, et al., 
2014) 

Mice 

thalamo-cortical FC preserved but 
disruption cortico-cortical FC 

(Bukhari et 
al., 2017) Mice 

vs the awake 
state 

cortico-cortical FC decreased 
(Paasonen et 
al., 2018)  Rats 

      

med/iso 

0.05 
mg/kg; 
0.5% 

vs anesthetics preserved FC 

(J. 
Grandjean, 
Schroeter, 
Batata, et al., 
2014) Mice 

(Bukhari et 
al., 2017) 

0.06 
mg/kg; 
0.5% 

vs the awake 
state 

thalamo-cortical annd intra-
subcortical FC deacrease 

(Paasonen et 
al., 2018)  Rats 

      

urethane  

2.5 g/kg 
vs the awake 
state 

disruption of  interhemispheric FC 
(Jonckers et 
al., 2014) 

Mice 

1.5 g/kg vs anesthetics 
cortical and thalamo-cortical FC 
preserved but disruption of striatal 
FC 

(J. 
Grandjean, 
Schroeter, 
Batata, et al., 
2014) 

1.25 
g/kg 

vs the awake 
state 

replication of the awake state 
(Paasonen et 
al., 2018)  Rats 

      

α-chloralose  

120 
mg/kg 

vs the awake 
state 

disruption of  interhemispheric FC 
(Jonckers et 
al., 2014) Mice 

60 
mg/kg 

vs the awake 
state 

cortico-cortical FC suppression 
(Paasonen et 
al., 2018)  Rats 

Table 1 | Anaesthetic effects on the functional connectivity in rodents. 

Review of five studies between 2014 and 2018.   
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Anesthetics Doses Comparison Effects Studies Species 

isoflurane  

1% to 
2.75% 

increasing 
doses 

disruption of 
interhemispheric 
FC after 1.5% 

(R. M. 
Hutchison 
et al., 
2014)  

Macaca 
fascicularis 

0.89% 
to 
1.19% 

duration effect 

reduction of the 
DMN FC with a 
prolonged 
administration 

(C. X. Li et 
Zhang, 
2018)  

Macaca 
mulatta 

   
 

  

ketamine  
20 
mg/kg 

vs the awake 
state 

preservation of 
positive FC but 
average positive 
FC reduced 

(Uhrig et al., 
2018)  

Macaca 
mulatta 

   
 

  

sevoflurane  
2.2 to 
4.4 
vol% 

vs the awake 
state 

average positive 
FC reduced 

(Uhrig et al., 
2018)  

Macaca 
mulatta 

Table 2 | Anaesthetic effects on the functional connectivity in primates. 

Review of five studies between 2014 and 2018. 

II.2.2. Introduction to the methodology: MRI sequences 

MRI sequences are the second critical parameter to perform rsfMRI studies in 

animals. In a preliminary part of the study (see article Common functional networks in 

the mouse brain revealed by multi-centre resting-state fMRI analysis in annex), we 

developed rsfMRI protocols for mice. In the context of this study, we evaluated the 

diversity of the fMRI sequences used in this animal (Table 3). Most of rsfMRI studies 

in rodents use high field MRI (>7T), cryocoil and gradient EPI sequences. According 

to our study, high field and cryocoil can improve the fMRI acquisition and lead to 

reproducible patterns of functional connections (Joanes Grandjean et al., 2019). The 

observed resolution varied between 0.15 x 0.15 and 0.263 x 0.233. The averages, the 

repetition and echo times varied respectively between 150 and 500, 1000 and 2500, 

9.2 and 20.  
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Mice 
field / 
echo 

readout / 
reception 

Resolution / 
FOV  
(mm) 

matrice / 
Averages 

TR/TE 
slice 

number / 
thickness 

anaesthesia 

(Mechling et al., 
2014) 

7 / 
gradient 

EPI / 
cryocoil 

0.15 x 0.15 / 
19.2 x 12 

128x80 / NI 1700/10 12 / 0.7 medetomidine 

(J. Grandjean, 
Schroeter, 
Batata, et al., 
2014) 

9.4 / 
gradient 

EPI / 
cryocoil 

0.263×0.233 / 
23.7 × 14 

90×60 / NI 1000/10  / NI 
iso, med, propofol, 
urethane, iso/med 

(J. Grandjean, 
Schroeter, He, et 
al., 2014) 

9.4 / 
gradient 

EPI / 
cryocoil 

0.25x0.22 / NI 90x70 / 500 1500/9.3 12 / 0.5 isoflurane 

(Stafford et al., 
2014) 

11.7 / 
gradient 

EPI / 
surface 

0.2×0.2 / 
25.6×18 

128×90 / 
450 

2000/10 30 / 0.5 isoflurane 

(D. Shah et al., 
2015) 

9.4 / 
gradient 

EPI / 
surface 

0.156 × 0.312 / 
20 × 20 

128 × 64 / 
150 

2000/15 16 / 0.4 medetomidine 

(Liska et al., 
2015) 

7 / 
gradient 

EPI / 
surface 

NI / 20 x 20 
100 x 100 / 

300 
1200/15 24 / 0.5 halothane 

(Zerbi et al., 
2015) 

9.4 / 
gradient 

EPI / 
cryocoil 

0.263 x 0.233 / 
23.7 x 14 

90 x60 / NI 1000/10 NI / NI iso/med 

(D. Shah, Deleye, 
et al., 2016) 

9.4 / 
gradient 

EPI / 
surface 

0.156 x 0.312 / 
20 x 20 

128 x 64 / 
150 

2000/15 16 / 0.4 iso/med 

(J. Grandjean et 
al., 2016) 

9.4 / 
gradient 

EPI / 
cryocoil 

0.22 x 0.25 / 20 
x 17.5 

90 x 70 / 
360 

1000/9.2 12 / 0.5 iso/med 

(Gass et al., 
2016) 

9.4 / 
gradient 

EPI / 
cryocoil 

NI / 17.28 x 
11.52 

93 x 64 / 
400 

1300/18 21 / 0.4 medetomidine 

(D. Shah, Praet, 
et al., 2016) 

9.4 / 
gradient 

EPI / 
surface 

0.156 × 0.312 / 
20 x 20 

128 x 64 / 
150 

2000/15 16 / 0.4 iso/med 

(Mechling et al., 
2016) 

7 / 
gradient 

EPI / 
cryocoil 

0.15 x 0.15 / 
19.2 × 12  

128 × 80 / 
200 

1700/10 12 / 0.7 medetomidine 

(Bergmann et al., 
2016) 

9.4 / spin 
EPI / 

surface 
0.15 x 0.15 / 
14.4 × 9.6 

128 x 128 / 
200x4 

2500/18.3 30 / 0.45 awake 

(Takata, 2016) 
7 / 

gradient 
EPI / 

cryocoil 
0.2 x 0.2 / 19.2 

× 19.2 
96 × 96 / 

200 
1500/20 18 / 0.5 

awake and 
medetomidine 

(Latif-Hernandez 
et al., 2016) 

9.4 / 
gradient 

EPI / 
surface 

0.2 x 0.2 / 0.16 
× 0.31 

128 × 64 / 
150 

2000/15 16 / 0.4 iso/med 

(Okano, 2016) 
7 / 

gradient 
EPI / 

cryocoil 
0.2 x 0.2 / NI NI / NI 1000/20 16 / 0.5 medetomidine 

(DeSimone et al., 
2017) 

11.1 / NI 
EPI / 

surface 
NI / 19.2 x 19.2 64 x 64 / NI 1000/20 12 / 0.75 isoflurane 

(Hubner et al., 
2017) 

7 / 
gradient 

EPI / 
cryocoil 

0.15×0.15 / 
19.2×12.0 

128×80 / 
200 

1700/10 12 / 0.7 medetomidine 

Table 3 | MRI sequence parameters of mouse fMRI studies published between 2014 and 

2017. 

  



97 
 
 

 

Due to the rat-like size of the mouse lemur primate brain, we then evaluated the 

diversity of the sequence used in rat fMRI (Table 4). In rats, all the studies use high 

field MRI (>4.7T) and surface coil. The observed resolution varied between 0.3 x 0.3 

and 0.5 ×0.5. The averages, repetition and echo times varies respectively between 

100 and 450, 1000 and 3000, 12 and 45. 

Rats 
field / 

echo 

readout / 

reception 

Resolution / 

FOV (mm) 

Matrice / 

Averages 
TR/TE 

slice 

number / 

thickness 

anaesthesia 

(Kalthoff et al., 

2011) 

11.7 / 

gradient 

EPI / 

surface 
0.3 x 0.3 / NI 

96×96 / 

100 
2840/ 17.5 NI / NI medetomidine 

(Sanganahalli 

et al., 2013) 

9.4 / 

gradient 

EPI / 

surface 

0.4 x 0.4 / 2 

x 2.56 
64×64 / NI 1000/16 NI / 2 α-chloralose 

(Wehrl et al., 

2013) 

7 / 

gradient 

EPI / 

surface 
0.5×0.5 / NI 

64×64 / 

300 
2000/18 NI / 1 iso / med / chlor 

(Shim et al., 

2013) 

9.4 / 

gradient 

EPI / 

surface 
NI / 25 x 25 

64×64 / 

600 
1000/12.8 9 / 1 chlor / panc 

(F. A. Nasrallah 

et al., 2014) 
9.4 / spin 

EPI / 

surface 

NI / 25.6 × 

25.6 

64×64 / 

300 
2000/45 NI / 1 iso et med 

(Liang et al., 

2014) 

4.7 / 

gradient 

EPI / 

surface 
NI / 32  × 32 64×64 / NI 1000/30 18 / 1 awake 

(C. Li et al., 

2014) 

9.4 / 

gradient 

EPI / 

surface 
NI / 35 × 35 

64×64 / 

110 
2000/19.4 10 / 1 

dexdomitor + 

pancuronium 

bromide 

(Song et al., 

2015) 

9.4 / 

gradient 

EPI / 

surface 

0.39x0.39 / 

25.6 × 25.6 

64×64 / 

450 
2000/17 10 / 1 dexdomitor 

(Sierakowiak et 

al., 2015) 

10.4 / 

gradient 

EPI / 

surface 
NI / NI 

64×64 / 

300 
1000/16.3 11 / 1 medetomidine 

(Huang et al., 

2016) 

7 / 

gradient 

EPI / 

surface 
NI / 30 × 30 

64×64 / 

300 
1000/20 11 / 1 isoflurane 

(Becerra et al., 

2017) 

4.7 / 

gradient 

EPI / 

surface 
NI / 30 × 30 64×64 / 90 3000/12 15 / 1.5 awake 

 

Table 4 | MRI sequence parameters of rat fMRI studies published between 2011 and 

2017.
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II.2.3. Coregistration of EPI images 

When images (anatomical and EPI) come from different subjects, standard 

coregistration transformations such as the different brain shapes and sizes have to be 

corrected. However, EPI images display a poor contrast complicating their 

coregistration. So, in addition to the standard anatomical coregistration, additional 

corrections have to be made. 

The usual coregistration strategy is based on four major steps illustrated in Figure 

24:  

(1) EPI images from one sequence are realigned together using an affine 

transformation (translation, rotation, scale, skew). The average of these EPI 

images is also calculated to create an EPI reference (“refEPI”). The generated 

transformation parameters are further used as confounds (motion during the 

fMRI acquisition) in subsequent analyses. The affine transformation is followed 

by a nonlinear registration to the EPI reference. 

EPI distortion is an inhomogeneity of the B0 field that produces distortion which 

vary according to the subject’s orientation. The correction of EPI distortion is 

optional but highly advised, especially at high field. Moreover, susceptibility 

artefacts are even more severe in animals with small brain sizes (X. Hong et al., 

2015). 

Slice timing correction has to be performed because usually the 3D volumes 

of an EPI sequence are not acquired at once but within a sequence of 2D slices 

obtained at different times. The purpose of this correction is to interpolate all the 

slices by knowing the time of repetition and the slice order acquisition. 

(2) EPI brain images (skull striped) of a given subject are registered using a non-

linear transformation to their anatomical image (acquired in the same space). 

(3) The anatomical brain images (skull striped) of a cohort are coregistrated to an 

anatomical template using an affine transformation followed by a nonlinear 

transformation. This step spatially normalizes the different anatomical images 

and generate transformations that will be used in step (4). 

(4) Coregistration to the anatomical template space is performed by applying the 

transformation parameters from (2) and (3) to the EPI images produced by (1). 
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Figure 24 | Four major steps for the fMRI image coregistration to an anatomical template. 

The images used to illustrate this are taken from our mouse lemur study. The different numbers 

correspond to the text above this figure. 

  



100 
 

II.2.4. Signal pre-treatment for resting-state fMRI 

Pre-treatment of the BOLD signal is an important step towards the control of the 

non-neuronal signal. The selection of the confounds and the techniques used to 

remove them remains a major question in the rsfMRI field due its impact on the 

reproducibility of the results. To our knowledge, no consensus exists concerning the 

fMRI confounds and their clean-up. The major challenge of the BOLD pre-treatment is 

to remove confounds with a minimum loss of the signal of interest. 

Controlling the motion during an acquisition has been exposed in a previous Chapter 

(II.2.1.1 Controlling for motion: trade-off between awake and anaesthesia-based 

connectivity). However, because motion systematically alters the BOLD signal it 

remains one of the main confounds to regress. The standard method is to use a 

regressor based on the realignment parameters produced by the transformation of 

the EPI images to EPI reference (see II.2.3. Coregistration of EPI images (1)). The 6 

motion parameters are commonly regressed as well as their derivatives, squares and 

these of the preceding volume (K. J.  Friston et al., 1994).  

Signal regressions using BOLD signal from various tissues are one of the most 

standard ways to clean up the fMRI signal.  This method used the BOLD signal 

extracted and averaged within specific masks such as white matter, cerebrospinal fluid 

(CSF) or the whole brain (global signal regression). The regression of the global signal 

and its derivative is very effective toward motion confounds (Jonathan D. Power et al., 

2014). However, the global signal regression is very controversial these last ten years 

and has led to contradictory conclusions, especially concerning the appearance of anti-

correlations, distance dependent effect of motion, or the removal of the signal of 

interest (Murphy et Fox, 2017) (Lydon-Staley et al., 2019). Using the tissue based 

signal (CSF, ventricles) as a regressor it is also expected that confounds will be 

removed such as physiological signal, scanner artefacts, and motion. The latter is more 

common but displayed moderate results for motion control (Ciric et al., 2017). 

Time series regressions of physiological recordings are rarely performed in 

both human and animal fMRI studies despite that the correlation between BOLD signal 

and heart beat or respiration has been proven. However, cardiac and respiratory 

regression have demonstrated opposed results. Jo et al. found that physiological 

regressors account for a small amount of the variance (Jo et al., 2010) while Vogt et 
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al. found a significant contribution (Vogt et al., 2011). Many studies have highlighted 

networks that were coherent with the current literature without any physiological 

regression. These results suggest that the signal regression using BOLD signal from 

various tissues can be potentially adequate. 

Censoring methods are used to reduce the impact of motion or MRI artefacts. 

Despiking identifies outlier time points based on their abnormal intensity and 

interpolates over them. Scrubbing identifies the time points to censor/delete them 

based on a prior threshold. These methods are only used in specific cases. 

Principal component analysis is a method used to (1) isolate noisy signals 

extracted from CSF or white matter signal and that can be further used in the nuisance 

regressors or (2) identify highly noisy regions by their temporal standard deviation. 

Independent component analysis, this method also allowed the identification of 

artefactual structures. Note that the principal component analysis method is more 

effective than the tissue mean regression (Muschelli et al., 2014). 

The use of spatial smoothing is also very controversial. Theoretically, bigger 

voxels provide a better signal to noise ratio but the separation of the different types of 

tissues is less precise. According to some studies, spatial smoothing has an important 

impact on graph-theoretical features (Alakorkko et al., 2017) probably due to an 

overestimation of functional correlation (Liu et al., 2017). However, other studies claim 

that spatial smoothing has a limited impact on fMRI analyses (Op de Beeck, 2010). 

Nevertheless, estimating the optimal spatial smoothing seems to be necessary to 

extract meaningful regions with independent component analysis (Z. Chen et Calhoun, 

2018). 

The use of frequency filters at rest is justified since high frequencies are related to 

physiological noise (J. D. Power et al., 2014). The current rsfMRI studies commonly 

use filters between 0.01 and 0.1 Hz at rest. However, several publications claimed that 

artificially induced correlations were related to bandpass filters (C. E. Davey et al., 

2013). 

In conclusion for this introduction to BOLD pre-treatment, different approaches can 

be tested to maximize the removal of general noise but there is no unique correct way 

to pre-process fMRI data, each one being specific to the dataset and the further 

analyses. 
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II.2.5. Submitted article: Garin, C. M., Nadkarni, N. A., Landeau, B., Chételat, 

G., Picq, J-L, Bougacha, S., & Dhenain, M. (2019). Resting state cerebral 

networks in mouse lemur primates: from multilevel validation to comparison 

with humans. BioRxiv https://www.biorxiv.org/content/10.1101/599423v1 doi: 

https://doi.org/10.1101/599423.  
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Abstract 

Measures of resting-state functional connectivity allow the description of neuronal 

networks in humans and provide a window on brain function in normal and pathological 

conditions. Animal models are critical to further address experimentally the function of 

brain networks and their roles in pathologies. Here we describe for the first time brain 

network organization in the mouse lemur (Microcebus murinus), a small primate 

attracting increased attention as a model for neuroscience. Resting-state functional 

MR images were recorded at 11.7 Tesla. Forty-eight functional regions were identified 

and used to identify networks using graph theory, dictionary learning and seed-based 

analyses. Comparison of results issued from these three complementary methods 

allowed the description of the most robust networks from mouse lemurs. Large scale 

networks were then identified from resting-state functional MR images of humans using 

the same method as for lemurs. Strong homologies were outlined between cerebral 

networks in mouse lemurs and humans. 

 

Keywords 

Brain function, Cerebral networks, Functional MRI, Graph theory, Human, Microcebus 

murinus, Mouse lemur, Primate, Resting state   
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1. Introduction 

Blood-oxygen level dependent (BOLD) functional magnetic resonance imaging 

(fMRI) is largely used to investigate brain function in response to specific tasks. In the 

absence of explicit tasks (i.e. in resting state conditions) patterns of oscillations of the 

fMRI signal are similar in functionally connected brain structures (Biswal et al., 1995). 

The detection of the synchronicity of BOLD signal in various brain regions in resting 

state conditions can thus be used to describe cerebral network organization. In 

particular this allows the characterization of i. local regions in which highly coordinated 

neuronal activity occurs and ii. large scale networks composed of widespread 

functional regions connected together (Biswal et al., 1995; Power et al., 2014). 

Studies of brain networks have contributed to many breakthroughs in the 

understanding of brain function in normal as well as in pathological conditions such as 

Alzheimer’s or Parkinson’s diseases (Buckner et al., 2005; Gao and Wu, 2016). 

However, many questions remain concerning both the technique and interpretation of 

resting state fMRI. For example, both the role of resting state networks in cerebral 

function, and the biological mechanisms underlying their activity, are still partly 

unknown. Also, how their modulations impact behavior and cognition in pathological 

conditions is still debated (Mohan et al., 2016). 

Using animal models is critical to further address these questions. Indeed, in 

animals it is possible to artificially stimulate neuronal activity to characterize biological 

mechanisms underlying network function (Gerits et al., 2012). Another interest of 

studying neuronal networks in animals is to evaluate how evolution has driven network 

architecture and to assess to what extent animal behaviors and ecology (Burkart et al., 

2016) have impacted this architecture. Finally, animals can be used to model diseases 

and explore the impact of pathological processes on brain networks. 

Various analysis pipelines have been proposed to investigate neuronal networks in 

humans and animals. For example, large scale networks were identified using data-

driven methods relying on spatial map decomposition (dictionary learning (Varoquaux 

et al., 2011), independent component analysis (Damoiseaux et al., 2006)) or on graph 

theory (modularity analysis (Grayson et al., 2016)), as well as hypothesis-driven 

methods (seed-based analysis (Hutchison et al., 2014)). These methods are based on 

different algorithms and each one has its own inherent advantages and disadvantages 

(Lee et al., 2013). They can provide complementary approaches for identifying 
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networks in unexplored animals. 

The mouse lemur (Microcebus murinus) is a primate attracting increased attention 

in neuroscience research. This small animal (typical length 12cm, 60-120g weight) is 

arboreal and nocturnal. It has a decade-long lifespan and is a model for studying 

cerebral aging (Sawiak et al., 2014) and various diseases such as diabetes-related 

encephalopathy (Djelti et al., 2016), Parkinson's disease (Mestre-Frances et al., 2018), 

or Alzheimer's disease (Kraska et al., 2011). It has a key position on phylogenetic trees 

of primates and is used to investigate primate brain evolution (Montgomery et al., 

2010). Characterizing its cerebral networks is thus useful in the context of comparative 

biology as well as for further use of this animal to model various pathologies. Thus, the 

first aim of this study was to characterize neuronal networks in mouse lemurs. Our 

second objective was to implement a protocol that could define functional regions 

directly from resting-state fMR images and to compare large scale networks identified 

with data-driven and hypothesis-driven methods to assess the robustness of the 

identified networks. Our third objective was to compare resting state networks 

identified in lemurs with those identified in humans using the same procedure. 

Resting state functional MR images were recorded from 14 mouse lemurs at 11.7 

Tesla. These images enabled the identification of 48 functional regions using dictionary 

learning (Varoquaux et al., 2011). These regions were concatenated into a 3D 

functional atlas covering most of the brain and were used as nodes for whole brain 

network characterization. Large scale networks were identified using several methods 

based on graph theory, dictionary learning and seed-based analysis. They included 

default-mode-like, visual, fronto-temporal, somato-motor, basal ganglia and thalamic 

networks. These networks were then compared to large scale networks in humans. 

We found a strong homology between cerebral networks in mouse lemurs and 

humans.  
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2. Results 

2.1 Identification of local functional regions and concatenation in a 3D 

functional atlas 

Resting state fMR images were recorded from 14 anaesthetised (isoflurane 1.25-

1.5%) mouse lemurs at 11.7 Tesla (Suppl. Table 1). Images were recorded using a 

gradient-echo echo planar imaging (EPI) sequence. Each animal was scanned twice 

with an interval of 6 months. 

Organisation of whole brain networks can be modelled using graph theory. During 

this modelling, whole brain networks are defined as a set of nodes (basic elements of 

the system) and edges (allowing relationships between nodes). The identification of 

nodes can be based on the use of anatomical atlases (Ghahremani et al., 2016) or on 

the use of study-specific functional atlases that identify local functional regions (Ma et 

al., 2018). 

Here, we identified local functional regions by performing a dictionary learning 

based on a large number of sparse components (SCs). This method extracts maps of 

cerebral networks from fMRI data and relies on sparsity-based decomposition of the 

signal. Multi-animal dictionary learning analyses of resting state fMR images were 

performed in mouse lemurs using 35 components (Fig. 1). Each component was 

manually classified using anatomical (Bons et al., 1998; Nadkarni et al., 2018) and 

Brodmann atlases (Brodmann, 1999 (original in 1909); Le Gros Clark, 1931). First, 

brain regions were classified based on their locations within the frontal, parietal, 

temporal and occipital lobes as well as subcortical and midbrain regions. The 35 

components were used to create a 3D functional atlas of the brain (Fig. 2). Some single 

components were associated to bilateral structures as shown, for example, for the 

precentral cortex in Fig. 1. These bilateral regions were classified as two different 

regions (i.e. one in each hemisphere). Thus, 48 local functional regions (27 cortical, 21 

subcortical) could be extracted from the 35 component dictionary analysis (Table 1). 

They can be downloaded from https://www.nitrc.org/projects/fmri_mouselemur/. 

https://www.nitrc.org/projects/fmri_mouselemur/
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Figure 1. Regions of functional activity identified in mouse lemurs. 

Regions of functional activity were identified following dictionary learning analyses 

of resting state fMR images using 35 components. They are shown on coronal and 

axial anatomical templates with an automatic slice selection based on the center of 

mass of each component. All components were organized within five anatomical 

areas: frontal, parietal, occipital, temporal, and subcortical regions. 
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Figure 2. Mouse lemur 3D functional atlas based on dictionary learning. 

Forty eight local functional regions were identified following dictionary learning 

analyses of resting state fMR images using 35 components. Brain regions were 

classified based on their locations within the frontal (A), parietal (B), occipital (C), 

and temporal (D) lobes. We display three different views and three slices extracted 

from the functional atlas. 1. Frontal Superior Anterior, 2. Frontal Middle, 3.  Frontal 

Superior Posterior, 4. Supplementary Motor Area, 5. Cingulum Anterior, 6. 

Precentral, 7. Postcentral, 8. Cingulum Posterior, 9. Parietal, 10. Occipital Middle, 

11. Temporal Superior, 12. Temporal Middle, 13. Temporal Inferior, 14. Occipital 

Inferior, 15. Cuneus, 16. Occipital Pole, 17. Basal forebrain, 18. Septal nuclei, 19. 

Striatum Anterior, 20. Caudate nucleus Posterior, 21. Putamen Posterior, 22. Globus 

pallidus, 23. Amygdala, 24. Hypothalamus, 25. Dorsal thalamus, 26. Ventral 

thalamus, 27. Hippocampus, 28. Colliculus, 29. Pons, 30. Midbrain. 
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 Label name Area Function 

Frontal lobe  

Frontal Sup Ant (1) 10/46 task coordination 

Frontal Mid (2) 45/12 visual, auditory processing 

Frontal Sup Post (3) 8 coordinated movements 

Supp Motor Area (4) 4 primary motor  

Cingulum Ant (5) 24 multimodal 

Precentral (6) 6 secondary motor area 

Postcentral (7) 1-3 primary somatosensory 

Parietal 
lobe 

Cingulum Post (8) 23 multimodal 

Parietal (9) 
5 
7 

secondary somatosensory 
somatosensory association 

Temporal 
lobe 

Temporal Sup (11) 22 secondary auditory area  

Temporal Mid (12) 38/21 auditory processing 

Temporal Inf (13) 20 secondary visual  

Occipital 
lobe 

Cuneus (15) 18 visual processing 

Occipital Mid (10) 18  secondary visual area 

Occipital Inf (14) 37 visual processing 

Occipital Pole (16) 17 primary visual 

Subcortical 
regions 

Basal forebrain (17)     

Septal nuclei (18)     

Striatum Ant (19)     

Caudate nucleus Post (20)     

Putamen Post (21)     

Globus pallidus (22)     

Amygdala (23)     

Hypothalamus (24)     

Dorsal thalamus (25)     

Ventral thalamus (26)     

Hippocampus (27)     

Colliculus (28)     

Pons (29)     

Midbrain (30)     

 

Table 1. Identification of functional regions of the mouse lemur brain. 
Brain regions were classified based on their locations within the frontal, parietal, 
temporal, or occipital lobes as well as subcortical regions. Each labelled region was 
compared to cytoarchitectonic (Brodmann, 1999 (original in 1909); Le Gros Clark, 
1931) and anatomical atlases of the mouse lemur (Bons et al., 1998; Nadkarni et al., 
2018) and of the human “AAL for SPM12” atlas (Tzourio-Mazoyer et al., 2002) to 
evaluate the Brodmann areas that were the closest to the identified regions. A function 
is also proposed for each region following expectations from Brodmann classification.  
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2.2 Large scale brain networks in mouse lemurs 

The quantification of correlations of temporal evolution of BOLD fMRI signal 

between two regions (or nodes) provides an index of the “functional connectivity” 

between these nodes. Here, the 48 functional regions identified with the dictionary 

learning analysis were used as nodes for graph analysis of the mouse lemur brain. A 

3D-view of the mouse lemur network based on these 48 functional regions is presented 

in Suppl. Fig. 1. Partial correlation matrices were created using fully preprocessed MR 

images by calculating the partial correlation coefficients between temporal evolutions 

of BOLD MR signals within each region of this 3D functional network. 

 

2.2.1 Modularity and large scale network identification based on graph 

analysis 

In graph theory, large scale networks are defined as community structure (or 

modules), which are groups of nodes connected densely and sparsely with nodes from 

other modules. The modularity of a partition (Q) is the degree to which a network can 

be subdivided into non-overlapping groups of nodes with maximum within-group 

connections and minimum number of between-group connections (D. B. Vincent et al., 

2008). Here, the average partial correlation matrix was used to evaluate the modular 

structure of the mouse lemur brain by graph theory. Q was calculated to assess the 

ability of this weighted undirected matrix to be segregated into non-overlapping groups 

of nodes. A high modularity value (Q = 0.43) was obtained which suggests a prominent 

modular structure of mouse lemur brain networks. This modularity index was 

associated with the classification of the matrix into 6 modules (large scale networks) 

(Fig. 3, Suppl Table 2). Each functional region was associated with one and only one 

network. These networks were identified as: 

M-16 – Default mode network-like (DMN-like). This module involved posterior 

and anterior cingulum, superior posterior frontal and parietal cortices. In other species, 

these regions are reported to be part of the DMN (Belcher et al., 2013; Hutchison et 

al., 2010; J. L. Vincent et al., 2007). This module also embedded nodes from the 

superior motor area and postcentral cortices. 

M-26 – Visual. This module involved the cuneus, the occipital pole, the middle, 

the inferior occipital and the inferior temporal cortices. Those clusters correspond to 

visual areas and regions involved in integration of visual information. 
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M-36 – Frontal. This module involved nodes from frontal and precentral cortices. 

M-46 – Temporal. This module embedded temporal structures usually implicated 

in response to auditory stimuli as well as the right posterior putamen. 

M-56 – Basal ganglia. This module embedded the anterior striatum, the posterior 

striatum (posterior caudate nucleus and posterior putamen), the amygdala, basal 

forebrain, septal nuclei, as well as the hypothalamus and globus pallidus. 

M-66 – Thalamic. This network involved a large number of subcortical regions 

including and surrounding the thalamus, the hippocampus, the colliculi and the 

midbrain. 

 

Figure 3. Mouse lemur networks identified using graph analysis based on 48 

functional regions. 

Using graph analysis, we partitioned the mouse lemur brain into six cortical and 

subcortical modules. A color and a name were assigned to each module. Colors 

highlight interactions between different nodes, i.e. they outline large scale networks. 

Eigenvector centrality, a measure of node influence, is represented by the node size. 
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2.2.2 Identification of large scale networks based on dictionary learning 

We then wondered whether the six previously identified modules could be identified 

with dictionary learning analysis, another data-driven method. A six-component 

analysis revealed bilateral networks spread over the whole brain (Fig. 4, Suppl. Table 

2). Four networks (the DMN, visual, basal ganglia and thalamic) were very similar to 

those identified with the module analysis. One network (fronto-temporal) was a 

concatenation of two networks identified by module analysis. The last network 

(somato-motor) was not identified with module analysis. Unlike for the graph analysis 

some functional regions (e.g. the anterior cingulate cortex) could be attributed to 

different networks (e.g. the DMN, fronto-temporal and somato-motor networks). More 

precisely, the networks were identified as: 

SC-16 – DMN. This network involved structures identified with graph analysis 

(posterior and anterior cingulum cortices, superior posterior frontal and parietal 

cortices). Some nodes (superior motor area and postcentral cortices) identified as part 

of the DMN by graph analysis were not detected with dictionary learning. 

SC-26 – Visual. This network involved the same nodes as those detected with 

module analysis (occipital pole, middle, inferior occipital and inferior temporal cortices), 

except the inferior temporal cortex.  

SC-36 – Fronto-temporal. This network involved several regions that were 

identified as frontal or temporal network with graph analysis. It also included the 

anterior cingulum cortex. 

SC-46 – Somato-motor. This network embedded frontal and parietal regions 

located above the Sylvian fissure (corresponding to Brodmann 1-3 (primary region 

involved in body sensation), 4 (primary motor region) and 6 (secondary motor region)) 

and temporal regions surrounding the Sylvian fissure. This network could thus be 

involved in somato-motor activities. 

SC-56 – Basal ganglia. This network involved the same regions as those 

identified for this network with module analysis except for the hypothalamus and globus 

pallidus. 

SC-66 – Thalamic. This last network involved mostly the same regions as the 

ones identified with graph analysis. In addition, it included the basal forebrain, septal 

nuclei and globus pallidus.   
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Figure 4. Cerebral networks identified following six component dictionary 

learning in mouse lemurs.  

This analysis revealed bilateral networks that included several regions spread over 

the whole brain classified as default mode-like, visual, fronto-temporal, somato-

motor, basal ganglia and thalamic networks. 
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2.2.3 Identification of large scale networks based on seed-based analysis 

Another way to analyse cerebral networks is to perform seed-based studies. This 

method evaluates the relationships between mean BOLD signal in a brain region 

(seed) and BOLD signal in any voxel of the brain. Here, the seeds corresponded to the 

48 previously identified functional regions. Some seeds were only connected with 

voxels from the same brain region and were not further explored (i.e. the visual and 

thalamic networks, SB-26 and SB-66 in Fig. 5). Four seeds were connected with voxels 

localized in brain networks previously described with the graph analysis and dictionary 

learning methods (i.e. the DMN, fronto-temporal, somato-motor and basal ganglia 

networks, Fig. 5). Two networks identified with other methods were not identified by 

seed-based analysis (the visual and thalamic networks). As for dictionary learning, 

some structures (i.e. the anterior cingulum cortex) could be attributed to different 

networks (Suppl. Table 2). More precisely, the networks highlighted by seed-based 

analysis are described as follows. 

SB-16 – DMN. The seed from the posterior cingulum cortex (PCC) is usually 

used to define the DMN. Here, using this seed we highlighted highly connected voxels 

in the regions identified as DMN with graph analysis and dictionary learning methods 

(posterior and anterior cingulum cortices, superior posterior frontal and parietal 

cortices). Additional parts of this network were also identified (middle frontal cortex and 

dorsal thalamus). 

SB-36 – Fronto-temporal. The seed from the left middle temporal cortex was 

connected with the right middle and superior temporal cortices, superior anterior frontal 

cortex, superior posterior frontal cortex and anterior cingulum cortex. 

SB-46 – Somato-motor. Using a seed in the left superior motor area, we 

highlighted a network englobing several regions included in the somato-motor network 

identified by dictionary learning (fronto and parietal cortices, superior temporal regions, 

anterior cingulum cortex). Voxels from the middle frontal, superior posterior frontal 

cortex, posterior cingulum cortices as well as the posterior caudate nucleus and dorsal 

thalamus were also associated with this network. 

SB-56 – Basal ganglia. Using the posterior caudate nucleus (left) as a seed, we 

highlighted a basal ganglia network that involved the striatum. It was already identified 

for this network with graph analysis and dictionary learning. Voxels from the superior 

posterior frontal cortex and anterior cingulum cortices were also associated with this 
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network. 

 

Figure 5. Mouse lemur resting-state networks characterized with seed-based 

analysis. 

Each image highlights mean z-statistic maps of regions connected to a cerebral 

seed. Seed-based analysis detected four of the six previous large scale networks 

identified with dictionary learning: default mode-like, fronto-temporal, somato-motor, 

and basal ganglia (seeds positioned in the posterior cingulate cortex, the left medial 

temporal cortex, the left superior frontal cortex and the left posterior caudate nucleus, 

respectively). Visual and thalamic networks that were detected with dictionary 

learning were not detected with seed-based analysis: SB-26 and SB-66 display lack 

of large network detection using seeds in the left occipital cortex and the left ventral 

thalamus. Color bars represent z-statistic values. 
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2.3 Functional hubs and small-worldness features of mouse lemur brains  

2.3.1 Brain hubs in mouse lemurs 

Whole brain networks can also be characterized using various descriptors. One of 

these descriptors, "hubness", describes the centrality of nodes in the network. This is 

a measure of node influence within the whole brain network. It can be measured by 

eigenvector centrality. For each node, this index is mainly calculated based on its 

partial correlation values (edges) with all regions of the 3D functional atlas, weighted 

by the eigenvector scores of its neighbourhood nodes. In other words, nodes which 

display high eigenvector centrality scores are strongly linked to other nodes and/or to 

strongly connected nodes. Here, eigenvectors were presented as histograms (Fig. 6) 

or as the size of the nodes in the graphical representation of the networks (Fig. 3). The 

3 nodes presenting the highest eigenvector centrality were the anterior cingulum 

cortex, the posterior cingulum cortex, and the superior posterior frontal cortex. These 

three regions belong to the DMN. The dorsal thalamus was the next region showing 

highest hubness properties. Then the following hubs involved the parietal cortex, 

superior motor area, as well as the superior temporal and postcentral cortices (Fig. 6). 

 

2.3.2 Small-worldness of mouse lemur brain networks 

Network topology describes properties of regional specialization and global 

information transfer efficacy. It can be classified into three main classes: random, 

lattice and small-world networks (Telesford et al., 2011). Network topology can be 

characterized using two small-world coefficients (σ and ω) (NetworkX (Hagberg et al., 

2008)). Small-world networks have σ values superior to 1 and ω values close to 0 

(Telesford et al., 2011). In mouse lemurs these coefficients (σ = 1.47 and ω = 0.39) 

indicated small-world properties. Usually, mammal brains have small-worldness 

topology (Mechling et al., 2014).  
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Figure 6. Eigenvalue centrality scores, reflecting "hubness", in mouse lemur 

brain regions. 

The three regions displaying the highest scores were the anterior cingulate cortex, 

the posterior cingulate cortex and the central frontal cortex. The dorsal thalamus was 

the next region showing highest hubness properties. Then the following hubs 

involved the parietal cortex, superior motor area, as well as the superior temporal 

and postcentral cortices. 
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2.4 Cerebral networks in humans 

We then wondered how comparable mouse lemur and human brain networks are. 

To answer to this question, resting state fMRI data were recorded from 42 healthy 

humans ranging from 41 to 60 years old at 3.0 Tesla using an interleaved 2D T2* 

SENSE EPI. Participants were asked to keep their eyes closed and relax without falling 

asleep during image acquisition. Human images were then processed with the same 

graph analysis and dictionary learning algorithms as mouse lemur images. 

Local functional regions were identified using a dictionary learning based on 35 

components. Single components spread on bilateral structures were dissociated into 

two different regions (i.e. one in each hemisphere). Ultimately, the brain was partitioned 

into 56 local functional regions (55 cortical, 1 subcortical). They were named based on 

the “AAL for SPM12” atlas (Tzourio-Mazoyer et al., 2002) (Suppl. Fig. 2) 

As for mouse lemurs, the 56 functional regions identified with the dictionary learning 

analysis were used as nodes for large scale network analysis. First, we calculated 

partial correlation coefficients between temporal evolutions of BOLD MR signals within 

each region of the 3D functional atlas. The obtained correlation matrix was used to 

calculate the matrix modularity value (Q = 0.56). This index was associated with the 

segregation of the matrix into 6 modules that were classified as default mode, visual, 

frontal, temporal somato-motor, and temporo-insular networks (Suppl. Fig. 3). 

Then large scale networks were further characterized in humans using a dictionary 

learning analysis with 6 components (Fig. 7, Table 2). The 6 networks identified could 

be classified as the default mode, visual, fronto-supramarginal (classified as control-

executive network in (Solé-Padullés et al., 2016)), somato-motor, temporal, and a 

fronto-parietal network (classified as attention network in (Raichle, 2011)).  



120 
 

 
Figure 7. Human cerebral networks identified following six component 

dictionary learning.  

The spatial map decomposition extracted 6 cortical networks commonly observed in 

the literature (DMN, visual, fronto-supramarginal, somato-motor, temporal, fronto-

parietal). This analysis was performed with similar pretreatments as for the mouse 

lemurs. 

  

Dictionary learning
Default mode network Visual network

Somato-motor networkFronto-supramarginal network

Temporal network Fronto-parietal network
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2.5 Functional hubs and small-worldness features of human brains 

Eigenvector centrality and network topology were evaluated in humans using the 

same procedures as for mouse lemurs. Eigenvector centrality was presented as 

histograms (Fig. 8) or as the size of the nodes in the graphical representation of the 

networks (Suppl. Fig. 3). The 3 nodes presenting the highest eigenvector centrality 

were the parietal inferior (right and left) and the precuneus posterior. Then the next 

hubs were located in the middle frontal cortex (left), the angular region (left) and the 

posterior cingulum cortex. All these regions except the middle frontal cortex belong to 

the DMN. Regarding network topology, as expected we found small-world properties 

in the human brain (σ = 1.1 and ω = 0.08). 

 

Figure 8. Eigenvalue centrality scores, reflecting "hubness", in human brain 

regions. 

The 3 nodes presenting the highest eigenvector centrality were the parietal inferior 

(right and left) and the precuneus posterior. Then the next hubs were located in the 

middle frontal cortex (left), the angular region (left) and the posterior cingulum cortex. 
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3. Discussion  

This study provides a detailed characterisation of the organisation of functional 

networks in mouse lemur primates under isoflurane sedation. Complementary 

analyses based on dictionary learning, seed-based studies and graph analysis 

highlighted 48 local functional regions that could be grouped into several large scale 

networks. We also identified the main hubs and small-world characteristics of mouse 

lemur brains. Human brain networks were also analysed with algorithms similar to 

those used in lemurs in order to compare networks in both species. 

 

3.1 Parcellation of functional regions within mouse lemur brains  

Up to now, description of mouse lemur functional organisation was based on 

cytoarchitectonic atlases (Bons et al., 1998; Le Gros Clark, 1931; Nadkarni et al., 

2018). Here, using dictionary learning with a large number of components, we created 

a 3D map of 48 local functional regions. The quality of this functional atlas was 

supported by the bilateralism of the extracted regions. One of the strengths of this 

functional map is that it can be used to create a whole brain graph that relies on brain 

function rather than on anatomical boundaries. Studies of animal resting state 

networks often used regions of interest based on anatomical atlases (Li and Zhang, 

2018), as opposed to functional atlases. The latter approach is preferable since 

anatomical boundaries do not necessarily correspond to underlying brain function. 

Therefore, regions of interest based on anatomical atlases display less signal 

homogeneity and so increase non-specific signal (Craddock et al., 2012). The second 

advantage of functional atlases is that no predetermined anatomical atlas is required 

during the analysis. Consequently, the independence of our pipeline provides the 

capacity to build brain networks in species that have not been fully investigated.  
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3.2 Modular organisation of mouse lemur brains 

High modularity is an important principle of brain organisation (Bullmore and 

Sporns, 2009). It can be measured with modularity of a partition (Q). Here we found 

Q=0.43 in mouse lemurs. This value is consistent with Q values reported in rats 

(Q=0.39 (D'Souza et al., 2014)), other non-human primates (0.33 < Q < 0.54 (Shen et 

al., 2012)) or humans in our study (Q = 0.56) and indicates that the mouse lemur brain 

can be partitioned into modules. Using graph analysis, we identified six cortical and 

subcortical modules that corresponded to large scale networks. This organisation into 

six modules is consistent with the number of modules reported in rats (n=6 (D'Souza 

et al., 2014)), other non-human primates (for example n=4 (Shen et al., 2012) or n=7 

(Grayson et al., 2016) in Macaca fascicularis), or humans in our study (n=6). 

 

3.3 Characterisation of large scale networks in mouse lemur brains 

3.3.1 Multi-method approach of resting state analysis in animals 

Whole brain networks can be decomposed into large scale networks. However, 

there are no absolute frontiers between these large scale networks due to the 

gradualness of the interactions between the different regions of the brain. Several 

methods, such as dictionary learning, graph analysis and seed-based studies can be 

used to identify these large scale networks in mammal brains. They rely on various 

mathematical bases associated with various sensitivities to image artefacts (Power et 

al., 2014). Also, these methods have diverse abilities to classify brain regions into 

networks. For example, graph analysis attributes each region to one and only one 

network while dictionary learning and seed-based analysis can attribute a region to 

several networks. In most resting state fMRI studies in animals, neuronal networks are 

identified on the basis of a single method. Here we showed that different methods do 

not detect exactly the same networks. However, networks identified with each method 

display a strong overlap. Functional regions included in a network by several methods 

represent the more robust parts of the network. Thus, we propose a first classification 

of the mouse lemur networks that takes into account only regions identified by two or 

three methods (Fig. 9, Suppl. Table 3). An overview of each network is presented in 

the following paragraphs.  
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Figure 9. Most robust functional networks identified in mouse lemurs using 

two or three network identification methods. 

Regions from the DMN, visual, fronto-temporal, somato-motor, basal ganglia and 

thalamic networks that could be identified by two or three network identification 

methods are considered as robustly associated to a network and are displayed on 

this figure. For each network, edges were reported from those identified with graph 

analysis. 

 

3.3.2 Default-mode-like network 

The DMN is one of the most studied networks in humans (Hampson et al., 2006) 

and other mammals including rodents (Lu et al., 2012) and non-human primates (J. L. 

Vincent et al., 2007). It plays a critical role in several physiological and pathological 

processes such as Alzheimer’s or Parkinson’s diseases (Buckner et al., 2005; Gao and 

Wu, 2016). In mouse lemurs, four regions of this network were detected with network 

identification methods: anterior and posterior cingulum cortices, superior posterior 

frontal cortex and parietal cortex. In several species, these regions are reported to be 

part of the default mode network (Belcher et al., 2013; J. L. Vincent et al., 2007). 

In humans and other mammals, the DMN contains highly connected hub nodes. In 

the mouse lemur brain, we also found that it contained the most connected nodes. 

Given the importance of this network it was critical to characterize it in the mouse 

lemur, which is widely used as a model of neurodegenerative diseases (Kraska et al., 

2011; Mestre-Frances et al., 2018). 
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3.3.3 Fronto-temporal network 

The fronto-temporal network was found in mouse lemurs with dictionary learning 

and seed-based analysis, but was split into two networks (frontal and temporal) with 

graph analysis. One of its components, the superior temporal cortex, was a strong hub 

in the mouse lemur brain. In primates, these regions are reported to be part of the 

executive network (Hutchison et al., 2012) 

 

3.3.4 Networks specialized in sensory and motor information processing 

We also identified networks that could be classified as externally-driven. The first 

one is the visual network. It involved mainly occipital areas. This network has been 

described in numerous primates under task and rest conditions (Belcher et al., 2013). 

The second externally-driven network is the somato-motor network. It has also been 

widely defined in humans (Beckmann et al., 2005), primates (Nelissen and Vanduffel, 

2011), and many other mammals (Sierakowiak et al., 2015). It integrates sensory input 

and motor commands. In mouse lemurs, we found that this network contains several 

hubs such as the anterior cingulum cortex, the superior motor area and the postcentral 

cortices. 

 

3.3.5 Subcortical networks 

Finally, two networks were identified in subcortical areas. The first one involved the 

basal ganglia. Similar networks are described in primates (Belcher et al., 2013), and 

other mammals (Sierakowiak et al., 2015) and are involved in emotional, motivational, 

associative and cognitive functions (Herrero et al., 2002). 

The second subcortical network involved several regions such as the ventral 

thalamus (a strong hub in mouse lemurs), dorsal thalamus, hippocampus, colliculus, 

pons and midbrain. It was called "thalamic network". 
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3.4 Small-worldness features of mouse lemur brains 

We finally evaluated the small-worldness properties of the mouse lemur functional 

networks by calculating small-world coefficients σ and ω. Our results attested that 

mouse lemur networks have small-world properties (ω = 0.39). Interestingly, ω was 

much smaller in the human brain (ω = 0.08) than in the lemur brain suggesting stronger 

small-world properties in humans. The small-world configuration is considered as 

optimal for local information processing and for its global transfer. Indeed, small-world 

networks have the unique ability to have specialized regions while simultaneously 

exhibiting shared or distributed processing across all of the communicating regions of 

a network (Telesford et al., 2011). 

 

3.5 Cross species comparison: homologies and divergence between humans 

and mouse lemur networks 

In a last part of the study, cerebral networks were analyzed in humans with the 

same graph analysis and dictionary learning algorithms as the ones used in mouse 

lemurs. Two major differences were reported between the two species. First, large 

scale networks were only cortical in humans while they involved two subcortical 

networks in lemurs. Second, in humans, large scale networks involved more functional 

regions than in lemurs. This latter result is consistent with the stronger small-world 

organization in humans than in lemurs suggesting a better efficacy of whole brain 

networks in humans. These differences between the two species may be related to a 

better efficacy of neuronal networks in humans, but they could also be associated to 

different awareness levels as lemurs were anesthetized while humans were awake 

during image acquisition. Indeed, Barttfeld et al. compared connectivity measures in 

awake and anesthetized conditions in primates. They showed that under anaesthesia, 

the more frequent functional connectivity patterns inherit the structure of anatomical 

connectivity and exhibit fewer small-world properties (Barttfeld et al., 2015). 

Graph analysis revealed four similar modules (default mode-like, visual, frontal, and 

temporal networks) in mouse lemurs and humans, although their regional organization 

was not strictly identical. Two other modules detected in humans (somato-motor and 

temporo-insular) corresponded to networks that were not detected in lemurs. On the 

contrary, the two subcortical modules detected in lemurs (basal ganglia and thalamic 

networks) were not detected in humans. Because of the multiple regions involved in 
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module description by graph analysis and because of the possibility to attribute a 

region to only one network with this method, it was difficult to further compare human 

and lemur networks with this technique. 

Dictionary learning also revealed four similar networks (DMN, visual, fronto-

temporal/supramarginal and somato-motor networks) in lemurs and humans (Table 2; 

Suppl. Fig. 4). In both species, the DMN network involved the cingulum, frontal, and 

parietal cortices. In mouse lemurs, it involved the superior posterior frontal cortex that 

was probably subdivided in two functional regions (frontal superior medial and frontal 

superior posterior cortices) in humans. Other regions such as the temporal cortex were 

included in the human DMN but not in the mouse lemur DMN. Interestingly, in both 

species, this network was the one in which highest hubness coefficients (eigenvectors) 

were detected. This reinforces the importance of this network for brain functional 

organization. In humans, the default mode network has been largely linked to self-

referential thought, internal-oriented cognition and monitoring of the environment 

(Buckner et al., 2008). The strength and stability of this network in mouse lemurs under 

anaesthesia is consistent with the discovery of this network in many other anesthetized 

animals (J. L. Vincent et al., 2007). This suggests that it is an essential element of brain 

functional organization and that it may be dedicated to other tasks too. 

In the visual network, occipital cortex was detected in both species. Additional more 

anterior-parietal regions such as the paracentral lobule and the postcentral were 

highlighted in humans. We cannot rule out that this wider extension in human dataset 

is not related to the wakefulness state as it induces a richer repertoire of functional 

configurations (Barttfeld et al., 2015).  

In mouse lemurs, a network involving the anterior cingulum, frontal and temporal 

regions was classified as the fronto-temporal network. In humans, one network 

involving mostly the anterior cingulum and frontal regions could be homologous to this 

network. Interestingly, in lemurs, this networks also involved temporal (superior and 

medial temporal regions) while it involved parietal regions (supramarginal anterior and 

parietal inferior cortices) as well as additional regions (supplementary motor, cingulum 

median and opercular regions) in humans. This network could correspond to the 

control-executive network (Solé-Padullés et al., 2016). If the fronto-temporal network 

of mouse lemur is equivalent to the fronto-supramarginal human network, then this 

would suggest a shift of the functional region localized in the superior temporal area in 

lemurs towards a supramarginal location in humans. 
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The last comparable network was the somato-motor network. In humans it involved 

regions surrounding the central sulcus (precentral and postcentral regions) as well as 

the supplementary motor region. In lemurs, there is no central sulcus, but this network 

involved similar regions (precentral and postcentral regions) as well as the 

supplementary motor region. Interestingly, this part of the network seemed to have a 

more anterior position in the brain of lemurs than in humans. This is consistent with the 

more anterior part of the motor regions reported in lemurs by Le Gros Clark (Le Gros 

Clark, 1931) and Brodmann (Brodmann, 1999 (original in 1909)). This pattern is linked 

to the smaller size of the frontal region in lemurs as compared to humans. Finally, in 

humans, this region involved the paracentral and the precuneus anterior cortices while 

it involved the region classified as anterior cingulate cortex in the mouse lemur. These 

two regions are localized in the same area and we cannot rule out that the functional 

region classified as anterior cingulate cortex in lemur indeed involved the pre and post 

central lobule in addition to the anterior cingulate cortex. 

 

3.6 Anaesthesia-related limitations 

One of the objectives of this study was to describe for the first time neuronal 

networks in mouse lemurs. It was conducted on sedated animals using isoflurane with 

the lowest non-awakening isoflurane level possible for mouse lemurs (1.25%). 

Isoflurane is expected to decrease the functional connectivity but at high doses 

(superior to 1.5%) or after a long exposure (Hutchison et al., 2014; Li and Zhang, 

2018). Evaluating resting state networks in anesthetised and not in awake animals is 

an obvious limitation of the study (Schroeter et al., 2014). However, several animal 

studies showed that the major functional networks are preserved under anaesthesia 

(J. L. Vincent et al., 2007). Here, we confirm this assumption by describing several 

networks, including a DMN-like in anesthetised mouse lemurs. In the future, one may 

also focus on resting state fMRI in awake mouse lemurs to possibly evaluate more 

physiological brain states and increase the number of nodes associated with each 

identified network. Such an approach is challenging but has already been performed 

in marmosets (Belcher et al., 2013) and macaques (Goense et al., 2008).  
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 Mouse lemur Human 

 Label   Label 

Default 
mode 

(8) Cingulum Post (20) 

(5) Cingulum Ant (7) 

(3) Frontal Sup Post 
Frontal Sup Post (R&L) 

Frontal Sup medial (R&L)  
(2) 
(3) 

  Frontal Inf (L) (35) 

(9) Parietal (R&L) 
Parietal Inf (R&L) 

Angular (L) 
(14) 
(15) 

  Temporal Mid Ant(R&L) (23) 

  Occipital Sup (R&L) (27) 

  Precuneus Post (18) 

  Calcarine (30) 
 

 
  

 

Visual 

(16) Occipital Pole (R&L) (33) 

(10) Occipital Mid (R&L) (28) 

(14) Occipital Inf (R&L) (29) 

(15) Cuneus (26) 

  Calcarine (30) 

  Lingual (31) 

  Fusiform (R&L) (32) 

  Paracentral lobule (19) 

  Postcentral (R&L) (11) 
 

 
  

 

Fronto-
temporal 
/ 
Fronto-
supra- 
marginal 

(5) Cingulum Ant (7) 

(1) Frontal Sup Ant (R&L) (1) 

(3) Frontal Sup Post  
Frontal Sup Post (R) 

Frontal Sup medial (R) 

(2) 

(3) 

(2) Frontal Mid (R&L) 
Frontal Mid (R&L) 

Frontal Inf operc (R&L) 

(4) 
(5) 

  Frontal Inf (L) (35) 

  Supp motor area (12) 

  Cingulum Mid (8) 

(11) Temporal Sup (R&L) Supramarginal (R&L) (21) 

  Parietal Inf (R) (14) 

  Striatum-thalamus (34) 

(12) Temporal Mid (R&L)   
 

 
  

 

Somato-
motor 

(6) Precentral (R&L) (10) 

(7) Postcentral (R&L) (11) 

(4) Supp motor area (R&L) (12) 

(9) Parietal (L) Parietal Sup Ant (R&L) (13) 

(5) Cingulum Ant 
Paracentral lobule (19) 

Precuneus Ant (17) 

(11) Temporal Sup (R&L) 
Temporal Sup (R&L) (25) 

Supramarginal (R&L) (21) 

 
Table 2. Comparison of the regions belonging to the different networks extracted 
in mouse lemurs and humans. 
Regions that were identified with different methods are grouped within a single case. 
The 3D functional atlas of each species was pasted on different networks obtained by 
dictionary learning. A region was considered to belong to a network when more than 
30% of its volume belonged to this network. The fit between two regions with different 
names was based on the anatomical proximity. Labels represent the number 
corresponding to this region in Figure 2 for lemurs and Supplementary Figure 2 for 
humans. 
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4. Conclusion 

This study provides the first characterisation of functional brain networks in mouse 

lemur primates. Local functional regions were identified without using any anatomical 

atlas. Six large scale networks were identified using several complementary data-

driven and hypothesis-based methods. Networks identified with each method 

displayed a strong overlap and we propose a first classification of the most robust 

mouse lemur networks by selecting only regions identified by two or three methods. 

We also proposed a second validation method by comparing networks in lemurs and 

human brains. Indeed, a strong homology was reported between well characterized 

human cortical networks and lemur cortical networks. This further suggests the 

accuracy of the identified mouse lemur networks. The mouse lemur brain displayed 

small-world features leading to optimal information transfer. Finally, critical hubs were 

detected and involved the posterior and anterior cingulate cortices, the central 

prefrontal cortex, and the dorsal thalamus. 

The mouse lemur is an interesting primate because of its key position in the 

phylogenetic tree, rodent-like small size and nocturnal and arboreal lifestyle. The 3D 

functional atlas and resting state network maps are freely available at 

https://www.nitrc.org/projects/fmri_mouselemur/. The imaging tools used to create and 

manipulate the template are also available (https://sammba-mri.github.io). 

 

5. Materials and methods 

5.1 Animals and breeding 

This study was carried out in accordance with the recommendations of the 

European Communities Council directive (2010/63/EU). The protocol was approved by 

the local ethics committees CEtEA-CEA DSV IdF (authorization 201506051736524 VI 

(APAFIS#778)). All mouse lemurs studied were born in the laboratory breeding colony 

of CNRS/MNHN in Brunoy, France (UMR 7179 CNRS/MNHN) and bred in our 

laboratory (Molecular Imaging Research Center, CEA, Fontenay-aux-Roses). 

Sixteen mouse lemurs (12 males and 4 females) were initially included in this study. 

Two females that presented brain lesions on anatomical MRI were excluded from the 

analysis. The 14 analysed animals ranged from 0.9 to 3.1 years old (mean±SD: 

1.7±0.7) (Suppl. Table 1). Housing conditions were cages containing one or two lemurs 

https://www.nitrc.org/projects/fmri_mouselemur/
https://sammba-mri.github.io/
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with jumping and hiding enrichment, temperature 24–26°C, relative humidity 55% and 

seasonal lighting (summer: 14 hours of light/10 hours of dark; winter: 10 hours of 

light/14 hours of dark). Food consisted of fresh apples and a homemade mixture of 

bananas, cereals, eggs and milk. Animals had free access to tap water. None of the 

animals had previously been involved in pharmacological trials or invasive studies.  

 

5.2 Animal preparation and MRI acquisition 

Each animal was scanned twice with an interval of 6 months. All scanning was 

under isoflurane anaesthesia at 1.25-1.5% in air, with respiratory rate monitored to 

confirm animal stability until the end of the experiment. Body temperature was 

maintained by an air heating system at 32°C, inducing a natural torpor in mouse lemurs 

(Aujard and Vasseur, 2001). This has the advantage of allowing a low anaesthesia 

level without reawakening. 

The MRI system was an 11.7 Tesla Bruker BioSpec (Bruker, Ettlinger, Germany) 

running ParaVision 6.0.1. Anatomical images were acquired using a T2-weighted 

multi-slice multi-echo (MSME) sequence: TR = 5000 ms, TE = 17.5 ms, 6 echoes, 

inter-echo time = 5 ms, FOV = 32 × 32 mm, 75 slices of 0.2 mm thickness, resolution 

= 200 µm isotropic, acquisition duration 10 min. Resting state time series data were 

acquired using a gradient-echo EPI sequence: TR = 1000 ms, TE = 10.0 ms, flip angle 

= 90°, repetitions = 450, FOV = 30 × 20 mm, 23 slices of 0.9 mm thickness and 0.1 

mm gap, resolution = 312 × 208 × 1000 µm, acquisition duration 7m30s. 

 

5.3 MRI acquisition in humans 

Forty-two healthy participants from the ‘Imagerie Multimodale de la Maladie 

d’Alzheimer à un stade Précoce’ (IMAP) study (Caen) were included in the present 

study (18 males and 24 females ranging from 41 to 60 years old (mean±SD: 50±5.9)). 

All participants were scanned on a 3.0 T scanner (Philips Achieva, Amsterdam, 

Netherlands) at the Cyceron Center (Caen, France). Anatomical T1-weighted images 

were acquired using a 3D fast-field echo sequence (3D-T1-FFE sagittal TR = 20 ms, 

TE = 4.6 ms, flip angle = 10°, 180 slices of 1 mm with no gap, FOV = 256 × 256 mm2, 

in-plane resolution = 1 × 1 mm2). Resting state time series data were acquired using 

an interleaved 2D T2* SENSE EPI (2D-T2*-FFE-EPI axial, SENSE = 2; TR = 2382 ms; 

TE = 30 ms; flip angle = 80°; 42 slices of 2.8 mm with no gap, repetitions = 450, FOV 
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= 224 × 224 mm2, in plane resolution = 2.8 × 2.8 mm2, acquisition duration = 11.5 min). 

Head motion was minimized with foam pads. Participants were equipped with earplugs 

and the scanner room’s light was turned off. During this acquisition, participants were 

asked to keep their eyes closed and relax without falling asleep. 

 

5.4 MRI pre-processing 

5.4.1 Mouse lemur data 

Scanner data were exported as DICOM files then converted into NIfTI-1 format. 

Then spatial pre-processing was performed using the python module sammba-mri 

(SmAll MaMmals BrAin MRI; http://sammba-mri.github.io) which, using nipype for 

pipelining (Gorgolewski et al., 2011), leverages AFNI (Cox, 1996) for most steps and 

RATS (Oguz et al., 2014) for brain extraction. Anatomical images were mutually 

registered to create a study template, which was further registered to a high resolution 

anatomical mouse lemur template (Nadkarni et al., 2018). Resting state images were 

corrected for slice timing (interleaved), motion, and B0 distortion (per-slice registration 

to respective anatomicals), then all brought into the same space of the mouse lemur 

template by successive application of the individual anatomical to study template and 

study template to mouse lemur atlas transforms. Functional images were further 

pretreated using Nilearn (Abraham et al., 2014). Nuisance signal regression was 

applied including a linear trend as well as 24-motion confounds (6 motion parameters, 

those of the preceding volume, plus each of their squares (Friston et al., 1994)). 

Images were then spatially smoothed with a 0.9 mm full-width at half-maximum 

Gaussian filter. The first 10 volumes were excluded from analysis to ensure steady-

state magnetization. 

 

5.4.2 Human data 

Artefacts were inspected in individual datasets using the TSDiffAna routines 

(http://imaging.mrc-cbu.cam.ac.uk/imaging/DataDiagnostics). Datasets displaying 

significant movements (> 1.5° rotation or > 3 mm translation) and abnormal variance 

distribution and/or artefacted were excluded from the analysis. Data were then 

preprocessed as defined in Landeau et al. (Landeau et al., 2017) with slice timing 

correction, realignment to the first volume and spatial normalization within native space 

http://sammba-mri.github.io/
http://imaging.mrc-cbu.cam.ac.uk/imaging/DataDiagnostics
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to correct for distortion effects. EPI volumes were registered to their own high 

resolution anatomical image and then registered and normalized to MNI template 

space. Nuisance signal regression was applied including a linear trend as well as 24-

motion confounds (6 motion parameters, those of the preceding volume, plus each of 

their squares (Friston et al., 1994)). Images were then spatially smoothed with a 2 mm 

full-width at half-maximum Gaussian filter. 

 

5.5 Identification of functional regions by dictionary learning and creation of a 

3D functional atlas 

Multi-animal dictionary learning was performed with Nilearn (Mensch et al., 2016) 

on preprocessed resting state functional MR images. A mask excluding the corpus 

callosum, hindbrain, ventricles and three systematically artefacted regions (olfactory 

bulb, ventral entorhinal cortex and prepiriform cortex) was used to restrict functional 

data to non-noise voxels prior to dictionary learning analysis. During a pilot 

investigation, several analyses were performed using 20, 30, 35, 40, 45, 50, and 60 

sparse components (SCs). The study based on 35 SCs was selected for the final 

analysis as it highlighted either unilateral local functional regions or bilateral regions. 

Moreover, the extracted components matched well to anatomy (Nadkarni et al., 2018). 

The 35 SCs were used to create a 3D functional atlas of the mouse lemur brain. Each 

bilateral SC was split into two unilateral regions. Regions smaller than 5 mm3 were 

excluded leading to 48 local functional regions. Each region was then named using 

ITK-SNAP to create a 3D functional atlas (Yushkevich et al., 2006). The same 

procedure than in lemurs was applied to process human fMRI data. We used 35 SCs 

and a grey matter mask without hindbrain. 

 

5.6 Identification of large scale networks 

5.6.1 Connectivity matrix based on functional atlas 

Partial correlation matrices were created using fully preprocessed MR images by 

calculating the partial correlation coefficients between BOLD MR signal timecourses 

within each region of the 3D functional atlas. Partial correlations were used because 

they select direct associations between regions and allow the control of indirect 

correlations (Mechling et al., 2014). Individual partial correlation matrices were 
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computed from shrunk covariance matrices using the Ledoit and Wolf shrinkage 

coefficient (Ledoit and Wolf, 2004) as recommended by Varoquaux et al. (Varoquaux 

et al., 2012) and Brier et al. (Brier et al., 2015). Partial correlation coefficients were 

then Fisher’s z-transformed. Values from different animals were averaged and 

thresholded based on a one-tailed t-test (p ≤ 0.01) (Mechling et al., 2014). 

 

5.6.2 Modularity and large scale network identification by graph theory 

analysis 

The modularity of a partition (Q) is the degree to which a network can be subdivided 

into non-overlapping groups of nodes (D. B. Vincent et al., 2008). The modularity of a 

partition as well as an optimal segregation of the whole brain network into modules 

were calculated using Gephi 0.9.2 (Bastian et al., 2009). 

 

5.6.3 Large scale network identification by dictionary learning analysis 

A second dictionary analysis was performed in mouse lemurs and humans using a 

smaller number of SCs in order to highlight large networks and to compare them. Six 

SCs were used based on the 6 modules found with the graph theory analysis (see 

Results). In humans, a mask excluding the hindbrain and the white matter was used 

prior to the analysis to compare the dictionary learning of the two species in a similar 

space. 

 

5.6.4 Large scale network identification by seed-based analysis 

Seeds corresponded to each region of the 3D functional atlas. The BOLD signal 

was averaged within each seed. The functional connection between the seed’s mean 

BOLD signal and the BOLD signal in any voxel of the brain was estimated using a first-

level general linear model (Nistats (Abraham et al., 2014)). The within-animal effect 

(i.e. the two series of MR images from each animal) was entered as a predictor (design 

matrix) and the mean seed time course as regressor. The model directly returned a 

fixed effect of the seed across the two sessions, producing 14 z-statistic maps. The 

functional regions previously identified were used as seeds. For each seed, a visual 

inspection of the animal mean z-statistic maps allowed the selection of four distinct 

large scale networks that were spread over the whole brain. 
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5.7 Identification of functional regions from dictionary-learning and seed-based 

maps 

Dictionary learning and seed-based analysis produced maps showing pixels 

belonging to different networks. These maps were extracted and pasted into the 3D 

functional atlas. A brain region was considered to be part of a specific network when 

the volume of labelled voxels within the map occupied at least 30% of that region. 

 

5.8 Evaluation of functional hubness and small-worldness features of mouse 

lemur brains by graph theory analysis 

We consider in this analysis the absolute value of the correlation coefficient as 

performed routinely in human fMRI graph theory studies (De Vico Fallani et al., 2014). 

 

5.8.1 Brain hubs in mouse lemurs 

Eigenvector centrality, a measure of "hubness", was measured using NetworkX 

(Hagberg et al., 2008). 

 

5.8.2 Small-worldness of mouse lemur brain networks 

Network topology can be characterized using two small-world coefficients (σ and 

ω) (NetworkX (Hagberg et al., 2008)).  

σ is defined as σ =  
𝐶/Crand

𝐿/Lrand
  (Watts and Strogatz, 1998)  

ω is defined as ω =
𝐿

Lrand
−

𝐶

Crand
 (Telesford et al., 2011). 

With C and L being, respectively, the average clustering coefficient (a measure of 

network segregation) and the average shortest path length (a measure of integration) 

of the network. Crand and Lrand are their equivalent derived random networks. Small-

world networks have σ values superior to 1 and ω values close to 0 (Telesford et al., 

2011). 
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Supplementary Data 

 

Supplementary Tables 

 
 

Sex Age 

(months) 

Age 

(years) 

Anatomical brain 

lesion 

283EA M 10.6 0.9 No 

365A M 10.6 0.9 No 

285AB M 10.7 0.9 No 

285AAA M 16.5 1.4 No 

283CCA M 16.6 1.4 No 

263BCE M 17.8 1.5 No 

314CA M 18.0 1.5 No 

283CA M 22.4 1.9 No 

285E M 22.6 1.9 No 

276BC M 28.0 2.3 No 

285D M 28.1 2.3 No 

289BB F 28.8 2.4 No 

300BA M 29.8 2.5 No 

288BC F 37.3 3.1 Yes 

208CBF F 37.5 3.1 No 

310C F 39.9 3.3 Yes 

 

Supplementary Table 1. Cohort of mouse lemurs involved in the study.  
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 Modules  Dictionary learning  Seed-based 

Default mode-
like 

Cingulum Post 

Cingulum Ant 

Frontal Sup Post 

Parietal (R&L)  

Supp Motor Area (R&L)   Frontal Mid 

Postcentral (R&L)   Dorsal thalamus 
 

Visual 

Occipital Pole (R&L)   

Cuneus   

Occipital Mid (R&L)    

Occipital Inf (L)   

Temporal Inf (L)  Occipital Inf (R)    
 

Frontal  
 
 
 
 
Temporal  

Frontal Sup Ant  

Frontal Mid (R&L)   

Precentral (R&L) Frontal Sup Post 

 Cingulum Ant 

 

Temporal Sup (R&L) 

Temporal Mid (R&L)  

Temporal Inf (R)  

Posterior putamen (R)  

 

Somato-motor 

  Supp Motor Area (R&L)  

  Postcentral (R&L) 

  Temporal Sup (R&L)  

  Cingulum Ant 

  Parietal (L)  

  Precentral (R&L)  Parietal (R)  

   Frontal Mid 

    Frontal Sup Post 

    Cingulum Post 

    Caudate nucleus Post (R)  

    Dorsal thalamus 
 

Basal ganglia 

Striatum Ant (R&L)  

Caudate nucleus Post (R&L)  

Putamen Post (L) 

Amygdala (R&L)  Frontal Sup Post 

Basal forebrain  Cingulum Ant 

Septal nuclei    

Hypothalamus Putamen Post (R)    

Globus pallidus     
 

Thalamic  

Dorsal thalamus   

Ventral thalamus (R&L)    

Hippocampus (R&L)   

Colliculus (R&L)   

Pons    

Midbrain   

Occipital Inf (R)  Basal forebrain   

  Septal nuclei   

  Globus pallidus    
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Supplementary Table 2. Comparison of the regions belonging to the different 
networks extracted with module, dictionary learning and seed-based analysis. 
Regions that were identified with different methods are grouped within a single case. 
The 3D functional atlas was pasted on different networks obtained by dictionary 
learning or seed-based analysis. A region was considered to belong to a network when 
more than 30% of its volume belonged to this network.  
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 Robust functional regions 

Default mode-like 

Cingulum Post 

Cingulum Ant 

Frontal Sup Post 

Parietal (R&L)  
 

Visual 

Occipital Pole (R&L) 

 Occipital Mid (R&L)  

 Occipital Inf (L)  

 Cuneus  
 

Fronto-temporal  

Frontal Sup Ant  

Frontal Mid (R&L)  

Frontal Sup Post 

Cingulum Ant 

Temporal Sup (R&L) 

Temporal Mid (R&L)  
 

Somato-motor 

Postcentral (R&L) 

Supp Motor Area (R&L) 

Temporal Sup (R&L)  

Cingulum Ant 

Parietal (L)  
 

Basal ganglia 

Striatum Ant (R&L)  

Caudate nucleus Post (R&L)  

Putamen Post (L) 

Amygdala (R&L)  

Basal forebrain  

Septal nuclei  
 

Thalamic  

Dorsal thalamus  

Ventral thalamus (R&L)  

Hippocampus (R&L)  

Colliculus (R&L)  

Pons  

Midbrain  

 

Supplementary Table 3. Robust functional networks in mouse lemur primates. 
This table displays components that could be identified by two or three methods. The 
different networks are the DMN, visual, fronto-temporal, somato-motor, basal ganglia 
and thalamic networks.  
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Supplementary Figures 

 
Supplementary Figure 1. Whole brain network in mouse lemurs. 
Mean correlation matrix showing the mouse lemur brain network represented on a 

3D mouse lemur brain space using BrainNet (Xia et al., 2013). Nodes represent the 

local functional regions extracted from our 3D functional atlas. They were spatially 

distributed based on their center of mass. Edges between the nodes represent the 

mean partial correlation from the 28 mouse lemurs. Color and size of these edges 

are proportional to this correlation. The color bar represents partial correlation 

values. 
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Supplementary Figure 2. Human 3D functional atlas based on dictionary 
learning. 
Functional regions based on dictionary learning. Fifty six local functional regions 

were identified from the 35 sparse components (region volume ≥ 5000 mm3). Brain 

regions were classified based on their locations within the frontal (A), parietal (B), 

occipital (C), and temporal (D) lobes and on the “AAL for SPM12” atlas (Tzourio-

Mazoyer et al., 2002). We display three different views. 1. Frontal Superior Anterior, 

2. Frontal Superior Posterior, 3. Frontal Superior Medial, 4. Frontal Middle, 5. Frontal 

Inferior Opercular, 6. Frontal Orbital, 7. Cingulum Anterior, 8. Cingulum Middle, 9. 

Insula, 10. Precentral, 11. Postcentral, 12. Supplementary Motor Area, 13. Parietal 

Superior Anterior, 14. Parietal Inferior, 15. Angular, 16. Parietal Superior Posterior, 

17. Precuneus Anterior, 18. Precuneus Posterior, 19. Paracentral Lobule, 20. 

Cingulum Posterior, 21. Supramarginal, 22. Temporal Inferior, 23. Temporal Middle 

Anterior, 24. Temporal Middle Posterior, 25. Temporal Superior, 26. Cuneus, 27. 

Occipital Superior, 28. Occipital Middle, 29. Occipital Inferior, 30. Calcarine, 31. 

Lingual, 32. Fusiform, 33. Occipital Pole, 34. Striatum-Thalamus, 35. Frontal Inferior. 
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Supplementary Figure 3. Human networks identified using graph analysis 
based on 56 functional regions. 
Using graph analysis, we partitioned the human brain into six cortical and subcortical 
modules. A color and a name were assigned to each module. Colors highlight 
interactions between different nodes, i.e. they outline large scale networks. 
Eigenvector centrality, a measure of node influence, is represented by the node size. 
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Supplementary Figure 4. Comparison of the resting state network organization 
in humans and mouse lemurs. 
Functional spatial maps extracted with dictionary learning are displayed side by side. 
Four cortical networks were matched between lemurs and humans. They were 
classified as default mode network, visual, fronto-temporal/supramarginal, and 
somato-motor. Regions that are similar across species are pointed out with arrows. 
In the DMN-like network, frontal cortex (green arrows), posterior cingulum cortex 
(black arrows), parietal cortex (blue arrows) were detected in both species. The 
superior medial frontal and temporal cortices (arrow-heads) were detected in 
humans but not in mouse lemurs. In the visual network, occipital cortex was detected 
in both species. An additional independent region was detected in the paracentral 
lobule and postcentral cortices in humans (arrow-head). For the fronto-
temporal/supramarginal network the middle frontal (brown arrows), superior frontal 
(green arrows) and anterior cingulate cortex (black arrow) were detected in both 
species. Interestingly, in humans the supramarginal cortex seems to fit with the 
superior temporal cortex, in lemurs (blue arrows). For the somato-motor network, 
regions were detected on both side of the central sulcus in humans and in a similar 
region in lemurs (in which there is no central sulcus). In humans, they were in parieto-
frontal regions while in lemurs they involved more frontal regions (blue arrows). 
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II.3. Study 3: Resting-state fMRI and glutamate measures in 

the brain of a non-human primate: relationships and age-

related alterations 

 

The biological parameters associated to the organization of brain regions into 

networks are still poorly understood. The ability to detect neuronal networks in mouse 

lemurs offers the opportunity to further characterize mechanisms responsible for 

network organization at the level of the whole brain in a primate. In a last part of the 

study, we characterized the relationships between resting-state fMRI and glutamate 

levels assessed by Chemical Exchange Saturation Transfer imaging of glutamate 

(gluCEST). We also evaluated the ability of the functional connectivity matrix to 

differentiate young and aged lemurs 

Contribution: In this article I acquired the fMRI, gluCEST, anatomical images of the 

lemurs at 11.7T and coregistered them. I performed the functional connectivity analysis 

(hubs, etc.) and developed a pipeline to extract automatically the gluCEST signal using 

an atlas. Then, I designed and achieved the comparison between the two sequences 

as well as the two cohorts (old and middle aged lemurs). GluCEST signal acquisition 

and pre-treatment protocols were developed by J. Flament and J. Pépin (Pépin, 2018). 

These developments will not be discussed here. 

II.3.1. Combination of fMRI and to other techniques 

Many approaches have combined fMRI with other techniques to study neuronal 

activity. Often generated by physiological stimuli triggers, the neuronal activity induces 

characteristic responses such as electric currents, vascular reaction or metabolic 

variations. These responses can be registered thanks to a variety of methods such as 

electrophysiology to measure the voltage fluctuations; positron emission tomography 

(PET) and perfusion MRI to measure the cerebral blood flow; PET and NMR 

spectroscopy to measure glucose consumption/metabolisation and the synthesis of 

biomolecules such as neurotransmitters. This combination of techniques provides 

complementary approaches for the exploration of unknown mechanisms such as the 

characterization of the origin of the BOLD signal, the temporal and spatial 

characteristics of the neuronal activity in different tasks or pathologies, or as in this 
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study, the evaluation of an association between highly connected regions, local 

neuronal activity and glutamate. 

II.3.1.1. Electrophysiology and fMRI 

Electrophysiology is a technique measuring the voltage fluctuations resulting from 

ionic current produced by neuronal activity. In comparison to BOLD, electrophysiology 

provides a direct understanding of the neuronal activity. Therefore, electrophysiology 

can be used to improve the interpretability of many fMRI studies.  

Concerning the neuronal origin of BOLD, Logothetis et al. found that the local field 

potential is a better theoretical predictor of BOLD signal than single or multiunit 

recording (Logothetis et al., 2001). This analysis was based on an experiment 

measuring the BOLD and the electrophysiological response to a stimulus within the 

visual cortex of anesthetized monkeys. This experiment suggested that BOLD pattern 

is more likely to represent local synaptic activity (local input) rather than the spiking 

activity (local output).  

Scalp electroencephalography (EEG) or intracranial EEG recordings during 

sensory, cognitive motor and visual functions (Singh et al., 2003) have revealed 

positive correlations between electrophysiological signal and BOLD fluctuations. 

These positive correlations were mainly observed within the gamma ranges (>30 Hz) 

of the brain regions (network) activated by a given task (Mulert et al., 2010). Negative 

correlations were mostly reported in the low frequency range (Murta et al., 2015). At 

rest, Magri et al. found that the spontaneous activity registered with BOLD and local 

field potential in the visual cortex of macaques display similar relationship profiles than 

those in activated tasks (Magri et al., 2012). However, the profile of correlations 

between electrophysiological frequency and BOLD signal reveals a high level of 

complexity, poorly understood and that can’t be reduced to simple and general rules. 

Indeed, Jann et al. found at rest (eyes closed), strong positive correlations between 

BOLD and alpha frequencies recorded with EEG, within regions of the DMN (Jann et 

al., 2009). Moreover, Mantini et al. suggest that each network could be characterized 

by a specific electrophysiological pattern or combination of frequencies ((D. Mantini et 

al., 2007); Figure 25). Other open questions such as the biological meaning of the 

BOLD negative response remains highly debated and the EEG profiles suggest that it 

could reflect a reduced neuronal activity (Moraschi et al., 2012). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031704/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031704/
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Figure 25 | Association between two rsfMRI networks and their EEG profiles. 

Auditory network (RSN 4) and motor network (RSN 5) associated with their extracted EEG 

rhythms. From (D. Mantini et al., 2007). 

II.3.1.2. Positron emission tomography and fMRI 

PET imaging is a technique used to quantify metabolic processes in the body. It 

detects the radioactivity emitted by radioactive tracers. A computer analysis will 

construct 3D images reflecting the concentration or the metabolised tracers within a 

period of time. As examples, fludeoxyglucose detect regional glucose uptake and 

[15O]H2O quantify blood flow. The quantification of the cerebral blood flow with PET 

imaging allows for the identification of task related activation of several brain regions 

such as the frontal cortex during verbal working memory (Petrides et al., 1993). The 

complementarity PET imaging and fMRI has been largely illustrated with the discovery 

of the default mode network (DMN). Indeed, the DMN was first discovered using 

[15O]H2O PET and identified brain regions decreasing their activity during cognitive 

tasks. ((Shulman et al., 1997) (Raichle et al., 2001); Figure 26). In a more recent study 

and with an interesting multimodal approach Shah et al. found that the glucose uptake 

measured with fluorodeoxyglucose PET was positively correlated with the activation of 

the DMN (N. J. Shah et al., 2017). The ability to observe different cerebral networks in 

rats, with fludeoxyglucose PET has been demonstrated at rest and with unilateral 

stimulation of the whiskers (Wehrl et al., 2013). 
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Figure 26 | Brain regions identified as decreasing their activity during cognitive tasks. 

The color bar represents the cerebral blood flow measured by [15O]H2O PET. From (Raichle 

et al., 2001). 

II.3.1.3. NMR spectroscopy and fMRI 

In vivo 1H NMR spectroscopy is a well-established technique for the quantification 

of the brain metabolites at rest or during activation. However, cerebral metabolic 

changes during cognitive tasks are poorly understood. Prichard et al. was the first study 

to describe a metabolite (lactate) increase in the human visual cortex related to 

stimulation (Prichard et al., 1991). Then other similar studies reported metabolite 

variations related to stimulation, such as: lactate increase (≈23%), glutamate increase 

(≈3%) or aspartate decrease (≈15%) (Mangia et al., 2007). Another study observed 

during pain stimulation, a positive correlation between glutamate and BOLD variations 

whereas there was a negative correlation found between GABA and BOLD variations 

(Cleve et al., 2017). Furthermore, the metabolic variations of glutamate were 

highlighted in a study using a sequence that simultaneously quantifies glutamate and 

BOLD signals in the human visual cortex (Ip et al., 2017). This technique has recently 

gained attention due to a high temporal resolution allowing the quantification of 

glutamate concentration within time scale of under a minute (Stanley et Raz, 2018). 

Glutamate is one of the most ubiquitous excitatory neurotransmitters involved in the 

excitatory and inhibitory balance. As for BOLD, observing glutamate variations 

associated with cognitive processes will probably become possible in future studies. In 

cerebral networks, GABA was significantly correlated with DMN deactivation during 

task performance, whereas glutamate concentration was associated with a reduced 

deactivation (X. Chen et al., 2018) (Hu et al., 2013) (Kapogiannis et al., 2013).  
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In rodents, similar metabolic responses were found in anesthetized rats (Just et al., 

2013). Moreover, Sonnay et al. found that a prolonged stimulation of the rat barrel 

cortex led to a BOLD signal decrease after an habituation period. Interestingly, they 

found a prevalence of oxidative metabolism during this prolonged stimulation period 

(Sonnay et al., 2017). 

II.3.1.4. Other techniques evaluating neuronal activity characteristics 

The few techniques previously mentioned which evaluate the biological 

characteristics of neuronal activity are far to be exhaustive. As an example, the arterial 

spin labeling MRI or perfusions MRI is a technique measuring the cerebral blood flow. 

This technique extracted similar cerebral networks when compared to BOLD fMRI in 

humans (Zhu et al., 2013) and mice (Francesco Sforazzini et al., 2014). These studies 

attest the major role of cerebral blood flow in the detection of networks with fMRI.  

Recently, optical imaging (multi-photon based microscopy) has shown spatial 

patterns of neuronal activation, traveling through the cerebral cortex and along 

stereotypical waves. The simultaneous use of neuronal calcium signal (sensitive to 

neuronal activity) and hemodynamic signal has established their spatial coactivation 

(Matsui et al., 2016) (Murakami et al., 2018). This result confirms that hemodynamic 

fluctuations reflect neuronal activity dynamics. In the same study, the delay between 

the hemodynamic response and the stimulus was also observed. These studies also 

highlight that the spatiotemporal trajectory of the infra-slow fluctuations of the calcium 

signal (<0.1 Hz) through the cortex were distinct from other frequencies (Mitra et al., 

2018). Interestingly, this spatiotemporal trajectory was modified in anesthetized 

animals versus those awake. 

To our knowledge no studies have evaluated the relationships between highly 

connected regions, neuronal activity, and regions with elevated glutamate. As for the 

previous techniques, assumptions were made to identify the biological origin of these 

associations. This promising combination of non-invasive biomarkers was also used to 

characterize a large spectrum of the aging process, and has many potential 

applications for neurodegenerative disease studies. 
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II.3.2. Article in preparation: Garin, C. M., Nadkarni, N. A., Pepin J., Bougacha, 

S., Flament, J. & Dhenain, M. (in preparation). Resting-state fMRI and 

glutamate measures in the brain of a non-human primate: relationships and 

age-related alterations. 

 

Resting-state fMRI and glutamate measures in the brain of 
a non-human primate: relationships and age-related 

alterations 

 

 

Clément M. Garin 1,2, Nachiket A. Nadkarni1,2, Jérémy Pépin J. 1,2, Salma 
Bougacha1,2,3,4, Julien Flament 1,2, Marc Dhenain1,2,* 

 

 

 

1 Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, 

Université Paris-Saclay UMR 9199, Neurodegenerative Diseases Laboratory, 18 

Route du Panorama, F-92265 Fontenay-aux-Roses, France 

2 Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Direction de 

la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du 

Panorama, F-92265 Fontenay-aux-Roses, France 

3 Inserm, Inserm UMR-S U1237, Normandie Univ, UNICAEN, GIP Cyceron, Caen, 

France 

4 Normandie University, UNICAEN, EPHE, INSERM, U1077, CHU de Caen, 

Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France 

 

Correspondence 

 
Marc Dhenain 
MIRCen, UMR CEA-CNRS 9199 
18 Route du Panorama 
92 265 Fontenay-aux-Roses CEDEX 
France 
Tel: +33 1 46 54 81 92; Fax: +33 1 46 54 84 51 
email: Marc.Dhenain@cea.fr 
 

mailto:Marc.Dhenain@cea.fr


160 
 

1. Introduction 

Resting state fMRI (rsfMRI) is a widely used method of functional magnetic 

resonance imaging (fMRI). It can evaluate brain function in a resting condition, i.e. 

when an explicit task is not being performed and detects blood-oxygen-level 

dependent (BOLD) signal, a proxy for neuronal activity. 

rsfMRI can provide information on functional brain connectivity. This latter can be 

evaluated by measuring the level of co-activation of BOLD signal between brain 

regions, defined by the level of correlation between rsfMRI time-series. This allows the 

characterization of several cerebral networks in the brain (e.g. the default mode 

network (DMN) or sensorimotor networks) (Raichle, 2011). These networks are 

consistently found in healthy subjects, across species and represent specific patterns 

of synchronous activity. rsfMRI connectivity also allows the assessment of the level of 

information transfer through specific brain regions, i.e. a measure of hubness. 

rsfMRI can also provide information on local neuronal activity by quantifying low-

frequency oscillations (LFO) of BOLD signal (Biswal et al., 1995; Zou et al., 2008). For 

example, the total power of BOLD signal within the frequency range between 0.01 and 

0.1 Hz is a LFO index (called amplitude of low-frequency fluctuation (ALFF)) that 

reflects neuronal activity. Typical patterns of ALFF are displayed in humans in resting 

state condition, with high values within the DMN (Fransson, 2006). ALFF is correlated 

with markers of glucose metabolism as well as with functional connectivity (Aiello et 

al., 2015) or diffusion-based measures of connectivity (Lee et Xue, 2017). 

The impacts of multiple neurotransmitters on local cerebral regions are largely 

evaluated in neuroscience. High level of serotonin innervation from dorsal raphe 

nucleus to the rest of the brain has been related to the high connectivity of this structure 

with the rest of the brain (Noori et al., 2017). Also, regional serotonin-1A receptor 

binding predicts BOLD signal change in three different DMN nodes (retrosplenial, 

posterior cingulate and dorsomedial prefrontal cortices) (Hahn et al., 2012). 

Relationships between GABA, the chief inhibitory neurotransmitter in the brain and 

reduction of network activity have also been reported in the DMN (Kapogiannis et al., 

2013). However, the impact of neurotransmitters on functional brain connectivity and 

neuronal activity is still poorly described at the level of the whole brain. 

Glutamate is the principal excitatory neurotransmitter in the brain and is involved 

in multiple cognitive functions. It is an essential amino acid of the brain metabolism and 

has the highest amino acid concentration of the brain (≈10 mmol/kg) (Greenamyre, 



161 
 

1986; Niciu et al., 2012). In normal conditions, most of glutamate is located in cells 

including astrocytes (Cooper et Jeitner, 2016) that surrounds the synapses, 

neurotransmission being governed by few micromolar of extracellular glutamate. In 

addition to its major role as an excitatory neurotransmitter, glutamate is central to 

several metabolic pathways related to energy metabolism and oxidative stress (Y. 

Zhou et Danbolt, 2014).  

Studies combining MR spectroscopy (MRS) and fMRI reported positive correlation 

between glutamate and BOLD signal (Cleve et al., 2017; Ip et al., 2017). Furthermore, 

there is evidence suggesting that glutamate/glutamine may modulate functional 

connectivity (Horn et al., 2010). In cerebral networks glutamate concentration was 

associated with a reduced deactivation of the DMN in response to task performance 

(Chen et al., 2018; Y. Hu et al., 2013; Kapogiannis et al., 2013).  

Until now, relationships between neurotransmitters and rsfMRI-based indexes of 

neuronal network connectivity or function were mainly based on the monitoring of 

neurotransmitters by MRS. One limitation of MRS is that measurements are confined 

to relatively large voxels, due to limited sensitivity of the method. Recent developments 

of gluCEST (Chemical Exchange Saturation Transfer of glutamate) imaging allow the 

quantification of glutamate at the level of the whole brain (Cai et al., 2012; Carrillo-de 

Sauvage et al., 2015). This opens the possibility to directly compare glutamate activity 

and rsfMRI-based indexes of neuronal network connectivity or function at the level of 

the whole brain. 

The mouse lemur (Microcebus murinus) is a primate attracting increased attention 

in neuroscience research. This small animal (typical length 12cm, 60-120g weight) has 

a decade-long lifespan and is a model for studying cerebral aging (Sawiak et al., 2014) 

or Alzheimer's disease (Kraska et al., 2011). It displays neuronal networks (default-

mode like, temporo-prefrontal, somato-motor, visual, thalamic and basal ganglia 

networks) that are largely similar to those reported in humans (Garin et al., 2019). 

Because of its small size, it can fit in small bore high field (11.7 T) MRI during resting 

state conditions. This allows to perform rsfMRI and gluCEST images with optimal 

conditions. 

In this study, we evaluated relationships between rsfMRI indexes of functional 

connectivity (hubness) or neuronal function (ALFF), and gluCEST signal in two cohorts 

of middle-aged and old mouse lemurs. Evaluations were performed at the level of 

individual brain regions or of large scale neuronal networks. Different indexes of 
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connectivity, ALFF as well as gluCEST signal were strongly correlated. This suggests 

that connectivity and neuronal function are strongly modulated by glutamate level. 

Comparison between middle-aged and old lemurs revealed a decrease of the ALFF in 

the DMN associated to a decrease of the anterior cingulate cortex centrality index of 

hubness. 

 

2. Results 

2.1. ALFF in the mouse lemur brain 

Resting-state fMR images were recorded from 29 anaesthetised (isoflurane 1.25-

1.5%) mouse lemurs using a gradient-echo echo planar imaging (EPI) sequence at 

11.7 Tesla (Suppl. Table 1). Four animals that presented brain lesions or artefacted 

MRI images were excluded from the analysis. Animals were split in two groups: middle-

aged adults (n=14, 1.3 to 3.8 year-old) and old animals (n=15, 8.0 to 10.8 year-old) 

(Suppl. Table 1). The amplitude of low-frequency fluctuation (ALFF) index was 

obtained after the time series for each voxel were transformed to the frequency domain 

with a Fast Fourier Transform (FFT) (Zuo et al., 2010). It was calculated for each voxel 

of the pre-processed EPI images in the low-frequencies range 0.01 to 0.1 Hz. mALFF 

index was calculated as ALFF weighted by the average ALFF of the whole brain. The 

mALFF signal from different brain regions was extracted using a reference functional 

atlas of the mouse lemur brain (https://www.nitrc.org/projects/fmri_mouselemur/; 

(Garin et al., 2019), Fig. 1C). High values of mALFF were detected in subcortical 

regions such as basal forebrain, globus pallidus, putamen and amygdala as well as 

cortical regions such as the cingulate and parietal cortices (Fig. 1A, B, Suppl. Fig. 1). 

mALFF was further quantified within large scale networks previously reported in 

mouse lemurs (default-mode like, temporo-prefrontal, somato-motor, visual, thalamic 

and basal ganglia networks) (Garin et al., 2019) (Fig. 2). The basal ganglia network 

displayed the highest mALFF signal in middle-aged or old animals (Fig. 2A-B). Visual 

and thalamic networks displayed the lowest mALFF in both groups. The DMN was the 

cortical network with the highest mALFF in middle-aged animals. Significantly lower 

mALFF was detected in the DMN of old animals as compared to middle-aged ones 

(Fig. 1D, p = 0.002, Kruskal's test). 

https://www.nitrc.org/projects/fmri_mouselemur/
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Figure 1. Whole brain mALFF statistical map in middle-aged and old mouse 
lemurs. 
Functional atlas of the mouse lemur brain (C) based on a BOLD signal spatial 
decomposition. Forty-eight functional regions (27 cortical, 21 subcortical) were 
extracted following sparse dictionary learning with 35 components. 3D surface t-
maps of the mALFF in (A) 14 middle-aged and (B) 15 old mouse lemurs. Elevated 
mALFF is observed within regions encompassing the basal forebrain, amygdala, 
putamen and globus pallidus as well as cortical regions such as the middle temporal 
(12), anterior cingulate (5) and parietal cortices (12). White arrows highlight signal 
intensity difference in the DMN of old versus middle-aged animals. The color bar 
represents the t values (one-sample t-test). mALFF contrast lost was observed in 
the DMN-like of the aged group (D, p = 0.02, independent samples t-test). *: p <0.05; 
**: p <0.01, ***: p < 0.001, ****: p < 0.0001. 1. Frontal superior anterior, 2. Frontal 
middle, 3. Frontal superior posterior, 4. Supplementary motor area, 5. Cingulum 
anterior, 6. Precentral, 7. Postcentral, 8. Cingulum posterior, 9. Parietal, 10. Occipital 
middle, 11. Temporal superior, 12. Temporal middle, 13. Temporal inferior, 14. 
Occipital inferior, 15. Cuneus, 16. Occipital pole, 17. Septal nuclei, 18. Caudate 
nucleus posterior, 20. Putamen posterior, 21. Globus pallidus, 22. Amygdala, 23. 
Basal forebrain. 
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Figure 2. Indexes of functional connectivity (hubness), neuronal function 

(ALFF), and gluCEST signal in the cerebral networks of the mouse lemurs. 

Different neuronal networks can be identified in mouse lemurs. mALFF level was low 

in the visual and thalamic networks, intermediate in the default-mode like, temporo-

prefrontal and somato-motor networks and highest in the basal ganglia networks (A, 

B). Averaged eigenvector centrality level was low in the visual and thalamic networks 

and the basal ganglia, intermediate in the temporo-prefrontal and somato-motor 

networks and highest in the default-mode like (C, D). gluCEST level was highly 

similar to mALFF with a low signal in the visual and thalamic networks, intermediate 

in the default-mode like, temporo-prefrontal and somato-motor networks and highest 

in the basal ganglia networks (E, F). 

 

2.2. Functional hubs in the mouse lemur brain 

Resting-state fMR images used for ALFF evaluation were further used to analyse 

brain hubs. The whole brain network was defined as a set of 48 nodes (basic elements 

of the system) identified as local functional regions previously described in mouse 

lemurs (Garin et al., 2019). These nodes were used to build an averaged matrix for 

middle-aged and old mouse lemur cohorts (Fig. 3A, B). 

Influence of each node within the whole brain network (or "hubness") can be 

characterized using various descriptors. One of them (eigenvector centrality) was 

calculated for each node, based on node partial correlation values (edges) with all 

regions of the 3D functional atlas, weighted by the eigenvector scores of its 

neighbourhood nodes. In other words, nodes which display high eigenvector centrality 

scores are strongly linked to other nodes and/or to strongly connected nodes. The 

cingulum anterior and posterior, the frontal superior, posterior, and anterior, the 

temporal superior cortices and the dorsal thalamus were identified as major hubs in 

both groups (Suppl. Fig. 2). The gap between the poorly connected regions (low 

eigenvector centrality) and the mains hubs (high eigenvector centrality) was weaker in 

the old lemurs. However, the global ranking across functional regions was preserved 

in both cohorts. Also, eigenvector centrality index was reduced in the anterior cingulate 

cortex of old animals compared to middle-aged ones (Fig. 3C, p = 0.02, independent 

samples t-test).  
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Figure 3. Whole brain networks extracted from middle-aged and old mouse 

lemurs. 

Mean correlation matrix showing the mouse lemur brain network are represented on 

a 3D mouse lemur brain space (BrainNet (Xia et al., 2013)). Nodes represent the 

local functional regions extracted from a 3D functional atlas. They were spatially 

distributed based on their centers of mass. Edges between the nodes represent the 

mean partial correlation from the (A) 14 middle-aged and (B) 15 old animals. Color 

and size of these edges are proportional to this correlation. Differences in node 

centrality were found in the anterior cingulate cortex (white arrows). The color bar 

represents partial correlation values. 

Eigenvector centrality was reduced in the anterior cingulate cortex of the aged 

animals as compared to middle-aged animals (C, p = 0.02, independent samples t-

test). *: p < 0.05. 

The averaged eigenvector centrality score of each functional network (DMN like, 

temporo-prefrontal, somato-motor, visual, thalamic and basal ganglia networks) (Garin 

et al., 2019) could also be calculated (Fig. 2C-D). The DMN-like network displayed the 

highest eigenvector centrality score. Also, cortical regions (except the visual cortex) 

had higher eigenvector centrality scores than subcortical regions. No differences were 

found between large scale networks of middle-aged and old animals. 

 

2.3. GluCEST contrast in mouse lemur brains 

GluCEST images were recorded using a 2D fast spin echo sequence in the same 

animals as those used for the rsfMRI study and during the same imaging session. 

Individual gluCEST images were brought into the same space as the rsfMR images. 
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gluCEST maps representative of each cohort were calculated using a one-sample t-

test (Fig. 4A, B). GluCEST signal from different brain regions was extracted from a 

reference functional atlas of the mouse lemur (Suppl. Fig. 3).  

Subcortical regions such as caudate nucleus, globus pallidus, and putamen 

displayed elevate glutamate signal in both cohorts. Cortical regions such as frontal 

superior posterior as well as supplementary motor area, temporal, cingulum anterior 

also displayed high GluCEST signal in both groups. In most brain regions, GluCEST 

signal did not present with major difference between middle-aged and old lemurs 

except within the globus pallidus (Fig. 3C, p = 0.0004, t-test). 

The gluCEST signal was also extracted in the six previously defined large scale 

networks. The ranking of gluCEST signal in the subcortical networks was highly similar 

to that for the mALFF and was marked by a high gluCEST signal in the basal ganglia 

and a lower signal in the thalamic network (Fig. 2E-F). The visual network displayed 

the lowest signal of the cortical networks. No significant differences were found 

between large scale networks of middle-aged and old animals. 

 

Figure 4. gluCEST signal statistical map in middle-aged and old mouse lemurs. 

3D surface t-map of the gluCEST signal in middle-aged (A, n=14) and old (B, n=15) 

mouse lemurs. Elevated gluCEST signal is observed within regions encompassing 

the frontal superior anterior cortex (1), supplementary motor area (4), temporal (12) 

and cingulum anterior cortices as well as subcortical regions such as globus pallidus, 

caudate nucleus, and putamen. Signal was lower in the globus pallidus of old 

animals (C, p = 0.0004, t-test) of old animals compared to middle-aged animals. ***: 

p < 0.0001. The color bar represents the t values (one-sample t-test). 
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2.4. Local neuronal activity and functional connectivity are associated to 

glutamate 

We then evaluated the relationships between local neuronal activity or functional 

connectivity extracted from the various brain regions and glutamate contrast in the 

same regions. Comparisons of each index were performed systematically in the whole 

brain, in the cortical and subcortical regions. 

 

2.4.1. mALFF is associated to gluCEST contrast 

mALFF and gluCEST signal were positively correlated in both groups when 

compared in the entire brain (Fig. 5A-B). The correlation detected at the level of the 

entire brain was mainly driven by a strong correlation at the level of subcortical regions, 

that was detected in the two cohorts (R = 0.72 and 0.75 in middle-aged and old 

animals, Fig. 5E-F) rather than in cortical regions, in which a weaker, but significant 

positive correlation was only found in the middle-aged group (R = 0.53, Fig. 5C) but 

not in the old group. Interestingly the strong correlation detected in the subcortical 

regions, reflected two categories of structures: those belonging to the basal ganglia 

with high mALFF and gluCEST signal and those belonging to the thalamic network with 

low mALFF and gluCEST signal. These data suggest that high neuronal activity is 

related to highest glutamate level in particular within the subcortical regions. 
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Figure 5. Relationships between mALFF and gluCEST contrast  

Positive relationships were observed between mALFF and gluCEST signal in all 

functional brain regions of the middle-aged (A) and old (B) lemurs as well as in 

cortical regions of middle-aged animals (C) and subcortical regions of both cohorts 

(E, F). Spearman correlation indexes are displayed on each graph. 
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2.4.2. Hubness is associated to gluCEST contrast 

Eigenvector centrality was positively correlated with gluCEST signal in the whole 

brain of middle-aged (Fig. 6A) and old animals (Fig. 6B). Strong correlations between 

eigenvector centrality and gluCEST signal were also observed in cortical regions (Fig. 

6C, D) and subcortical regions (Fig. 6E, F) of both groups. 

Eigenvector centrality measures are dependent of the threshold used to remove 

low correlated and thus non-meaningful edges of the network. Here, we used a 

threshold based on a one-tailed t-test (p ≤ 0.01). To assess the impact of this threshold 

on result outcome, we changed it from 0.0001 to 0.36 with a spacing value of 0.01 

leading to 36 new comparisons of the correlations between eigenvector centrality and 

gluCEST contrast (Suppl. Fig. 4). Different thresholds changed the density of the 

network from 0.13 to 0.59 but most correlations between eigenvector centrality and 

gluCEST contrast in the whole brain and in cortical regions were still significant 

(p<0.05) whatever the mouse lemur cohort. On the contrary correlations were almost 

never significant in the subcortical regions when thresholds were changed. This 

suggests that correlations between eigenvector centrality and gluCEST contrast are 

robust if one considers analyses performed at the whole brain or cortical level but not 

within subcortical regions. 

In this first part of the study, we used eigenvector centrality as an index of hubness. 

Other indexes of hubness are available. Degree centrality represents the sum of the 

weighted edges incident upon a node. Current flow betweenness centrality is a 

betweenness centrality measure that considers the influence from all the paths across 

nodes. This algorithm gives more weight to the shortest path but also considers the 

other connections (Newman, 2005). These two indexes were used to further assess 

relationships between connectivity and gluCEST contrast (Table 1). Degree centrality 

indexes were positively correlated to gluCEST contrast in the whole brain and in the 

cortex of both groups. Current flow betweenness centrality indexes were also 

significantly correlated to gluCEST contrast in the brain and in the cortex of both 

groups. Overall, these results highlight a strong relationship between glutamate levels 

and centrality indexes in the whole brain and in the cortical regions, but a weaker 

relationship in subcortical regions. 
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Figure 6. Relationships between eigenvector centrality and gluCEST contrast.  

A positive relationship was observed between eigenvector centrality and gluCEST 

signal extracted from all functional brain regions of the middle-aged (A) and old (B) 

lemurs. Similar correlations were obtained when using only the cortical regions or 

subcortical regions in middle-aged and old lemurs. Spearman correlation indexes 

are displayed on each graph. 
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 gluCEST   mALFF 

 Middle-aged 
adults 

Old   
Middle-aged 

adults 
Old 

 R p R p   R p R p 
 Eigenvector centrality 

Brain 0.544 0.000065* 0.540 0.000073*   0.390 0.006120* 0.411 0.003701* 

Cortical 0.679 0.000007* 0.538 0.003761*   0.730 0.000015* 0.204 0.307650 

Subcortical 0.534 0.012698 0.623 0.002535*   0.279 0.220289 0.691 0.000525* 

  Degree centrality 

Brain 0.473 0.000693* 0.491 0.000397*   0.471 0.000726* 0.391 0.005952* 

Cortical 0.640 0.000326* 0.530 0.004470*   0.618 0.000585* 0.194 0.333441 

Subcortical 0.395 0.076527 0.500 0.020992*   0.412 0.063699 0.597 0.004241* 

  Current flow betweenness centrality 

Brain 0.430 0.002261* 0.458 0.001066*   0.424 0.002671* 0.335 0.019984* 

Cortical 0.628 0.000450* 0.632 0.000401*   0.579 0.001563* 0.275 0.165496 

Subcortical 0.319 0.158035 0.358 0.110590   0.358 0.110590 0.448 0.041656* 

Table 1. Relationships between different indexes of hubness and gluCEST 

contrast or mALFF. 

Most hubness indexes were correlated to gluCEST contrast in whole brain or cortical 

regions. Relationships between hubness and gluCEST were less stable in subcortical 

regions. The correlations between hubness and mALFF display a reproducible pattern 

amongst the different indexes. The hubness indexes were always positively correlated 

to mALFF in whole brain of both groups, in the cortical regions of the middle-aged 

group and in the subcortical regions of the old lemurs. 

 

2.5. mALFF and hubness are correlated 

mALFF and eigenvector centrality evaluated in different brain regions were 

positively correlated (Fig. 7A, B). Correlation between mALFF and eigenvector 

centrality was statistically significant in the cortex but not in the subcortical regions of 

middle-aged animals (Fig. 7C, E). This relationship seemed to be shifted in old animals 

in which correlation between these two markers was statistically significant in 

subcortical regions and not in the cortex (Fig. 7D, F). As for the comparison with 

gluCEST signal, we evaluated the stability to the threshold of this correlation (Suppl. 

Fig. 5). Cortical correlations were always true for the middle-aged group and 

surprisingly subcortical correlation were always true in the aged group. Additional 

indexes of hubness (degree centrality and current flow betweenness centrality 

indexes) were used to further assess the specificity of the relationships between 

hubness and mALFF (Table 1). We found positive correlation into the brain with all 

indexes. Positive correlations between ALFF and all indexes were found in the cortex 
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of the middle-aged group and in the subcortical regions of aged animals, which further 

confirmed the age-related shift of cortico/subcortical relationship between ALFF and 

hubness. 

 

Figure 7. Relationships between eigenvector centrality and mALFF. 

A positive relationship was observed between eigenvector centrality and mALFF in 

all functional brain regions of the middle-aged (A) and old (B) lemurs as well as in 

cortical regions of middle-aged animals (C) and subcortical regions of old animals 

(F). Spearman correlation indexes are displayed on each graph. 
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3. Discussion 

This study evaluated mALFF, hubness and glutamate level in mouse lemur 

primates at high field MRI (11.7T). We focused on two independent cohort of middle-

aged and old animals. Several results were consistent between the two cohorts. First, 

we highlighted different levels of mALFF activity in different brain regions. mALFF is 

considered as a marker of neuronal activity (Zou et al., 2008). Highest levels of mALFF 

were detected in structures belonging to the basal ganglia network (putamen, globus 

pallidus). Moreover, mALFF was well correlated to the gluCEST signal. 

Different levels of hubness were also detected in different brain regions and 

regions with stronger hubness properties were mainly cortical (cingulate, frontal, and 

temporal cortices). Hubness parameters were well correlated to gluCEST in the cortex 

but not in subcortical regions. 

Together, these results suggest relationships between neuronal activity assessed 

by mALFF, hubness and glutamate levels. In the cortex, glutamate level is linked to 

both mALFF and hubness. Glutamate is the major excitatory transmitter in the central 

nervous system. Relationships between concentration of this neurotransmitter and 

activation of particular regions (e.g. the posterior cingulate cortex/precuneus) or 

activation of networks (e.g. the default mode network) have already been reported (Y. 

Hu et al., 2013; Kapogiannis et al., 2013). A relationship between glutamate and 

neuronal activity was thus expected and our results suggest that this relationship is 

strong and impact most cortical regions. In addition to the role of glutamate for local 

activity, our study further outlined that in the cortex, glutamate level is linked to 

hubness, i.e. to the ability to have information crossing brain regions. This suggests a 

relationship between glutamate and long-distance transfer of information in the brain. 

In the subcortical regions, high glutamate level was mainly associated to high local 

activity (and not to hubness properties), in particular in the basal ganglia network. 

Numerous studies defined the basal ganglia as a main input from the cortical 

glutamatergic projections (Galvan et al., 2006; Lanciego et al., 2012). Also, according 

to Greenamyre et al., the striatum is the major region receiving glutamatergic cortical 

input (Greenamyre, 2001). In consequences, the high gluCEST signal detected in this 

area may correspond to this pathway and may be responsible for the high activity within 

the basal ganglia. 
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The major pools of glutamate are located in cells and neurotransmission is 

governed by few micromolar of extracellular glutamate. gluCEST is an interesting 

technique as it is sensitive to the concentration of this intracellular glutamate (Cai et 

al., 2012). 70% of the gluCEST signal is weighted by intracellular glutamate (Bagga et 

al., 2018). Glutamate is present within cells close to the synapses and within astrocytes 

that surround the synapses (Cooper et Jeitner, 2016). High glutamate level may thus 

reflect high functional synaptic connection in the most active regions. We can however 

not rule out other explanations for high glutamate level in active brain regions. Indeed, 

stimulation of brain regions were shown to increase glutamate levels in the activated 

regions (Just et al., 2013; Sonnay et al., 2017). It is thus also conceivable that the high 

glutamate level in the most active regions is the result of a prolonged activation of the 

regions. Even if our study suggests a critical role of glutamate for brain activity in the 

whole brain and to tune nodal activity in the cortex, they do not exclude possible roles 

of other neurotransmitters that were not evaluated in the current work. Serotonin for 

example was shown to be critical to stimulate neuronal networks activity (Noori et al., 

2017). GABA was also reported to be critical to reduce activity of neuronal networks 

(Kapogiannis et al., 2013). 

As we evaluated mALFF, hubness and glutamate level in two cohorts of middle-

aged and old animals, our study can also provide some clues on aging changes for 

these markers. First, we highlighted alterations of mALFF index in the DMN-like of the 

old animals when compared to the middle-aged ones. This result is consistent with 

data in humans in which ALFF of the DMN is also impaired with aging (S. Hu et al., 

2014). We also reported lower eigenvector centrality in the anterior cingulate cortex of 

old animals. This region is a major hub of the mouse lemur brain and of its DMN-like 

network (Garin et al., 2019). Thus, this result is consistent with age-related decreases 

of the functional connectivity reported within regions of the DMN in humans (Sala-

Llonch et al., 2015). It further confirms the weakness of DMN during aging. 

Interestingly, we also found a shift of the relationship between ALFF and hubness 

that concerned cortical regions in middle-aged animals and subcortical regions in old 

animals. This may suggest a reorganization of the brain function in old animals, in 

relationship to lower capacity to mobilize cortical regions.  

Finally, we found an age-related reduction of gluCEST signal in the globus pallidus. 

The globus pallidus is a key structure of the glutamatergic system strongly involved in 

glutamatergic transmission (Greenamyre, 2001). Alterations of glutamate in these 
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structures may have consequences on alterations of cerebral health associated to 

aging. 

 

4. Conclusion 

As a conclusion, using a small primate model that can be studied by high field MRI, 

we showed that glutamate is strongly associated to mALFF in cortical and subcortical 

brain regions. In the cortex, glutamate is also associated to functional connectivity and 

to long-distance transfer of information. We also highlighted age-related changes for 

these parameters. They concern alterations of mALFF in critical networks and 

reduction of glutamate in the globus pallidus. We also highlighted an age-related 

reorganization of the cortical/subcortical relationships between mALFF and functional 

connectivity. 

 

5. Materials and methods 

5.1. Animals and breeding 

This study was carried out in accordance with the recommendations of the 

European Communities Council directive (2010/63/EU). The protocol was approved by 

the local ethics committees CEtEA-CEA DSV IdF (authorizations 201506051736524 

VI (APAFIS#778)). All mouse lemurs studied were born in the laboratory breeding 

colony of the CNRS/MNHN in Brunoy, France (UMR 7179 CNRS/MNHN) and bred in 

our laboratory (Molecular Imaging Research Center, CEA, Fontenay-aux-Roses). 

Twenty-nine mouse lemurs (21 males and 12 females) were initially included in this 

study. Four animals that presented brain lesions or artefacted MRI images were 

excluded from the analysis. Fourteen animals ranged from 1.3 to 3.8 years old 

(mean±SD: 2.1±0.8 years) were grouped together to form the “young lemurs cohort” 

(Supplementary Table 1). Fifteen animals ranged from 8.0 to 10.8 years old 

(mean±SD: 8.8±1.1 years) were grouped together to form the “old lemurs cohort” 

(Supplementary Table 1). Housing conditions were cages containing one or two lemurs 

with jumping and hiding enrichment, temperatures 24–26°C, relative humidity 55% and 

seasonal lighting (summer: 14 hours of light/10 hours of dark; winter: 10 hours of 

light/14 hours of dark). Food consisted of fresh apples and a homemade mixture of 

bananas, cereals, eggs and milk. Animals had free access to tap water. None of the 
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animals had previously been involved in pharmacological trials or invasive studies. 

 

5.2. Animal preparation and MRI acquisition 

Each animal was scanned twice with an interval of 6 months. All scanning was 

under isoflurane anaesthesia at 1.25-1.5% in air, with respiratory rate monitored to 

confirm animal stability until the end of the experiment. Body temperature was 

maintained by an air heating system at 32°C, inducing a natural torpor in mouse lemurs 

(Aujard et Vasseur, 2001). This has the advantage of allowing a low anaesthesia level 

without reawakening. 

The MRI system was an 11.7 T Bruker BioSpec (Bruker, Ettlingen, Germany) 

running ParaVision 6.0.1 with a volume coil for radiofrequency transmission and a 

quadrature surface coil for reception (Bruker, Ettlingen, Germany). 

Anatomical images were acquired using a T2-weighted multi-slice multi-echo 

(MSME) sequence: TR = 5000 ms, TE = 17.5 ms, FOV = 32 × 32 mm, 75 slices of 0.2 

mm thickness, 6 echoes, 5 ms IET, resolution = 200 µm isotropic, acquisition duration 

10 min.  

Resting state time series data were acquired using a gradient-echo echo planar 

imaging (EPI) sequence: TR = 1000 ms, TE = 10.0 ms, flip angle = 90°, repetitions = 

450, FOV = 30 × 20 mm, 23 slices of 0.9 mm thickness and 0.1 mm gap, resolution = 

312.5 × 208.33 × 1000 µm, acquisition duration 7m30s. 

gluCEST images covering the brain from prefrontal cortex to the occipital cortex 

were acquired with a 2D fast spin-echo sequence: TR = 20000 ms, TE = 6 ms, FOV = 

24 × 24 mm, 12 slices of 1.5 mm thickness, resolution = 0.250 x 0.250 µm2, acquisition 

duration 33m00s. The MAPSHIM routine was applied in a voxel encompassing the 

slices of interest in order to reach a good shim on gluCEST images. gluCEST images 

were preceded by a frequency-selective continuous wave saturation pulse and 

acquired with a saturation pulse applied during Tsat = 1 s, composed by 10 broad pulse 

of 100ms, with 20 μs inter-delay and an amplitude B1 = 5 μT. The frequency of the 

saturation pulse Δω was applied in a range from −5 ppm to 5 ppm with a step of 1 ppm. 

In vivo, CEST contrast can be hampered by several competing factors such as direct 

saturation transfer (DS) of free water and background magnetization transfer (MT). 

Although we supposed DS symmetrical with respect to water frequency and 

suppressed by asymmetrical analysis its contribution to CEST contrast (Sun et al., 
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2005; van Zijl et Yadav, 2011; J. Zhou et Zijl, 2006). 

 

5.3. MRI pre-processing 

CEST images were first processed pixel-by-pixel and analyzed using in-house 

programs developed on MATLAB software (MathWorks Inc., Natick, MA) used to 

generate Z-spectra by plotting the longitudinal magnetization as a function of saturation 

frequency. The specific glutamate contribution was isolated using Asymmetrical 

Magnetization Transfer Ratio (MTRasym) (Liu et al., 2010) and was calculated as 

follows: MTRasym(Δω) = 100 × (Msat(−Δω) − Msat(+Δω)) / Msat(−5 ppm), Msat(±Δω) 

being the magnetization acquired with saturation pulse applied at ‘+’ or ‘−’ Δω ppm. 

GluCEST images were calculated with Δω centered at ± 3 ppm. GluCEST image was 

converted into NIfTI-1 format. 

The other scanner data were exported as DICOM files then converted into NIfTI-1 

format. Then spatial pre-processing was performed using the python module sammba-

mri (SmAll MaMmals BrAin MRI; http://sammba-mri.github.io) which, using nipype for 

pipelining (Gorgolewski et al., 2011), leverages AFNI (Cox, 1996) for most steps and 

RATS (Oguz et al., 2014) for brain extraction. Anatomical images were mutually 

registered to create a study template, which was further registered to a high resolution 

anatomical mouse lemur template of the functional atlas (Garin et al., 2019). Resting 

state images were corrected for slice timing (interleaved), motion, and B0 distortion 

(per-slice registration to respective anatomicals). Then all the images (including 

GluCEST image) were brought into the same space of the mouse lemur template by 

successive application of the individual anatomical to study template and study 

template to mouse lemur atlas transforms.  

Functional images were further pretreated using Nilearn (Abraham et al., 2014). 

Nuisance signal regression was applied including a linear trend as well as 24-motion 

confounds (6 motion parameters, those of the preceding volume, plus each of their 

squares (Friston et al., 1994)). Images were then spatially smoothed with a 0.9 mm 

full-width at half-maximum Gaussian filter. The first 10 volumes were excluded from 

analysis to ensure steady-state magnetization.  

http://sammba-mri.github.io/
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5.4. mALFF calculation and extraction 

LFO measures were performed using the fast Fourier transform indice: amplitude 

of low-frequency fluctuation (ALFF) (Zuo et al., 2010). The mALFF correspond to the 

ALFF index weighted by in the average ALFF of the whole brain and was calculated 

using AFNI (Cox, 1996). ALFF index was calculated for each voxel of the pre-

processed EPI images in the low-frequencies range 0.01 to 0.1 Hz. The mALFF signal 

of each voxels was extracted within the different regions based on the functional atlas 

(Garin et al., 2019) using NiftiLabelsMasker from Nilearn (Abraham et al., 2014). 

 

5.5. GluCEST contrast extraction 

gluCEST contrast was also extracted in regions based on the functional atlas using 

NiftiLabelsMasker from Nilearn (Abraham et al., 2014). For each region, the signal was 

averaged and was divided by its averaged whole brain signal. This normalisation was 

not performed for the between groups comparison. 

 

5.6. Graph theory analysis 

5.6.1. Connectivity matrix based on functional atlas 

Partial correlation matrices were created for each animal using fully preprocessed 

MR images by calculating the partial correlation coefficients between BOLD MR signal 

timecourses within each region of the 3D functional atlas. Partial correlations were 

used because they select direct associations between regions and allow the control of 

indirect correlations (Mechling et al., 2014). Individual partial correlation matrices were 

computed from shrunk covariance matrices using the Ledoit and Wolf shrinkage 

coefficient (Ledoit et Wolf, 2004) as recommended by Varoquaux et al. (Varoquaux et 

al., 2012) and Brier et al. (Brier et al., 2015). Partial correlation coefficients were then 

Fisher’s z-transformed. Values from different animals were averaged and thresholded 

based on a one-tailed t-test (p ≤ 0.01) (Mechling et al., 2014). 

 

5.6.2. Hub regions 

We consider in this analysis the absolute value of the correlation coefficient as 

performed routinely in human fMRI graph theory studies (De Vico Fallani et al., 2014). 
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Hubness is measure of node influence within the whole brain network. For each node, 

this index is calculated based on its partial correlation values (edges) with all region of 

the 3D functional atlas. Measure of “hubness” such as eigenvector centrality, degree 

centrality, betweenness centrality, current flow betweenness centrality were performed 

using NetworkX (Hagberg et al., 2008). These scores were calculated individually and 

averaged for the young and the old cohorts. 
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Subject Sex Age 
(months) 

Age 
(years) 

Animal rejected  

283EA M 40.8 1.3 NO 

283CCA M 41.0 1.3 NO 

285AAA M 41.3 1.4 NO 

365A M 41.3 1.4 NO 

285AB M 42.1 1.4 NO 

263BCE M 43.8 1.4 NO 

314CA M 45.0 1.5 NO 

285D M 71.2 2.3 NO 

283CA M 71.8 2.4 NO 

276BC M 72.2 2.4 NO 

285E M 72.4 2.4 NO 

300BA M 75.5 2.5 NO 

289BB F 87.0 2.9 NO 

208CBF F 95.2 3.1 NO 

288BC F 95.8 3.2 cerebral lesion 

310C F 114.8 3.8 cerebral lesion 

967HACA M 243.5 8.0 NO 

184CB F 243.6 8.0 NO 

965MBIA M 243.6 8.0 NO 

965MBFA M 244.3 8.0 NO 

965MBFC F 244.4 8.0 NO 

965MBGA M 244.7 8.0 NO 

967HACB F 244.7 8.0 NO 

965MBFB M 245.4 8.1 NO 

169BAB F 246.0 8.1 NO 

965FDBB M 265.4 8.7 NO 

147BCBB M 265.7 8.7 NO 

147BCBA M 266.3 8.8 artifact 

943GKBC F 266.5 8.8 NO 

153FBA M 311.7 10.3 NO 

216B F 317.3 10.4 NO 

965MBG F 327.7 10.8 artifact 

119BBB F 328.1 10.8 NO 

 

Supplementary Table 1. Cohort of mouse lemurs involved in the study. 
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Supplementary figure 1. mALFF scores in middle aged and old mouse 

lemurs. 

Extraction of the averaged mALFF signal in the different regions of the mouse 

lemur functional atlas. The regions were ranked based on their group t-values 

(one-sample one-sided t-test to control whether the mALFF signal varied from 1). 
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Supplementary figure 2. Eigenvector centrality scores, reflecting "hubness" 

in middle-aged and old mouse lemur brains. 

The whole brain network was defined as a set of 48 nodes identified as local 

functional regions previously described in mouse lemurs. These nodes were used 

to build an averaged matrix for middle-aged and old mouse lemur cohorts. The 

measure of node influence was measured by eigenvector centrality. In young 

animals, the regions displaying the highest scores were the cingulate anterior, 

cingulate posterior, superior frontal and temporal cortices. The two structures 

presenting the highest centrality scores in young animals (cingulate cortices) had 

lower scores in old animals. 
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Supplementary figure 3. gluCEST signal in middle aged and old mouse 

lemurs. 

Extraction of the averaged gluCEST signal in the different brain regions of the 

mouse lemur. The regions were ranked based on their group t value (one-sample 

one-sided t-test to control whether the gluCEST signal varied from 1). 
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Supplementary figure 4. Stability of the correlations between gluCEST and 

eigenvector centrality. 

The gluCEST signal was extracted and averaged in the different brain regions of 

mouse lemurs. Hub centrality score was calculated based on the average 

eigenvector centrality of each brain region. Thresholds used to remove non-

significant edges were modulated from 0.0001 to 0.36 with a spacing value of 0.01 

on the cortical graph. The correlations were considered statistically significant at p 

< 0.05 (Spearman correlation; black dotted line). This hypothesis was tested all 

along the 36 points and in the two cohorts. 
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Supplementary figure 5. Stability of the correlations between mALFF and 

eigenvector centrality. 

The mALFF signal was extracted and averaged in the different brain regions of the 

mouse lemur. Hub centrality score was calculated based on the average 

eigenvector centrality of each brain region. Thresholds used to remove non-

significant edges were modulated from 0.0001 to 0.36 with a spacing value of 0.01 

on the cortical graph. The correlations were considered statistically significant at p 

< 0.05 (Spearman correlation; black dotted line). This hypothesis was tested all 

along the 36 points and in the two cohorts. 
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III. Discussion 

Mouse lemurs (Microcebus murinus) are the smallest, fastest developing, and 

among the most prolific and abundant primates in the world. They attract increased 

attention as potential model organisms for primate biology, behavior, and health (Ezran 

et al., 2017). In particular, they are used for neuroscience research as model of 

cerebral aging (Languille et al., 2012) and various neurodegenerative diseases 

(Mestre-Francés et al., 2018). They also have a key position on the phylogenetic tree 

of primates and can be used to investigate primate brain evolution. Despite this 

interest, the tools that are used to characterize mouse lemur brains are based on "old" 

technologies such as paper atlases. Today 3D atlases are gold standard for atlases. 

They possess much more visualization and computational power than classical paper 

atlases. For example, shapes and volumes of brain structures can be visualized 

directly from a 3D digital atlas. They allow to perform automatic quantification of 

different information (cerebral atrophy, MRI signal) and make it possible to analyze 

information from different sources and imaging modalities, such as function, gene and 

protein expression patterns that can be incorporated into the same framework 

(Lebenberg et al., 2011) (Ma et al., 2005) (Mazziotta et al., 1997). Here our objective 

was to develop and use different atlases of mouse lemur brains. First, we developed 

an anatomical atlas of the brain, then we described resting-state networks and 

functional maps (based on ALFF) in mouse lemurs. Finally, we created glutamate 

maps of their brains and used the previously developed atlases to analyse 

relationships between brain function and glutamate. We also performed a multimodal 

analysis of age-related changes occurring in mouse lemur brains. The ability to perform 

such analyses was based on the development of dedicated tools, in particular 

Sammba-MRI and of image analysis pipelines to analyse rsfMR images. 

III.1. From anatomical to functional atlases in mouse lemurs 

III.1.1. Comparison of anatomical to functional atlases 

Historically, histology-based atlases were used to characterize the brain of most 

animal species. In addition to the characterization of brain structures, cytoarchitectural 

analyses allowed to characterize different brain regions including in lemurs (Brodmann, 

1999 (original in 1909)) (Le Gros Clark, 1931). Here, first, we proposed a new 3D atlas 

based on manual segmentation of the brain. 120 regions were identified in this atlas 
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and the definition of cortical regions was mainly based on the manual transfer of 

structures found in histological or cytoarchitectural atlases (Le Gros Clark, 1931; Zilles 

et al., 1979) onto the 3D digital atlas. 

In a second approach, we created a functional atlas based on the spatial 

decomposition of BOLD signal issued from rsfMR images. This atlas was composed 

of 48 functional regions. Figure 27 displays a comparison of these two atlases. Prior 

to perform this comparison, the anatomical atlas was simplified by removing regions 

smaller than 5 mm3 and regions that had been excluded for functional analysis (white 

matter, hindbrain, ventricles, olfactory bulb, entorhinal, and prepiriform cortices). This 

left 28 cortical and 25 subcortical (i.e. 53) regions.  

The functional atlas displays a slightly different segmentation of brain regions when 

compared with the anatomical structures (N. Bons et al., 1998; Nadkarni et al., 2018). 

However, identification of the functional regions remains coherent with the Brodmann 

atlas (Brodmann, 1909; Le Gros Clark, 1931). Moreover, the quality of the functional 

atlas was supported by the robust bilaterality of the extracted regions and localization 

consistent with resting-state network maps from other primates (Belcher et al., 2013). 

The quality of the functional atlas is also supported by the property of dictionary 

learning analysis to decompose the BOLD signal without any anatomical priori. 

Precise comparisons between the two atlases remain challenging. The two atlases 

displayed obvious differences in their cortical limits except in the occipital lobes. The 

frontal lobe seems to be more scattered in the functional atlas but the subcortical 

boundaries of the two atlases display strong similarities. Note that in the anatomical 

atlas, the subcortical areas were described with more details (smaller regions) than 

with the functional ones. Studying the origins of the discrepancies between these two 

atlases will be essential to improve the characterization of the mouse lemur brain and 

to further address an adapted use of each atlas. A combined characterization including 

histology would be an interesting way to further improve the knowledge of mouse lemur 

brain. 
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Figure 27 | Mouse lemur 3D functional atlas based on dictionary learning. 

Forty-eight local functional regions were identified from the 35 sparse components (regions 

volume ≥ 5 mm3). Brain regions were classified based on their locations within the frontal 

(Blue), parietal (Green), occipital (Purple), temporal (Yellow) lobes. We display three different 

views and three slices extracted from the functional atlas. This illustration highlights the 

bilaterality and the distribution of the regions composing our atlas. 

It remains difficult to select an adapted atlas for a study, knowing that this choice 

strongly impacts the quality and the interpretation of the future results. We were 

confronted with such a choice during our second and third studies. Instead of using an 

anatomical atlas to identify nodes from mouse lemur cerebral networks, we chose to 

use the functional atlas. This choice was justified by a homogenous BOLD signal in 

the functional regions and the quality of the whole brain connectivity graph in the 

second study. 
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III.1.2. Graph theory features in mouse lemur brains 

Universal properties of the brain topology have emerged recently with graph 

analysis. One of them is the small-world feature which is an optimal configuration for 

global information transfer and local processing (Liang et al., 2011; Mechling et al., 

2014; Wang et al., 2010). Small-world feature is found in multiple species including 

humans (Bullmore et Sporns, 2009), non-human primates (Barttfeld et al., 2015), 

rodents (Mechling et al., 2014) and ferrets (Zhou et al., 2016) and now mouse lemurs. 

The small world feature of the mouse lemur brain was expected since the brains of 

most mammals have robust small-world characteristics. It is however interesting to 

outline that characterization of the brain function in various animals can now be 

performed using indexes of information processing efficacy. 

III.2. Methodological considerations concerning our studies 

The characterization of the brain based on resting-state fMRI requires to perform 

several methodological choices that can modulate the outcome of the studies. We 

propose to discuss some of the development performed in this context. 

III.2.1. Implementation of sammba-MRI 

The creation of brain atlases and their manipulations require the use to dedicated 

tools to register images and compare images issued from different modalities. 

Optimized workflow for coregistration was already implemented for the human brain 

since decades. However, an adaptation of the scripts was necessary to resolve the 

obvious anatomical differences observed between humans and small mammals such 

as rodents, small primates (differences of grey/white matter volume or brain sizes). 

Indeed, these anatomical features generate variations in signal intensity that have to 

be taken into account for each species. Here, we created sammba-MRI to answer to 

an important need of optimized pipeline for the coregistration of small mammals MR 

images, especially for fMRI. Using this automated pipeline offers numerous 

advantages such as the ability to study large cohorts, the possibility to extract unbiased 

and reproducible information and the ability to save considerable amount of time during 

image analysis. Recently, using sammba-MRI we tested our coregistration pipeline 

robustness in four different species (marmoset, mice, rat and mouse lemur). We 

successfully coregistered their anatomical and fMRI images by just varying the volume 
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of their brain. Note that an operator quality control is always necessary to assure the 

quality of the coregistration. However, automated control of the registration quality in 

mice has recently been proposed (Ioanas et al., 2019). This automated indicator of 

quality would be interesting to use with sammba-MRI. The different studies presented 

in my thesis provide examples of sammba-MRI ability to coregister different sources of 

MR images (anatomical, gluCEST, fMRI) and more recently this capacity has been 

extended to perfusion MR images. This important flexibility is a significant advantage 

for the exploration of animal models of pathologies with different MRI approaches. 

III.2.2. Anaesthesia and image acquisition protocols 

In our studies, rsfMRI were recorded from anaesthetized animals. Anaesthesia 

remains the major issue for rsfMRI studies in non-compliant species, though it has 

been published that it preserved the major functional networks (Gozzi et Schwarz, 

2016; R. M. Hutchison et al., 2011; J. L. Vincent et al., 2007). However, the reliability 

of the network under anaesthesia compared to the awake state remains highly 

discussed (Bukhari et al., 2017; R. M. Hutchison et al., 2010; Paasonen et al., 2018; 

Uhrig et al., 2018). We used isoflurane which has an effect on the neuronal network 

depending on the duration and the dose (R. M. Hutchison et al., 2014; Jonckers et al., 

2014; C. X. Li et Zhang, 2018). For this reason, we chose the lowest non-awakening 

isoflurane level possible for mouse lemurs (1.25%). The use of a mix at low doses of 

medetomine/isoflurane for the anaesthesia might be a way to improve the quality of 

the images in the future.  

Another option might be to record MRI from awake animals. Today, only a few 

studies have described species scanned whilst awake. However, they have cleaner 

networks that correspond to a physiological brain state. Working with awake animals 

is also a great opportunity to further design behavioral experiments associated to 

BOLD MR acquisitions. Other confounding and practical factors such as stress and the 

time-consuming training (often leading to a small number of subjects) however need 

to be taken into account (Belcher et al., 2013). 

Further optimization of the rsfMRI dataset can also be obtained by improving the 

acquisition reproducibility of the EPI images. Several approaches can be proposed to 

improve the reproducibility of the acquisition: (1) mechanically ventilating the animals 
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to increase their stability (paCO2) and to avoid movement artefacts due to free 

breathing (2) the use of a rat cryogenic coil. 

III.2.3. fMRI image processing  

Image pre-processing is an important key step for data analysis quality during 

rsfMRI studies in animals. In most resting state fMRI studies, neuronal networks are 

identified on the basis of a single method and the quality of image processing is left to 

subjective user judgement (Andronache et al., 2013; Vergara et al., 2017). This 

subjective intervention can be separated into evaluation of a-priori changes (i.e. 

selection of the best possible dataset) and post-processing analysis (i.e. selection of 

the best (or plausible) neuronal networks within a range of networks obtained). Here, 

fMRI images were preprocessed with a selective brain mask and by removing 

movement artefacts. This approach strongly improved the quality of extracted networks 

and no post-processing analysis or manual removal of irrelevant networks was 

required. 

Then several algorithms can be used to characterize cerebral networks after 

rsfMRI: seed-based analysis, ICA, dictionary learning… ICA or dictionary learning are 

strongly dependent on the number of components selected for the study. Classically, 

this property can be used to test the reproducibility of the component extraction. We 

found that increasing dictionary learning component numbers provided reproducible 

but increasingly divided components with similar boundaries. We therefore assumed 

that, as in humans (Smith et al., 2009), the dictionary analysis could define a functional 

organization at multiple levels. However, Smith et al. suggested that a tree-structure 

hierarchy could not be a perfect model covering all levels of details for a highly complex 

set of interconnected functional areas (Smith et al., 2009). 

In our study, we decided to classify whole brain networks into six large scale 

networks. This choice was based on a user-independent graph analysis algorithm: 

modularity. This method has the advantage of being user independent although we 

cannot affirm that it provided the only optimal choices for the brain network partition. 

Dictionary learning with six components has led to functional maps similar to the 

resting-state networks observed in other primate fMRI studies (Belcher et al., 2016; 

Belcher et al., 2013; R. M. Hutchison et al., 2015; R. M. Hutchison et al., 2011). 



198 
 

The similarity between dictionary learning and seed-based analysis concerning the 

mouse lemur DMN-like had reinforced the assumption that the networks that we 

identified are accurate (Figure 28). However, the thresholds used in seed-based 

analysis were established visually and by comparison with dictionary learning. We tried 

to use an automatic threshold (Bonferroni correction) but we found a less accurate 

organization of brain networks. 

 

 

Figure 28 | Mouse lemur DMN-like characterized by seed-based analysis.  

This figure highlights regions connected to the posterior cingulate cortex (1) used as seed. 

Correlated activity was observed in the anterior cingulate cortex (2), superior temporal cortex 

(3), inferior temporal cortex (4), frontal superior posterior cortex (5), parietal cortex (6), and 

cuneus (7). The color bar represents the one-sample t-test z-score values threshold at p<0.05 

(Bonferroni corrected; n=28 animals). 

The stability of the whole brain network (connectivity matrices) or the capacity to 

extract networks individually was not shown in our studies. The use of small animals 

can cause reproducibility difficulties at the individual scale. It is one of the reasons why 

resting-state network studies in small mammals require the use of an important number 

of animals to assure a significant statistical power. In the second study, we used 28 

lemurs. This is probably the highest number of non-human primates used to identify 

neuronal networks. In our studies, the functional hubs identification was reproducible 

across 2 studies and between two cohorts (middle-aged and old). Also, varying the 

number of components in the dictionary learning analysis (study 2) allowed the 

identification of reproducible functional regions across different analysis (not shown). 

This suggests that the networks that were identified are robust. 

4

3
1

5

3

6 6

2

7



199 
 

III.3. Perspective of the studies 

The description of the mouse lemur network was one of the major results of this 

thesis. We described these networks with the most detail as possible knowing that they 

will be reemployed in future studies. The comparison and the detection of the human 

networks with the same methodology have participated to ensure the accuracy of our 

results and to propose hypothetic functions for these networks. We also provided 

multimodal description of mouse lemur brains by focusing on ALFF and gluCEST 

signal. We showed that glutamate is strongly associated to mALFF in cortical and 

subcortical brain regions. In the cortex, glutamate is also associated to functional 

connectivity and to long-distance transfer of information. We also highlighted age-

related changes for these parameters. They concern alterations of mALFF in the DMN, 

a critical network for brain function and reduction of glutamate in the globus pallidus. 

We also highlighted an age-related reorganization of the cortical/subcortical 

relationships between mALFF and functional connectivity. Interestingly these analyses 

were possible because MR images were recorded at high magnetic field (11.7 Tesla). 

This outline an obvious interest of mouse lemurs that are small primates that fit in such 

high filed MRI.  

In the future, the methodology that was developed in the context of this thesis will 

allow the characterization of mechanisms behind the various pathological processes 

that can be induced in this species. It is possible to induce a neurodegenerative 

process related to Alzheimer pathology in lemurs (Gary et al., 2016). In the future it will 

be possible to assess relationships between alterations of functional neuronal 

networks, ALFF or glutamate level and the induction of an “Alzheimer’s disease like” 

pathology.  



200 
 

IV. Annexe 

IV.1. Résumé 

Les modèles animaux sont couramment utilisés pour imiter les maladies afin 

d'explorer l'impact des processus pathologiques sur les réseaux cérébraux ou pour 

mesurer l'effet d'une nouvelle thérapie. Le microcèbe murin (Microcebus murinus) est 

un primate particulièrement intéressant en neuroscience. Ce petit animal est un 

modèle d'étude du vieillissement cérébral et de diverses maladies comme 

l'encéphalopathie associée au diabète, la maladie de Parkinson ou la maladie 

d'Alzheimer. Il occupe une position clé sur l'arbre phylogénétique des primates et est 

utilisé pour étudier l'évolution du cerveau. Son anatomie cérébrale est encore mal 

décrite et ses réseaux cérébraux n'ont jamais été étudiés. 

L'imagerie fonctionnelle par résonance magnétique fonctionnelle (IRMf) est 

largement utilisée pour étudier le fonctionnement du cerveau en réponse à des tâches 

spécifiques. Elle est également utilisée en l'absence de tâches explicites (c'est à dire 

à l'état de repos). Elle détecte des oscillations du signal BOLD de basse fréquence. 

Ces oscillations sont similaires dans des structures cérébrales fonctionnellement 

connectées qui sont appelées réseaux. Les études des réseaux cérébraux ont 

contribué à de nombreuses percées dans la compréhension des fonctions cérébrales, 

dans des conditions normales et pathologiques telles que la maladie d'Alzheimer ou la 

maladie de Parkinson. Cependant, de nombreuses questions subsistent, portant à la 

fois sur le fonctionnement de la technique d'IRMf et son interprétation. Par exemple, 

le rôle de ces réseaux dans les fonctions cérébrales et les mécanismes biologiques à 

l’origine de leurs activités sont encore partiellement inconnus. De plus, l'impact de 

leurs modulations sur le comportement et la cognition dans des conditions 

pathologiques fait toujours l'objet de débats. 

Une question récurrente concernant l'étude de cohortes d'animaux par IRM 

anatomique et IRM fonctionnelle est le recalage spatial de grandes séries d'images 

acquises avec différents protocoles. Certains outils ont été développés au cours de la 

dernière décennie pour analyser les images obtenues sur des petits animaux. 

Toutefois, les outils informatiques actuels sont peu avancés en comparaison à ceux 

l’homme. Nous avons donc développé un logiciel Python appelé sammba-MRI, conçu 

pour offrir une utilisation efficace des méthodes de recalage spatial existantes chez 



201 
 

l’humain (ANTS, AFNI). Il génère des modèles d’images anatomiques moyennées, 

spécifiques des cohortes et recale diverses images IRM vers ces modèles. Sur la base 

d'un modèle généré avec sammba-mri, nous avons construit un atlas anatomique 

numérique du cerveau du lémurien. Cet atlas, ainsi que plusieurs autres atlas de 

mammifères disponibles, ont permis de comparer entre espèces les volumes de 

différentes régions cérébrales. Des mesures issues de ces atlas IRM indiquent que 

l'indice de volume de la substance blanche par rapport au volume cérébral augmente 

du rongeur aux petits primates, aux macaques, atteignant leurs valeurs les plus 

élevées chez les humains. 

La deuxième partie de l'étude a été consacrée à l'élaboration de protocoles pour 

effectuer des études de connectivité chez les microcèbes. Des protocoles IRM dédiés 

ont été développés et sammba-mri a été utilisé pour recaler les images IRMf. Nous 

avons créé une méthodologie pour extraire et caractériser, pour la première fois, les 

réseaux cérébraux chez le microcèbe. Nous avons montré que leur cerveau est 

organisé en régions fonctionnelles intégrées dans des réseaux fonctionnels à grande 

échelle. Ils ont été classés comme étant des réseaux de type mode par défaut, fronto-

temporaux, moteurs, visuels, ganglions de la base et thalamiques. Ces réseaux ont pu 

être comparés aux réseaux chez l'humain. Nous avons mis en évidence des règles 

d’organisation communes, mais aussi des divergences entre ces deux espèces.  

Les mécanismes biologiques associés à l'organisation de régions cérébrales en 

réseaux sont encore mal compris. Dans la dernière partie de cette thèse, nous avons 

caractérisé une relation entre IRMf à l'état de repos et les niveaux régionaux de 

glutamate. Ces derniers ont été obtenus à l’aide d’une technique d’imagerie du 

glutamate appelée transfert de saturation par échange chimique (gluCEST). Nous 

avons mis en évidence une relation entre une mesure de l'activité cérébrale (ALFF) 

issue de l'IRMf, le score de hubness et le niveau de glutamate. Ces résultats suggèrent 

que le glutamate joue un rôle critique dans l'organisation et la régulation de la fonction 

cérébrale. Une relation entre le hubness, l'activité neuronale locale et un indice du 

niveau de glutamate dans le cerveau est compatible avec le rôle bien établi du 

glutamate comme neurotransmetteur excitateur. Nous avons également mis en 

évidence des changements liés à l'âge pour ces paramètres. Ils concernent les 

modifications d'ALFF dans le réseau en mode par défaut et la réduction de glutamate 

dans le globus pallidus. Nous avons également mis en évidence une réorganisation 
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liée à l'âge des relations corticales / sous-corticales entre ALFF et la connectivité 

fonctionnelle. 
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IV.2. Scientific production: 

IV.2.1. Oral scientific communications: 

Multilevel functional organization of the mouse lemur primate brain 

International Society of Magnetic Resonance in Medicine, Montréal, 2019 

 

Clément Garin1,2, Nachiket Abhay Nadkarni1,2, Salma Bougacha1,2, Jean-Luc Picq1,2, 

and Marc Dhenain1,2 

1Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Direction de 

la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Fontenay-aux-

Roses, France, 2Centre National de la Recherche Scientifique (CNRS), Université 

Paris-Sud, Université Paris-Saclay UMR 9199, Neurodegenerative Diseases 

Laboratory, Fontenay-aux-Roses, France 

 

Resting state networks have been characterized in numerous mammals covering 

human, non-human primates, dogs, rabbits and rodents, though only ever at single 

semi-arbitrary levels of complexity. In humans, resting state networks analyses have 

been extended to extracting networks of varying complexity, representing different 

levels of a possible “functional hierarchy”. We performed the first study of “functional 

hierarchy” in animals. We focused on the gray mouse lemur (Microcebus murinus), a 

small primate attracting increased attention as a model for cerebral and age-related 

disorders. 

 

IV.2.2. Invited talk: 

Brain network analysis using resting state fMRI, Demonstration studies in 

small non-human primates 

General meeting of NEURATRIS, ICM, Paris, 2019 
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IV.2.3. Others formats: 

Resting state, gluCEST and anatomical MRI approaches at 11.7T for brain 

aging studies in a non-human primate 

International Society of Magnetic Resonance in Medicine, Paris, 2018 

Clément Garin1, Nachiket Abhay Nadkarni1, Salma Bougacha1,2, Jeremy Pepin1, Julien 

Flament1, Jean-Luc Picq1,3, and Marc Dhenain1 

 

1Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Fontenay-

aux-Roses, France, Fontenay aux roses, France, 23U1077, INSERM, Caen, 

France, 3Laboratoire de psychopathologie et de neuropsychologie, University of Paris 

8, Paris, France 

The gray mouse lemur (Microcebus murinus) is a small non-human primate with rapid 

maturity. This study focuses on the development of non-invasive MRI tools applied to 

neurodegenerative processes. We performed three different types of analysis: 

anatomical volumetric measures, neuronal network assessment with resting-state 

fMRI and brain glutamate distribution with gluCEST imaging. We found anatomical 

atrophy and functional deficiency mostly in cortical regions. To our knowledge, this 

study is the first to characterize the functional and anatomical brain aging process in a 

non-human primate. Furthermore, the mouse lemur functional and gluCEST maps 

have never been described before. 

----------------------------------------------------------------------------------------------------------------- 

MRI Evaluation of Morphological and Perfusion Changes in Aged APPSwePS1dE9 

M. Alzheimer's Association International Conference, Londre, 2017 

 

Clément Garin1,2 , Nachiket Abhay Nadkarni2,3 , Clemence Dudeffant1,2 , Marc 

Dhenain2,3 ,  

1Commissariat a l’Energie Atomique et aux Energies Alternatives (CEA), Fontenay-

aux-Roses, France; 2 Centre National de la Recherche Scientifique (CNRS), Fontenay-

aux-Roses, France; 3 Commissariat a l’Energie Atomique et aux  Energies Alternatives 

(CEA), MIRCen, Fontenay-aux-Roses, France 
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IV.2.4. In preparation 

Animal functional magnetic resonance imaging: Trends and path toward 

standardization.  

Francesca Mandino, Dominic Cerri, Clement M. Garin, Milou Straathof, Geralda van 

Tilborg, M. Mallar Chakravarty, Marc Dhenain, Rick M. Rijkhuizen, Alessandro Gozzi, 

Andreas Hess, Shella D. Keilholz, Jason P. Lerch, Yen-Yu Ian Shih, Joanes 

Grandjean 

----------------------------------------------------------------------------------------------------------------- 

Toward the large scale network evolutionary history: a mammals cross-species 

comparison using fMRI 

 

IV.2.5. Other contributions 

Contrast-enhanced MR microscopy of amyloid plaques in five mouse models of 

amyloidosis and in human Alzheimer's disease brains 

Objective: - Identify the amyloid plaque topologies in different mouse models of 

amyloidosis and evaluate the impact of various characteristics on their detection 

by MRI 

Contribution: In this article my participation concerned the MRI acquisitions and the 

breeding of mice. 

----------------------------------------------------------------------------------------------------------------- 

Common functional networks in the mouse brain revealed by multi-centre 

resting-state fMRI analysis 

Objective: - Identify reproducible and common large scale networks using 

rsfMRI images produced by different laboratories 

 - Produce a guideline for the design of rodent rsfMRI investigations 

Contribution: In this article my participation mostly concerned the acquisition of fMRI 

and anatomical images in mice at 11.7T. We also participated in the common reflection 

for an international standardization of rodent rsfMRI practices.
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Titre : Caractérisation du cerveau des microcèbes murins par IRM anatomique, 

fonctionnelle et du glutamate 

Mots clés : Réseaux, Microcèbe murin, Etat de repos, Fonctionelle, IRM, gluCEST. 

Résumé : Le microcèbe murin (Microcebus 

murinus) est un primate attirant l’attention de la 
recherche neuroscientifique. Son anatomie 
cérébrale est encore mal décrite et ses réseaux 
cérébraux n'ont jamais été étudiés. Le premier 
objectif de cette thèse était de développer de 
nouveaux outils menant à la création d’un atlas 
numérique 3D du cerveau du microcèbe. Cet 
atlas est un outil fondamental car pouvant être 
utilisé pour extraire automatiquement des 
biomarqueurs cérébraux de diverses 
neuropathologies. Par la suite, nous avons mis 
en place des protocoles IRM et informatiques 
pour analyser la connectivité neuronale du 
microcèbe murin. Nous avons évalué pour la 
première fois les réseaux cérébraux de cet 
animal et révélé que son cerveau est organisé 
en régions fonctionnelles intégrées dans des 
réseaux fonctionnels à plus grande échelle. 

Ces réseaux ont été classés et comparés à des 
réseaux similaires chez l'homme. Cette 
comparaison multi-espèces a mis en évidence 
des règles d'organisation communes mais aussi 
des divergences. L'imagerie du glutamate par 
transfert de saturation et par échange chimique 
(gluCEST) est une méthode permettant de créer 
des cartes 3D de la distribution du glutamate. 
Dans une troisième étude, nous avons comparé 
l’activité neuronale locale, la connectivité 
fonctionnelle et le contraste gluCEST dans 
diverses régions du cerveau. Nous avons ainsi 
mis en évidence différentes associations entre 
ces trois biomarqueurs. Enfin, l’impact du 
vieillissement sur la connectivité fonctionnelle, 
l’activité neuronale locale et le contraste 
gluCEST a été évalué en comparant deux 
cohortes de microcèbes murins. 

 

 

Title : Characterization of mouse lemur brain by anatomical, functional and 

glutamate MRI 

Keywords : Networks, Mouse lemur, Resting state, Functional, MRI, gluCEST. 

Abstract : The mouse lemur (Microcebus 

murinus) is a primate that has attracted attention 
within neuroscience research. Its cerebral 
anatomy is still poorly described and its cerebral 
networks have never been investigated. The 
first objective of this study was to develop new 
tools to create a 3D digital atlas of the brain of 
this model and to use this atlas to automatically 
follow-up brain characteristics in cohorts of 
animals. We then implemented protocols to 
analyze connectivity in mouse lemurs so we 
could evaluate for the first time the cerebral 
networks in this species. We revealed that the 
mouse lemur brain is organised in local 
functional regions integrated within large scale 
functional networks.  

These latter networks were classified and 
compared to large scale networks in humans. 
This multispecies comparison highlighted 
common organization rules but also 
discrepancies. Additionally, Chemical Exchange 
Saturation Transfer imaging of glutamate 
(gluCEST) is a method that allows the creation 
of 3D maps weighted by the glutamate 
distribution. In a third study, we compared local 
neuronal activity, functional connectivity and 
gluCEST contrast in various brain regions. We 
highlighted various associations between these 
three biomarkers. Lastly, the impact of aging on 
local neuronal activity, functional connectivity 
and gluCEST has been analyzed by comparing 
two cohorts of lemurs. 

 

 


