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Abstract

Embedded systems are getting more complex and require more intensive processing capabilities.

They must be able to adapt to the rapid evolution of the high-end embedded applications that

are characterized by their high computation-intensive workloads (order of TOPS: Tera Operations

Per Second), and their high level of parallelism. Moreover, since the dynamism of the applications

is becoming more signi�cant, powerful computing solutions should be designed accordingly. By

exploiting e�ciently the dynamism, the load will be balanced between the computing resources,

which will improve greatly the overall performance.

To tackle the challenges of these future high-end massively-parallel dynamic embedded appli-

cations, we have designed the AHDAM architecture, which stands for "Asymmetric Homogeneous

with Dynamic Allocator Manycore architecture". Its architecture permits to process applications

with large data sets by e�ciently hiding the processors' stall time using multithreaded processors.

Besides, it exploits the parallelism of the applications at multiple levels so that they would be

accelerated e�ciently on dedicated resources, hence improving e�ciently the overall performance.

AHDAM architecture tackles the dynamism of these applications by dynamically balancing the

load between its computing resources using a central controller to increase their utilization rate.

The AHDAM architecture has been evaluated using a relevant embedded application from

the telecommunication domain called "spectrum radio-sensing". With 136 cores running at 500

MHz, AHDAM architecture reaches a peak performance of 196 GOPS and meets the computation

requirements of the application.

Keywords: Multicore, MPSoC, manycore, asymmetric, multithreaded processors, embedded

systems, dynamic applications, simulation





Résumé

Les systèmes embarqués sont omniprésents dans notre vie quotidienne. Un grand nombre de pro-

duits contiennent un ou plusieurs processeurs invisibles pour l'utilisateur dans un emballage so-

phistiqué. Ils e�ectuent des traitements complexes et communiquent avec l'environnement pour

satisfaire les besoins des utilisateurs.

Les systèmes embarqués couvrent tous les aspects de la vie moderne et il y a de nombreux exem-

ples de leur utilisation. Dans le domaine des télécommunications, il existe de nombreux systèmes

embarqués, des commutateurs téléphoniques pour les réseaux jusqu'aux téléphones mobiles. Dans

le domaine de l'électronique grand public, les systèmes embarqués sont utilisés dans les assistants

numériques personnels (PDA), les lecteurs MP3, les consoles de jeux vidéo, les appareils photo

numériques, les lecteurs de DVD, les GPS et les imprimantes. Cette liste est n'est pas exhaustive

et il y a beaucoup d'autres exemples dans d'autres domaines comme les systèmes de transport, les

équipements médicaux, les applications militaires, etc.

Les utilisateurs �naux ne veulent pas seulement davantage de fonctionnalités et de meilleures

performances, mais ils sont aussi intéressés par des dispositifs ayant le même niveau de performance,

mais moins chers. Ainsi, on observe des convergences dans les marchés de l'électronique grand pub-

lic. Les montres numériques et les pagers ont évolué vers les assistants numériques personnels (PDA)

et les téléphones intelligents (Smartphones). De même, les ordinateurs de bureau et les portables

convergent vers les netbooks qui utilisent le processeur Atom d'Intel et les processeurs ARM. Ces

dispositifs demandent de plus en plus des capacités calculatoires pour un budget énergétique faible

avec des contraintes thermiques strictes.

Pendant près de 40 ans, les innovations technologiques sont succédées dans le but de réduire

les temps d'exécution des programmes exécutés par le processeur. Une technique s'est appuyée

sur la réduction des dimensions des transistors, qui a conduit à une augmentation du nombre de

composants intégrables sur une puce, permettant d'implanter des architectures plus complexes et

une augmentation de la fréquence d'horloge du processeur, d'où une exécution plus rapide des

instructions. Cependant, ce gain de performance est aujourd'hui limité par les problèmes énergé-

tiques et de dissipation thermique. En plus, les systèmes embarqués fonctionnent avec un budget

de puissance limitée et donc d'augmenter la fréquence du processeur pour améliorer la performance

n'est plus une solution pour les concepteurs de système.

Heureusement, de nombreuses applications embarquées sont naturellement parallèles. Les ap-

plications sont parallélisées au niveau des tâches pour atteindre des performances supérieures. Il

existe deux solutions pour s'attaquer au parallélisme de tâches (TLP).

La solution la plus simple pour exécuter plusieurs tâches consiste à utiliser un processeur

"monothread" avec toutes les techniques déployées pour accélérer le traitement d'un seul �ux

d'instructions. Le système d'exploitation organise et répartit les threads sur le processeur pour

donner l'impression qu'ils sont exécutés en parallèle. Cela peut être considéré comme une virtual-

isation des ressources d'exécution. Pour cette virtualisation, deux techniques d'accélération pour

les processeurs monothreads sont largement utilisées. La première, appelée le parallélisme tem-

porel, consiste à réduire le temps d'exécution en divisant l'exécution des instructions en plusieurs

étapes successives avec un chevauchement dans l'exécution de plusieurs instructions. C'est ce qu'on
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appelle une exécution pipeline. La seconde, appelée le parallélisme spatial, repose sur la multipli-

cation des ressources d'exécution. Dans ce type d'architectures, l'expression du parallélisme peut

être explicite ou implicite. Le parallélisme est explicite lorsque le compilateur gère les dépendances

de données et le �ux de contrôle pour garantir l'exécution correcte du programme. Le contrôle est

alors relativement simple et permet d'utiliser des fréquences d'horloge plus élevées ou de réduire

les besoins énergétiques à performance donnée. Les architectures VLIW en sont l'exemple type.

D'autre part, lorsque l'architecture traite dynamiquement tous les aléas d'exécution, le parallélisme

est exploité de manière implicite. Ces architectures sont appelés superscalaires. Cette approche

simpli�e la tâche du compilateur au prix d'une plus grande complexité du matériel: les mécanismes

de spéculation, l'exécution dans le désordre et les prédictions de branchement ont un grand impact

sur l'e�cacité énergétique et l'e�cacité transistor de l'architecture du processeur.

La deuxième solution consiste à multiplier le nombre de c÷urs pour exécuter les tâches en

parallèle. L'avancement de la technologie des semi-conducteurs a permis aux fabricants de puces

d'augmenter la puissance de calcul globale en intégrant des processeurs supplémentaires ou "c÷urs"

sur la même puce, ce qui est la version moderne des multiprocesseurs. Ainsi, cette solution exploite

le parallélisme au niveau des threads (TLP), où plusieurs threads peuvent être exécutés en parallèle

sur plusieurs c÷urs. Dans le domaine des systèmes embarqués, ces architectures sont connues sous

le terme MPSoC, qui signi�e Multi-Processor System-On-Chip.

Dans ce contexte, c'est une architecture MPSoC pour les systèmes embarqués qui est étudiée

et évaluée dans cette thèse.

Les systèmes embarqués sont de plus en plus complexes et requièrent des besoins en puissance

de calcul toujours plus importants. Ils doivent être capables de s'adapter à l'évolution rapide des

applications qui requièrent un haut niveau de performance (ordre du TOPS: Téra-opérations par

seconde) et de parallélisme. Notamment, les applications haut de gamme ont beaucoup de paral-

lélisme au niveau de tâches (TLP) et de parallélisme au niveau des boucles (LLP). Par conséquent,

les architectures MPSoC doivent cibler l'ère "manycore" a�n de répondre à ces besoins de calcul

élevés. Les architectures multic÷urs doivent être e�cace au niveau transistor et énergie, puisque

la taille de la puce et le budget énergétiques sont limitées dans les systèmes embarqués. Ainsi,

ils doivent être conçus avec un bon équilibre entre le nombre de c÷urs et la quantité de mémoire

sur la puce. Les processeurs doivent être très e�caces en transistor et énergie. Il devrait n'y

avoir aucune perte injusti�ée de l'énergie dans les ressources d'exécution avec des techniques telles

que la spéculation. Dans de telles architectures multic÷urs complexes, il y a beaucoup de sources

de latences qui provoquent des arrêts temporaires d'exécution des instructions, d'où une perte

d'e�cacité et d'énergie puisque les circuits continuent d'être alimentés pendant ces suspensions de

fonctionnement. Dans ce contexte, les processeurs multithreads sont une solution intéressante à

étudier.

Une caractéristique importante des applications embarquées de calculs intensifs est le dy-

namisme. Alors que certains algorithmes sont indépendants des données avec un �ux de contrôle

régulier, d'autres algorithmes sont très dépendants des données et leur temps d'exécution varie en

fonction des données d'entrée, du contrôle de �ux irrégulier, et de leur auto-adaptabilité aux envi-

ronnements applicatifs. Par conséquent, l'architecture MPSoC devrait être très réactive par rapport

aux besoins de calcul a�n d'augmenter le taux d'occupation d'exécution des ressources. Ainsi, il

iv
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devrait permettre une répartition de charge globale et dynamique entre les ressources d'exécution.

Pour répondre aux besoins de ces applications de calcul intensif massivement parallèle et

dynamique, nous proposons dans cette thèse l'architecture AHDAM qui signi�e architecture ho-

mogène asymétrique avec allocation dynamique ou bien Asymmetric Homogeneous with Dynamic

Allocator Manycore architecture. Cette architecture a été conçue a�n de masquer e�cacement

la latence d'accès à la mémoire extérieure dont de nombreux accès sont nécessaires lors de la

manipulation de grands volumes de données. Pour cela, des processeurs multitâches ont été

utilisés. Par ailleurs, l'architecture AHDAM imbrique plusieurs niveaux de parallélisme a�n de

tirer partie e�cacement des di�érentes formes de parallélisme des applications, et ainsi atteindre

un haut niveau de performance. En�n, cette architecture utilise un contrôleur centralisé pour

équilibrer la charge de calcul entre ses ressources de calcul a�n d'augmenter leur taux d'utilisation

et d'exécuter e�cacement les applications fortement dynamiques.

Le chapitre 1 présente le contexte de notre travail en se concentrant principalement sur les

exigences des applications et des solutions architecturales existantes. Le cadre de notre étude sont

les applications massivement parallèles et dynamiques pour l'embarqué. Ces applications sont très

parallèles. Le parallélisme peut être extrait au niveau thread (TLP) et au niveau des boucles (LLP).

Ainsi, une application peut avoir de nombreux threads qui peuvent être traitées en parallèle. Par

conséquent, les architectures MPSoCs de type "manycore" sont des solutions naturelles pour ces

applications. En outre, le dynamisme de ces applications nécessite une solution e�cace pour gérer

l'utilisation des ressources et équilibrer les charges dans le MPSoC a�n de maximiser la performance

globale.

On identi�e trois grandes familles de MPSoCs pour les systèmes embarqués dans l'état de

l'art: les MPSoC symétriques, les MPSoC asymétriques homogènes et les MPSoC asymétriques

hétérogènes.

Les MPSoCs symétriques sont constitués de plusieurs processeurs homogènes qui exécutent à

la fois la tâche de contrôle et les tâches de calculs. Les MPSoCs asymétriques sont constitués

d'un (parfois plusieurs) processeur de contrôle centralisé ou hiérarchisé, et plusieurs processeurs

homogènes ou hétérogènes pour les tâches de calcul. Dans notre contexte d'étude, les architec-

tures MPSoC asymétriques homogènes sont la meilleure solution pour les applications dynamiques,

puisqu'elle permet l'équilibrage de charge rapide et réactive entre les processeurs homogènes. Ces

architectures ont une grande e�cacité transistor et énergétique en raison de la séparation entre les

processeurs de contrôle et de calcul.

En particulier, une architecture MPSoC asymétriques homogène, appelé SCMP, qui est la pro-

priété du laboratoire du CEA LIST, sera utilisée dans le reste de cette thèse comme l'architecture

de référence pour les expérimentations. SCMP est conçue pour traiter les applications embarquées

avec un comportement dynamique en faisant migrer les threads entre les c÷urs de calcul en utilisant

un contrôleur central.

Par ailleurs, et selon nos observations, les architectures MPSoC asymétriques homogènes ne

répondent pas aux exigences des applications embarquées haut de gamme qui sont massivement

parallèles. Tout d'abord, elles ne sont pas extensibles au niveau manycore parce que le contrôleur

central est une source de contentions. Par exemple, SCMP peut supporter jusqu'à 32 c÷urs de

calcul avant de connaître une dégradation des performances. Ensuite, les puces manycore ont un
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nombre limité de pattes d'E/S, d'où une bande passante limitée. Cela implique que plus le tra�c

hors-puce augmentera, plus les processeurs subiront de suspensions dans la puce.

Il existe deux voies possibles pour améliorer les architectures MPSoCs asymétriques homogènes:

la scalabilité et les processeurs multitâches matériels. Dans cette thèse, nous allons d'abord étudier

les avantages/inconvénients du multithreading matériel dans l'architecture SCMP, puis nous allons

proposer une nouvelle solution qui va cibler l'ère manycore. Cette solution doit relever les dé�s

des applications embarquées.

Le chapitre 2 explore et analyse les performances et l'e�cacité des processeurs matériels mul-

tithreads dans les systèmes embarqués. Les processeurs embarqués doivent avoir une taille dans

l'ordre du mm2 et consommer de l'ordre de quelques mW. Ainsi, ils doivent utiliser une technologie

simple pour exploiter l'ILP, telles que le pipeline ou l'approche VLIW. Un processeur matériel

multithread fournit les ressources matérielles et des mécanismes pour exécuter plusieurs threads

matériels sur un c÷ur de processeur, a�n d'accroître son utilisation du pipeline, et donc le débit

d'exécution des applications. Au sein d'un processeur multithread, les slots d'instruction inutilisés

sont remplis par des instructions d'autres threads. Les threads matériels sont en compétition pour

accéder aux ressources partagées et pour tolérer les aléas de pipeline avec une longue période de

latence, comme c'est le cas lors d'un défaut de cache. Ces événements peuvent bloquer le pipeline

jusqu'à 75% de son temps d'exécution. Ainsi, le principal avantage des processeurs multithreads

sur les autres types de processeurs est leur capacité à cacher la latence d'un thread. Les futures

architectures manycores ont tendance à utiliser de petits c÷urs RISC comme éléments de base des

traitements. Dans ce cas, plusieurs processeurs peuvent être intégrés sur une seule puce tout en gar-

dant la consommation d'énergie globale sous un seuil tolérable. Par conséquent, nous considérons

un processeur RISC (AntX) avec un pipeline à 5 étages, démarrant dans l'ordre une seule instruction

par cycle. Ensuite, nous étudierons ce processeur, au niveau RTL (VHDL), avec deux techniques

de multithreading: le multithreading entrelacé (IMT) et le multithreading par bloc (BMT). Nous

avons synthétisé les 3 processeurs en technologie TSMC 40 nm. Les résultats de synthèse mon-

tre que le banc de registres occupe plus de 38% de la surface de base globale. Donc, il n'est pas

e�cace d'intégrer plus de deux threads (TC) par processeur multithread et c'est pourquoi nous

nous sommes limités à deux threads par processeur. Les résultats de synthèse montrent également

que les versions IMT et BMT ont 73.4% et 61.3% de surface en plus par rapport au processeur

monothread. C'est le BMT qui a la plus petite surface.

En�n, nous avons comparé les performances et l'e�cacité transistor des processeurs MT en

utilisant comme application le tri-bulle, tout en variant la taille du cache L1 de données et la

latence de la mémoire de données. Les résultats montrent qu'il n'y a pas de conclusion dé�nitive

sur le meilleur type de processeur multithread. En fait, il y a un compromis entre la taille des

données de la mémoire cache, la latence mémoire de données, et le surcoût en surface du c÷ur.

Choisir le meilleur processeur multitâche dépend fortement du cahier des charges du concepteur du

système et des exigences d'application.

D'après cette conclusion, nous allons explorer dans le prochain chapitre l'impact du processeur

multithread sur les performances d'une architecture MPSoC asymétrique: l'architecture SCMP.
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Le chapitre 3 étudie les avantages/inconvénients du multithreading matériel dans un contexte

MPSoC asymétrique homogène (architecture SCMP). Pour cette exploration, nous présentons le

simulateur SESAM, dans lequel l'architecture SCMP est modélisée. Ensuite, nous étendons SESAM

pour supporter les processeurs multithreads. En particulier, nous avons développé un nouveau

simulateur multithread au cycle près (ISS) en SystemC pour modéliser le processeur IMT/BMT

avec deux threads (TC). Nous utilisons plusieurs benchmarks basés sur un contrôle des �ux et des

applications de streaming a�n de choisir ce qui convient le mieux pour un processeur multithread

entre les approches IMT et BMT, quel ordonnanceur de threads global pour plusieurs processeurs

multithread donne la meilleure performance (VSMP ou SMTC), et quelle architecture MPSoC

asymétrique est la plus performante et transistor e�cace (SCMP ou MT_SCMP).

Deux applications du domaine de l'embarqué sont utilisées: l'étiquetage de composants connexes

(de type contrôle de �ux) et WCDMA (de type data�ow/streaming). Dans le modèle d'exécution

de �ux de contrôle, les tâches sont traitées jusqu'à la �n, alors que dans le modèle d'exécution

de �ux de données, les tâches se synchronisent entre elles sur les données, créant ainsi des aléas

de pipeline en plus. Les deux modèles d'exécution couvrent un large ensemble de comportements

d'applications.

Les résultats montrent que le processeur multithread bloqué (BMT) et l'ordonnanceur SMTC

convient le mieux pour MT_SCMP.

A�n d'estimer la surface des deux systèmes, nous utilisons les résultats de synthèse en tech-

nologie TSMC 40 nm pour les processeurs et les réseaux d'interconnexion, et nous estimons la

taille des caches en utilisant l'outil CACTI 6.5. Pour résumer les résultats, le MT_SCMP donne

une meilleure performance de pointe, mais inférieure en e�cacité transistor que SCMP. En fait,

les performances de MT_SCMP dépendent fortement de cinq paramètres principaux: le TLP de

l'application, le taux de défauts de caches, la latence d'un défaut de caches, la hiérarchie mémoire,

et l'ordonnancement global des threads. Ce dernier paramètre implique que pour des applications

dynamiques, un équilibrage de charge dynamique et l'ordonnancement donnent une performance

optimale. C'est pourquoi SCMP est une architecture hautement e�cace.

Choisir des processeurs multithreads ou non pour SCMP est la responsabilité du concepteur du

système. Si les performances de pointe sont un paramètre clé, les processeurs multithreads sont une

solution intéressante. Cependant, pour l'e�cacité transistor, les processeurs monothreads restent

une solution plus e�cace.

SCMP a quelques limitations pour s'attaquer aux exigences des applications dynamiques et

massivement parallèles. Il y a des limites à la scalabilité au niveau manycore et des limitations

pour traiter des quantités de données qui ne rentrent pas dans la mémoire sur la puce.

Pour surmonter ces limitations, nous allons concevoir dans le chapitre suivant une nouvelle

architecture manycore qui s'attaque aux dé�s des applications dynamiques haut de gamme de

l'avenir appelée architecture AHDAM.

Le chapitre 4 présente une nouvelle architecture manycore appelée AHDAM, qui signi�e

Asymmetric Homogeneous with Dynamic Allocator Manycore architecture. Il est utilisé comme

un accélérateur pour les applications massivement parallèles et dynamiques en permettant la

migration des threads entre les unités d'exécution via un contrôleur central. En outre, elle est

conçue pour accélérer l'exécution des codes de boucle, ce qui constitue souvent une grande partie
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du temps d'exécution de l'application. L'architecture AHDAM met en ÷uvre des processeurs

monothread et multithread pour accroître l'utilisation des processeurs si nécessaire. L'architecture

AHDAM est présentée en détail dans ce chapitre. En particulier, son environnement de système,

son modèle de programmation, sa description architecturale et les fonctionnalités de chaque

composant matériel, son modèle d'exécution, et sa scalabilité maximale, sont expliquées. L'étude

montre que la scalabilité d'AHDAM peut atteindre jusqu'à 136 processeurs (8 Tuiles x 16 LPEs +

8 MPEs) en fonction de l'exigence d'application.

En�n, le chapitre 5 évalue les performances et l'e�cacité transistor de l'architecture AHDAM en

utilisant une application pertinente de l'embarquée dans le domaine des télécommunications appelé

radio-sensing. Cette application a été conçue par Thales Communications France. La con�guration

"high-sensitivity" de cette application a beaucoup d'exigences de calcul (75.8 GOPS), beaucoup

de parallélisme au niveau des threads et des boucles (99.8%), une grande quantité de données

(432 Mo), et elle est dynamique. L'application de "radio-sensing" est parallélisée et portée en

utilisant le modèle de programmation d'AHDAM. L'architecture AHDAM est simulée en utilisant

une combinaison d'outils de simulation tels que SESAM et Trimaran, et en utilisant le modèle

analytique du processeur BMT que nous avons développé. Avec 136 c÷urs cadencés à 500 MHz,

l'architecture AHDAM atteint une performance crête de 196 GOPS et répond aux exigences de

l'application.

Nous évaluons l'e�cacité transistor de l'architecture. Après avoir mené plusieurs expérimenta-

tions, nous concluons que la propriété asymétrique de l'architecture AHDAM est essentielle pour les

applications dynamiques pour augmenter leurs performances. L'ordonnanceur dynamique donne

une accélération de 2.4 par rapport à l'ordonnanceur statique de l'application de "radio-sensing".

En outre, le multithreading booste les performances de l'architecture AHDAM avec un gain de

39% par rapport au monothread pour seulement 7% d'augmentation de surface totale. Donc, le

multithreading augmente l'e�cacité transistor de l'architecture. En�n, l'architecture AHDAM a

une accélération de 574 par rapport a 1 PE, tandis que SCMP a une accélération de 7.2. Ceci

dit, l'architecture AHDAM est un progrès important par rapport à SCMP et peut répondre aux

exigences des futures applications haut de gamme, massivement parallèles, et dynamiques. La

surface d'AHDAM sans les interconnections est estimée d'être 53 mm2 en technologie 40 nm.

Il reste beaucoup de concepts proposés dans l'architecture AHDAM qui ont encore besoin

d'études, de développements et d'améliorations.

Les perspectives à court terme peuvent être divisées en trois étapes principales: le développe-

ment d'un simulateur, la construction d'un prototype, et la comparaison avec les autres architectures

multic÷urs.

Dans la première étape, nous avons besoin de développer un simulateur pour AHDAM, prin-

cipalement une extension de l'environnement de simulation SESAM. De nouveaux composants

doivent être élaborés en SystemC qui n'existaient pas auparavant pour l'architecture SCMP, telles

que la mémoire cache L2 et ses protocoles, le Thread Context Pool et la mémoire scratchpad TCP

state. En outre, un simulateur multithread VLIW doit être développé. Ensuite, nous avons be-

soin d'encapsuler chaque ensemble de processeurs (tuile) dans un module a�n que le contrôleur
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matériel la voie comme un PE, et de valider toutes les fonctionnalités d'une tuile. En particulier,

l'architecture du réseau sur puce doit être étudiée. En�n, la mémoire L2 d'instructions et de données

devrait être divisée en deux mémoires séparées.

Après avoir construit l'environnement de simulation AHDAM, l'environnement d'exécution pro-

posé pour "Fork-Join" devrait être développé. Ce "runtime" est un élément essentiel de la fonc-

tionnalité de l'architecture AHDAM et la gestion des transferts internes à une tuile ou entre tuiles.

L'objectif est de trouver le nombre optimal de threads à lancer (fork) car c'est un paramètre im-

portant pour l'accélération de l'ensemble des régions de boucles. En outre, le modèle d'exécution

"farming" doit être validé.

Avec un simulateur AHDAM et l'environnement d'exécution utilisable, il serait intéressant de

poursuivre le développement de la chaîne de programmation automatique que nous avons commencé

dans le chapitre 4. Il pourrait être basé sur l'outil PAR4ALL. Cela nous permettrait de porter

facilement toutes les applications 'legacy' sur l'architecture AHDAM.

La deuxième étape principale consiste à construire un prototype de l'architecture AHDAM sur

une carte d'émulation matérielle. Ce prototype sera la preuve de concept de l'architecture. Ayant

un tel prototype, on peut estimer précisément l'e�cacité transistor et énergétique de l'architecture

AHDAM ainsi que des processeurs multithreads. En particulier, nous pouvons rendre la puce

AHDAM plus économe en énergie, en explorant de nouvelles stratégies d'équilibrage de charges

à l'intérieur de chaque tuile et entre les tuiles, et d'intégrer les stratégies dans l'environnement

d'exécution. D'autres techniques énergétiques e�caces comme DVFS peuvent être implémentés sur

FPGA. Nous pouvons imaginer que chaque tuile fonctionne avec une fréquence di�érente contrôlée

par le contrôleur matériel selon les besoins de l'application.

En�n, la troisième étape principale consiste à comparer l'architecture AHDAM avec d'autres

solutions manycore pertinentes tels que TILE64 de Tilera, P2012, de ST Microelectronics et MPPA

de Kalray. Pour cette raison, nous avons besoin de porter plusieurs applications de l'embarqué

qui sont dynamiques et pertinentes et qui ont beaucoup de parallélisme et des exigences de cal-

cul. Ces applications doivent fonctionner sur toutes ces architectures a�n qu'on puisse mener une

comparaison appropriée.

A ce stade, nous sommes prêts à mener un transfert technologique de la puce d'AHDAM

pour des projets nationaux/européens. En particulier, nous pouvons développer deux versions

d'AHDAM: bas de gamme et haut de gamme. La première version vise le marché de l'embarqué,

tandis que la dernière cible le marché des serveurs, et le calcul dans le nuage en particulier. Ce

qui di�érencie les deux puces est le nombre de tuiles, le nombre de processeurs par tuile, et les

stratégies d'équilibrage de charge utilisée dans la puce qui dépendent de la performance et de

l'e�cacité énergétique.

Sur le long terme, il y a plusieurs améliorations architecturales imaginables pour l'architecture

AHDAM.

Comme la technologie du procédé s'améliore, il y a plus de préoccupations au sujet de la

�abilité de l'architecture AHDAM. AHDAM pourrait être utilisé dans des domaines critiques tels

que les applications militaires, nucléaires et spatiales, où la tolérance de panne est une décision

architecturale non négligeable. Nous pouvons imaginer que la puce AHDAM appliquera la tolérance

de pannes au niveau Tuile, MPE et LPE par l'intégration de composants de rechange.
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En outre, il y a un écart énorme entre la vitesse du processeur et de la mémoire. Cela ne semble

pas devoir changer à l'avenir sauf si une nouvelle percée technologique est trouvée pour les technolo-

gies de mémoire. En supposant que ce n'est pas le cas, il devrait y avoir une solution architecturale

pour éviter de bloquer les processeurs multithread LPE. Une solution serait d'augmenter le nombre

de threads matériels par LPE. Mais comme nous l'avons vu précédemment dans le chapitre 2, ce

n'est pas une solution e�cace en transistor pour les processeurs faible coût. Une nouvelle technique

serait d'utiliser une architecture de multithreading avec entrelacement statique N sur M. Cette

technique implique qu'un processeur multithread a N threads de premier plan (thread matériel)

et M threads virtuels stockés dans une spéciale mémoire scratchpad à proximité du processeur

multithread. De cette façon, nous augmentons le nombre de threads pris en charge par LPE.

La puce AHDAM est une architecture manycore. Mais comme nous l'avons vu dans le chapitre

4, il y a aussi des limites à l'extensibilité de l'architecture. Une solution serait d'intégrer plusieurs

contrôleurs DDR3 sur puce, ce qui signi�e qu'on puisse augmenter ainsi le nombre de tuiles. Une

autre solution au problème d'extensibilité est de considérer l'architecture AHDAM comme un cluster

optimisé dans un environnement de multi-clusters. Puis, en utilisant une solution hiérarchique, nous

pouvons augmenter le nombre de c÷urs (plus de 1000 c÷urs). A ce stade, on pourrait imaginer

que le modèle de programmation AHDAM est étendu pour supporter la communication MPI entre

les di�érents clusters AHDAM. Ainsi, AHDAM supporterait le modèle OpenMP + MPI.

En�n, la mémoire SRAM et les mémoires caches peuvent être empilés sur les processeurs en

utilisant une technologie d'empilage 3D. Ce serait une amélioration spectaculaire de la taille de la

puce, puisque 73% de la surface estimé de la puce est occupée par les caches et la mémoire SRAM.

Ainsi, plus de c÷urs pourraient être intégrées et les temps d'accès mémoire seraient plus rapides.

Cela permettrait d'améliorer les performances de la puce AHDAM et peut-être de nouvelles

améliorations architecturales pourraient être proposées avec une technologie d'empilage 3D.

Mots clés: Multic÷ur, MPSoC, manycore, asymétrique, processeur multitâche, systèmes em-

barqués, applications dynamiques, simulation
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Introduction

One thing is sure. We have to do something. We have to do the best we know how

at the moment...If it doesn't turn out right, we can modify it as we go along. � Franklin

D.Roosevelt, president
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Context of study

Embedded systems exist everywhere in our quotidian life. Almost every single product contains

one or multiple processors hidden from the end user in a fascinating package. They are performing

the computation and communication with the environment to bring the intelligence and satisfy the

end user needs.

Embedded systems span all aspects of modern life and there are many examples of their use.

In the telecommunication domain, there are numerous embedded systems from telephone switches

for the network to mobile phones at the end-user. Computer networking uses dedicated routers

and network bridges to route data. In the consumer electronics domain, embedded systems are

employed in personal digital assistants (PDAs), MP3 players, videogame consoles, digital cameras,

DVD players, GPS receivers, and printers. This list is exhaustive and there are much more exam-

ples that exist in other domains such as the transportation systems, medical equipments, military

applications, etc...

The end users no longer only wants more features and better performance, but are increasingly

interested in devices with the same performance level at a lower price. Thus, consumer electronic

markets, and therefore industries, started to converge. Digital watches and pagers evolved into pow-

erful personal digital assistants (PDA) and smartphones. Similarly, desktop and laptop computers

were recently reduced to netbooks that use Intel Atom and ARM processors. The resulting de-

vices demand ever more computational capabilities at decreasing power budgets and within stricter

thermal constraints [42].

During nearly 40 years, the technological innovations followed one another with the goal of

reducing the processor execution times. One technique relied on shrinking the physical transistor

integration, which led to an increase in the processor clock frequency, hence a faster instruction

execution. However, this performance gain is limited today by the physical integration barriers. In

addition, embedded systems function on a limited power budget and thus increasing the processor

frequency to improve the performance is no longer a solution for system designers.
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Fortunately, many embedded applications are parallel by nature. Applications are parallelized

on the task level to reach higher performances. There exist 2 solutions to tackle to the task level

parallelism (TLP).

The simplest solution to execute multiple tasks consists in using a monothreaded processor with

all the techniques deployed to accelerate the processing of a single instruction �ow. The operating

system schedule and allocate the threads concurrently on the processor giving the impression that

they are running in parallel. This can be thought of as virtualization of the execution resources. For

this virtualization, two acceleration techniques for the monothreaded processors are largely used.

The �rst one, called temporal parallelism, consists in reducing the execution time by dividing the

instruction execution into several successive stages. This is referred to a pipeline execution. The

second one, called space parallelism, relies on the multiplication of the execution resources. Express-

ing the parallelism in this type of architecture can be explicit or implicit. The parallelism is explicit

when the compiler manages the data dependencies and the control �ow in order to guarantee the

availability of the resources. The control is then relatively simple and makes it possible to use higher

clock frequencies. For instance, this is the case for the VLIW [48, 115] architectures. On the other

hand, when the architecture deals dynamically with all these execution hazards, the parallelism is

exploited in an implicit way. These architectures are called superscalar. The advantages of this

approach are the simplicity of the parallelism description and its dynamic management during the

execution. Nevertheless, the complexity of the speculation mechanisms, out-of-order executions

and branch predictions has great impact on the energy e�ciency and transistor e�ciency of the

processor architecture.

The second solution consists of multiplying the number of cores and executing the tasks in

parallel. The advancement in semiconductor processing technology allowed chip manufacturers to

increase the overall processing power by adding additional CPUs or "cores" to the microprocessor

chip. Hence, this solution exploits the parallelism at the thread level (TLP), where multiple threads

can be executed in parallel on multiple cores. These architectures are known as MPSoC, which

stands for Multi-Processor System-On-Chip.

The context of study of this thesis will be the design of MPSoC architectures for the embedded

systems.

Problematic

Embedded systems require more intensive processing capabilities and must be able to adapt to the

rapid evolution of the high-end embedded applications. These embedded applications are getting

more and more complex. Their computation requirements have reached the order of TOPS (Tera

Operations Per Second) and they have a large data set. These applications have lot of thread level

parallelisms and loop level parallelisms. Therefore, MPSoC architectures must target the manycore

era in order to meet this high computation demands. The manycore architecture must be transistor

and energy e�cient, since the chip size and the power budget are limited in the embedded systems.

Thus, they must be designed with a good balance between the number of cores and the on-chip

memory. The cores should be highly transistor and energy e�cient, where specialization is a key

element. There should be no unjusti�ed waste of energy in execution resources with techniques

such as speculation. In such complex manycore architectures, there are lots of sources of latencies
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that cause the cores to be stalled, thus wasting energy. In this context, multithreaded processors

are an interesting solution to investigate.

An important feature of these embedded computation-intensive applications is the dynamism.

While some algorithms are data independent with a regular control �ow, other algorithms are

highly data-dependent and their execution time vary with respect to their input data, their irregular

control �ow, and their auto-adaptability to the application environments. Therefore, the MPSoC

architecture should be highly reactive with respect to the computation needs in order to increase the

execution resources occupation rate. Thus, it should support global and dynamic load-balancing

of threads between the execution resources.

Based on these observations, we will design a new manycore architecture that tackles the chal-

lenges of future high-end massively parallel dynamic applications. The manycore architecture is

called AHDAM, which stands for Asymmetric Homogeneous with Dynamic Allocator Manycore

architecture.

Outline of this report

Chapter 1 presents the context of our work by focusing mainly on the applications requirements

and the existing architectural solutions. First, it highlights the performance requirements of future

high-end massively-parallel dynamic embedded applications. Then, it presents a state of the art

of the MPSoCs for embedded systems by providing a classi�cation of the overall architectures'

space that currently exist in the literature. Three big families are identi�ed: Symmetric MPSoCs,

Asymmetric Homogeneous MPSoCs, and Asymmetric Heterogeneous MPSoCs. The Asymmetric

Homogeneous MPSoCs will be exploited since its characteristics can meet the future embedded

applications constraints. An asymmetric homogeneous architecture consists of one (sometimes sev-

eral) centralized or hierarchized control core, and several homogeneous cores for computing tasks.

In particular, an asymmetric homogeneous MPSoC, called SCMP [151], which is proprietary to

CEA LIST laboratory, will be retained for the rest of this thesis as the architecture of reference for

experimentations. SCMP is designed to process embedded applications with a dynamic behavior

by migrating the threads between the cores using the central controller. Finally, and based on

our observations, we will analyze why the currently existing asymmetric homogeneous MPSoC ar-

chitectures do not meet the requirements of future high-end massively-parallel dynamic embedded

applications, and what are the possible solutions. In particular, we will be interested in hardware

multithreading as an e�cient solution to increase the performance of the asymmetric homogeneous

MPSoC architectures.

At the beginning, chapter 2 explores and analyzes the performance and e�ciency of hardware

multithreaded processors in embedded systems. First of all, it provides a classi�cation of the di�er-

ent types of multithreaded processors that exist in the literature. In particular, two multithreading

techniques for single-issue cores will be retained: Interleaved multithreading (IMT) and Blocked

multithreading (BMT). These multithreaded architectures should meet the embedded systems re-

quirements and are suitable for manycore architectures. Then, we apply the two multithreading

techniques on a small footprint monothreaded core at the RTL level (VHDL), and synthesize the 3

cores in 40 nm TSMC technology. In this way, we compare the area overhead of each multithreaded

processor type (IMT and BMT) with respect to the monothreaded core. Finally, we compare the
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performance of the monothreaded, IMT, and BMT cores in a typical processor system con�gura-

tion, and we show the characteristics of each processor type and under which conditions it should

be used.

Then, chapter 3 explores the advantages/disadvantages of hardware multithreading in an asym-

metric homogeneous MPSoC context (SCMP architecture). In order to conduct this exploration,

we present the SESAM simulation framework, where the SCMP architecture is modeled. Then, we

extend SESAM to support multithreaded processors. In particular, we have developed a new cycle-

accurate multithreaded Instruction Set Simulator (ISS) in SystemC to model the IMT processor

with 2 thread contexts (TC). After replacing the monothreaded processor by an IMT/BMT proces-

sor with 2 TCs, we used several benchmarks in order to know which multithreaded processor type

suits best the SCMP architecture and to measure the transistor e�ciency of the new SCMP archi-

tecture with multithreaded processors. For this reason, two types of applications are used from the

embedded domain: connected component labeling (control-�ow) and WCDMA (data�ow/stream-

ing). In the control-�ow execution model, the tasks are processed until completion, while in the

data�ow execution model, the tasks synchronize between each other on data, thus creating more

processor stalls. Both execution models cover a large set of applications behavior. The benchmark-

ing results show that multithreading boosts the performance of SCMP, however it does not reach

the desired level to make it a transistor e�cient solution. Chapter 3 concludes that SCMP has some

limitations for tackling the requirements of the future massively-parallel dynamic applications. In

particular, it was due to the scalability limitations to the manycore level and the lack of support

for large data set sizes of applications that does not �t in the on-chip memory.

To overcome these limitations, chapter 4 presents a new manycore architecture called AHDAM

[17]. AHDAM stands for Asymmetric Homogeneous with Dynamic Allocator Manycore architecture.

It is used as an accelerator for massively parallel dynamic applications by migrating the threads

between the execution units using a central controller. In addition, it is designed to accelerate the

execution of the loop codes, which often constitutes a large part of the overall application execu-

tion time. AHDAM architecture implements monothreaded and multithreaded cores to increase

the cores utilization when necessary. AHDAM architecture is presented in details in this chapter.

In particular, its application system environment, its programming model, its architectural descrip-

tion and the functionalities of each hardware component, its execution model, and its maximum

scalability, are presented in this chapter.

Finally, chapter 5 evaluates the performance and transistor e�ciency of AHDAM architecture

by using a relevant embedded application from Thales Communications France in the telecommu-

nication domain called radio-sensing. This application has lots of computation requirements, lots

of parallelism at the thread and loop levels, a large data set, and is dynamic. The radio-sensing

application is parallelized and ported using the AHDAM programming model �ow. We evaluate

the transistor e�ciency of the architecture. In particular, we estimate the overall chip area in

40 nm technology for multiple chip con�gurations and we evaluate its performance by running

the radio-sensing application on di�erent chip con�gurations. The AHDAM architecture shows

excellent results compared to the SCMP architecture.

4



Chapter 1

MPSoC architectures for dynamic

applications in embedded systems

A problem well stated is a problem half solved. � Charles F. Kettering, inventor
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During the last decades, computing systems were designed according to the CMOS technol-

ogy push resulting from Moore's Law, as well as the application pull from ever more demanding

applications [42]. The emergence of new embedded applications for mobile, telecom, automotive,

digital television, mobile communication, medical and multimedia domains, has fueled the demand

for architectures with higher performances, more chip area and power e�ciency. These complex

applications are usually characterized by their computation-intensive workloads, their high-level of

parallelism, and their dynamism. The latter implies that the total application execution time can

highly vary with respect to the input data, irregular control �ow, and auto-adaptive applications.

Traditional high-performance superscalar general-purpose processors implement several archi-

tectural enhancement techniques such as out-of-order execution, branch prediction, and speculation,

in order to exploit the instruction-level parallelism (ILP) of a sequential program. However, the

ILP has reached its limits [156] and cannot be more exploited. To compensate the ILP limitation,

chip manufacturers relied on increasing the clock frequency to provide free performance gain. Yet,

a higher clock frequency implies more power dissipation. Therefore, superscalar processors have

low transistor/energy e�ciency that render them not suitable for embedded systems applications.

On the other hand, the advancement in semiconductor processing technology allowed chip man-

ufacturers to increase the overall processing power by adding additional CPUs or "cores" to the

microprocessor package. Hence, this coarse-grained solution consists of exploiting the parallelism
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at the thread level (TLP), where multiple threads can be executed in parallel on multiple cores or

concurrently on hardware multithreaded cores. According to the authors in [158], all the micro-

processor chip architectures for the embedded systems world are called MPSoC, which stands for

Multi-Processor System-On-Chip.

MPSoCs consist of any number of processing cores greater than 1 connected to any number of

IPs (Intellectual Property) through an interconnection network, all integrated in one microprocessor

package. The interconnection network can be a simple bus or a complex Network-On-Chip (NoC).

MPSoCs provide the necessary execution resources to exploit the Thread-Level Parallelism (TLP)

of an application.

The embedded world has been the pioneer to realize the need of novel SoC architectures in order

to meet the embedded systems applications requirements: high performance, low-power, small die

area, real-time and multithreading execution. In the year 2000, the �rst MPSoC was released for

wireless base stations applications. It is the Lucent Daytona [3] with a chip size of 200 mm2 in a

0.25 µm CMOS process. After that date, lots of MPSoC architectures have been designed for the

embedded systems domain. This happened thanks to Moore's Law advances and the continuous

demand for more performance and transistor/energy e�cient solutions for embedded applications

such as multimedia and graphics, telecommunication, embedded computer vision, networking, and

military applications. On the other hand, general-purpose processors have followed the pace 1 year

later with IBM POWER4 processor [140], the �rst commercial 2 cores chip launched in 2001.

In this chapter, we will �rst highlight the performance requirements of future dynamic embed-

ded applications. Then, we will present a state of the art of the MPSoCs for embedded systems. At

the beginning, we will explain the di�erent MPSoC characteristics that identify each architecture.

After, and based on these characteristics, we will provide a classi�cation of the overall architec-

tures' space that currently exist in the literature. We identify 3 big families: Symmetric MPSoCs,

Asymmetric Homogeneous MPSoCs, and Asymmetric Heterogeneous MPSoCs. We will analyze

and compare di�erent architectural solutions in order to identify which characteristics can meet the

future high-end massively-parallel embedded applications constraints. In particular, an asymmetric

homogeneous MPSoC, called SCMP [151], will be retained for the rest of this thesis as the architec-

ture of reference for experimentations. SCMP is designed to process embedded applications with a

dynamic behavior by migrating the threads between the cores using the central controller. Finally,

and based on our observations, we will analyze why the currently existing asymmetric homogeneous

MPSoC architectures do not meet the requirements of future embedded applications, and what are

the possible solutions.

1.1 Dynamic applications in embedded systems

Throughout the history of computing systems, applications have been developed that demanded

ever more performance, and this will not change in the foreseeable future. Recent innovative em-

bedded systems applications such as domestic robots, future cars, telepresence, Human++ [112],

smart camera networks, realistic games, virtual reality, and cognitive radio systems, require ex-

tremely large amounts of processing power in the order of TOPS (Tera Operations Per Second).

Figure 1.1 shows the computation requirements for several embedded application domains.

Most of these embedded applications are parallel by nature. Therefore, an application can be
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Figure 1.1: Di�erent embedded applications performance requirements grouped by application domain (GOPS:

Giga Operations Per Second; TOPS: Tera Operations Per Second) [56].

decomposed into multiple concurrent threads, where each thread or task is composed of a group

of instructions. This coarse-grain parallelism is called Thread-Level Parallelism (TLP). A concur-

rent algorithm can perfectly well execute on a single core, but in that case will not exploit any

parallelism. Thus, to exploit the Thread-Level Parallelism and reach higher performances, a multi-

threaded application should execute on a platform with multiple cores. In addition to ILP and TLP,

there is the data-level parallelism (DLP). The DLP is expressed using special instruction set exten-

sions (SSE, SSE2, SSE3, SSE4, AVX, Altivec, Neon) and executed by SIMD-like microprocessor

architectures [139, 64]. The DLP is expressed inside each thread.

A thread is composed of a group of instructions. Part of these instructions is executed one-time

sequentially, and the other part is executed multiple times iteratively. The latter refers to program

loop codes. In fact, most of the thread execution time is spent in loop codes. One technique of loop

optimization is called loop parallelization [5]. It can be done automatically by compilers or manually

by inserting parallel directives like OpenMP [106]. OpenMP is a method of parallelization (mainly

for loops) whereby the master thread forks a speci�ed number of slave threads, and a task is divided

among them. Then, the threads run in parallel, with the runtime environment allocating threads

to di�erent cores. In this case, the loop region is considered as the parallel region. According to

Amdahl's law [7], a program or thread is composed of a serial region S and a parallel region P . Let

s be the execution time of the S region, p the execution time of the P region and n the number

of cores, then the maximum possible acceleration obtained by parallelizing the loops of a thread is

equal to:

A =
(s+ p)

(s+ p/n)
(1.1)

In other words, whatever the number of cores is, the execution time of a program is always

limited by its serial region. Thus, the parallel architecture must execute e�ectively the sequential

operations. Nevertheless, Gustafson's law [59] restrains the conclusions of Amdahl's law. He noticed

that the parallel region is composed of loops that process the data. Thus, if the number of data

to be processed increases, the contribution of the serial region reduces with the n number of cores
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used. Let a be the size of the parallel region allotted to each processor, the acceleration becomes:

A =
(s+ a · n)
(s+ a)

(1.2)

Consequently, the more the size a is important, the more the acceleration tends towards the

number of cores n, which is the maximum acceleration. Thus, the maximal parallelism can exceed

the limit established by Amdahl's law if the quantity of data to be processed by each core is

increased.

If the size of input data is known in advance, then optimal static thread partitioning can exist

on a given MPSoC architecture. However, an important feature of future embedded computation-

intensive applications is the dynamism. Algorithms become highly data-dependent and their execu-

tion time depends on their input data, irregular control �ow, and auto-adaptivity of the applications.

Typical examples of dynamic algorithms are 3D rendering [97], high de�nition (HD) H.264 video

decoder [130], and connected component labeling [45, 77]. The computation time of the connected

component labeling algorithm depends on the size and the number of handled objects. Figure

1.2 shows the execution time taken to analyze a complete video sequence with consecutive frame

images. It is clear that this algorithm is highly data-dependent and the execution time varies up

to 300% depending on the image content. Hence, the loop parallelism also varies according to

Gustafson's law [59].

For this type of applications, an optimal static partitioning on an MPSoC cannot exist since all

the tasks processing times depend on the input data and cannot be known o�ine. [22] shows that the

solution consists in dynamically allocating tasks according to the availability of computing resources.

Global scheduling maintains the system load-balanced and supports workload variations that cannot

be known o�ine. Moreover, the preemption and migration of tasks balance the computation power

between concurrent real-time processes. If a task has a higher priority level than another one, it

must preempt the current task to guarantee its deadline. Besides, the preempted task must be able

to migrate on another free computing resource to increase the performance of the architecture.

In summary, future high-end embedded applications are:

• Massively parallel with a high-degree of Thread-Level parallelism (TLP), generated from

application decomposition and automatic/manual loop parallelization

• Dynamic with variable threads execution time

Thus, MPSoC architectures should respond to the embedded applications requirements, as well

as meet the embedded systems constraints (power, die area, reliability, etc...).

1.2 MPSoC architectures: state of the art

MPSoC design is the art of choosing the best system components that generate together the best

performance with the best transistor/energy e�ciency. Thus, designers must take several design pa-

rameters into account, such as the number of cores and their types (monothreaded, multithreaded,

VLIW, ISA, etc...), the interconnection networks type (bus, mesh, NoC, etc...), the memory sys-

tem hierarchy, the choice of HW IP accelerators, the programmability, and even the integration

technology (2D, 3D), that will all best meet the requirements of a speci�c embedded application.

8
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Figure 1.2: Execution time of the connected component labeling algorithm on a video sequence with an Intel

Pentium 4 Xeon processor (2.99GHz) [151].

In fact, future embedded applications necessitate more and more computing power in the order

of TOPS (Tera Operations Per Second) as was shown in Figure 1.1. The main reason for this high

performance demand is to meet the high expectations of the end-user from his embedded device.

This device runs several applications at the same time, and since most of the applications are

real-time, this renders their behavior more dynamic and data-dependent.

So it is clear that depending on the application domain and requirements, there is no general-

purpose solution that can be e�cient. This is why new optimized MPSoC architectures should be

designed for each speci�c application domain. To have a grasp of the variety of architectures, it is

su�cient to have a look at surveys done in [158, 23, 47, 131], which list and compare most of the

MPSoC architectures that exist in the literature. In the next sections, we will compare di�erent

MPSoC architectures' characteristics, then we will provide a classi�cation for the overall MPSoC

architectures' space based on the embedded systems requirements discussed in section 1.1, and

�nally we will conclude which solutions are relevant for future dynamic embedded applications.

1.2.1 Characteristics

MPSoC architectures have di�erent properties that characterize them. We identify four proper-

ties: cores' organization (symmetric/asymmetric), cores' similarity (homogeneous/heterogeneous),

cores' type (monothreaded/multithreaded), and memory organization (shared/distributed mem-

ory). Each property leads to di�erent performances depending on its utilization context and em-

9



Chapter 1. MPSoC architectures for dynamic applications in embedded systems

bedded application requirements. In this part, we will explore the characteristics of each property.

1.2.1.1 Symmetric v/s Asymmetric

Symmetric architectures consist of homogeneous processing cores that execute both control and

computing tasks. Thus, the same core allocates the next tasks to execute. The control is normally

done through the intervention of the OS scheduler, whether periodically or in response to events.

This implies that the computing tasks are always preempted by control tasks, which induces some

noise in the execution behavior. In addition, the control tasks do not require lot of computing

resources as the computing tasks. This means that the homogeneous cores are over-dimensioned

for the control tasks, hence not transistor/energy e�cient. However, symmetric architectures are

scalable since there is no sources of centralization in the architecture that cause contention.

On the other hand, asymmetric architectures consist of one (sometimes several) centralized or

hierarchized control core, and several homogeneous or heterogeneous cores for computing tasks.

The control core handles the tasks scheduling and migration on the computing cores. Asymmetric

architectures have usually an optimized architecture for control. This distinction between control

and computing cores renders the asymmetric architecture more transistor/energy e�cient than

symmetric architecture. However, one main drawback of asymmetric architectures is their scalabil-

ity. The centralized core is not able to handle more than a speci�c threshold number of computing

cores due to reactivity reasons.

1.2.1.2 Homogeneous v/s Heterogeneous

If all computing cores are the same, then the MPSoC architecture is homogeneous, otherwise it is

heterogeneous. By default, all symmetrical architectures are homogeneous. Most designs targeting

desktops, laptops and servers are homogeneous, but in the embedded sphere, heterogeneity is more

common. A homogeneous architecture has the advantage of being �exible, and simpler to program,

analyze and allocate resource than a heterogeneous architecture. In case of dynamic embedded ap-

plications, load balancing is easily done between the cores. In addition, it is application-independent

since the core can execute any types of tasks. From a hardware point of view, it is simpler to design

since it is build out of just one kind of component duplicated across the chip. This has a direct

impact on increasing the MPSoC architecture's reliability and its chip's yield rate.

On the other hand, heterogeneity is the key factor for meeting the exact transistor and energy

e�ciency constraints for a chip in a speci�c embedded application domain. This is why we tend

to see more diverse MPSoC solutions in embedded systems area. However, software challenges

(development time, portability, programming tools) for heterogeneous architectures are enormous.

For instance, load balancing between heterogeneous core architectures through tasks migration is

still a hot research topic.

1.2.1.3 Monothreaded v/s Multithreaded

A monothreaded core executes only one thread. Thus, the only parallelism it can exploit is the

instruction-level parallelism (ILP) if it can exploit the so-called vectorization with SIMD instruc-

tions. ILP is extracted from a sequential program, o�ine by the compiler or online by the hardware.

However, ILP found in a conventional instruction stream is limited. ILP studies that allow branch
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speculation for a single control �ow have reported parallelism of around 7 instructions per cycle

(IPC) with in�nite resources [78, 156], and around 4 IPC with large sets of resources (e.g. 8 to 16

execution units) [29]. Usually in embedded systems, the number of execution units is less than 8,

which means the IPC is also lower. Furthermore, a monothreaded core is stalled for a signi�cant

amount of time, up to 75% of time [74], due to long latency events such as cache misses that cause

access to the DDR2 memory. Therefore, monothreaded cores cannot exploit the totality of their

execution resources on each execution cycle.

A possible solution to the low IPC is to exploit the thread-level parallelism (TLP) at the

hardware level by using multithreaded cores [147]. A multithreaded core provides the necessary

hardware resources to execute several threads concurrently within a single pipeline. Thus, all

the threads share the core resources in order to maximize its utilization, hence the IPC rate. In

addition, during a long latency event, a multithreaded core can hide this latency by executing

instructions from another thread context. Therefore, su�cient instructions need to be obtained

to mask the long latencies and increase the pipeline utilization. All these advantages come at

the expense of increasing the die area, which can range from 5% till 60%, depending on the core

original complexity. More detailed explanations on the importance of multithreaded processors are

described in chapter 2.

1.2.1.4 Shared memory v/s Distributed Memory

When comparing the memory organization of MPSoC architectures, we mainly refer to the L2

cache memory (to our knowledge, L3 cache memory is not used for embedded MPSoCs). The L1

cache memory is usually private for each core, and the L2 cache memory can be private per core or

'logically' shared between all the cores. The former refers to a distributed memory architecture, and

the latter to a shared memory architecture. A shared memory eases the software programming of the

architecture, since all the instructions/data are shared by all the cores. Inter-core communications

and synchronizations are performed implicitly through the shared L2 cache memory. A special

cache coherency unit guarantees the coherency between the private L1 cache memories and the

shared L2 cache memory. However, the L2 cache memory access can be penalizing when there is a

concurrency between all the cores while accessing the same memory region. A shared L2 memory

improves the memory utilization, since each task can use all the available memory space. This

means that the L2 cache memory size should be big enough in order to avoid frequent o�-chip

memory accesses. But, the fact that all the tasks are sharing the same memory space makes the

execution time of the tasks not predictable. Finally, a shared memory facilitates load balancing

and task migration between the cores.

On the other hand, a distributed memory with a private L1 and L2 cache memory per core is

an interesting solution since it is simpler to implement. Communication between the cores is done

explicitly through message passing. This solution is penalizing because of the time taken to build

a message and the communication latency with a distant core that should pass by all the memory

levels. Furthermore, the memory utilization is not optimal, because the memory resources demand

of each task is di�erent. Finally, in case of dynamic applications, load balancing is not a good

option for distributed memory architectures, since all the task context should be moved from one

private memory to the other.

11
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1.2.2 Classi�cation

In this section, we provide a classi�cation of the MPSoC architectures for embedded systems that

currently exist in the literature, which is shown in Figure 1.3.
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Figure 1.3: MPSoC classi�cation into 3 big families: Symmetric, Asymmetric Homogeneous, Asymmetric Hetero-

geneous.
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1.2. MPSoC architectures: state of the art

MPSoC architectures are classi�ed based on their characteristics discussed in Section 1.2.1.

First, they are divided into 2 main architectural families: Symmetric and Asymmetric. Then, each

family is categorized by the similarity of the cores: Homogeneous and Heterogeneous. Afterward,

two categories are distinguished depending on the computing core type: Monothreaded and Multi-

threaded. And �nally, MPSoC architectures are classi�ed by their memory architecture, which can

be a distributed memory or a shared memory.

In the next parts, we will explore in more details the characteristics of these 3 categories, and

then we conclude why the asymmetric homogeneous MPSoC category is an interesting solution for

future dynamic embedded applications.

1.2.2.1 Symmetric MPSoC architectures

Symmetric MPSoC architectures are homogeneous. Therefore, their main advantage is the smaller

investment in HW and SW development times. First, HW designers can take advantage of the chip

homogeneity and reuse the validation scripts for one core to revalidate all the chip functionality.

This implies faster chip design and validation. Second, a symmetric MPSoC architecture is a well-

known architecture for the SW community, since it resembles to a SMP system. Software developers

have developed lot of programs (applications, OSes, libraries) for SMP systems, which are rapidly

portable to any SMP architecture. For example, the Linux SMP OS [82] can execute on ARMCortex

A9 [9] [83], Tilera Tile64 [142, 19], Intel 40-core SCC (Single-chip Cloud Computer) [65], and MIPS

1004K [90], just by porting the low-level processor dependent code to the corresponding architecture.

All the others OS modules, such as communication, scheduler, �le handling, memory management,

and others, are reused for all the architectures. This implies that legacy codes are easily portable

to new SMP architectures with little investment in software development. For instance, a SW

program running in a distributed network with MPI (Message Passing Interface) communication

can be easily ported to a symmetric MPSoC with distributed memory. A typical example is the

Intel SCC [69] and Tilera Tile64 [126]. In addition, programs with OpenMP support can be easily

ported to a symmetric MPSoC with shared memory. A typical example is the ARM Cortex A9

MPCore [24, 40], and MIPS 1004K [34]. Moreover, the homogeneity of the architecture facilitates

the thread migration between the cores, which is suitable for dynamic embedded applications. In

summary, the symmetric MPSoC architecture is �exible and can be easily adapted to any embedded

application domain just by modifying the software program, which means faster time-to-market.

On the other hand, these advantages come at the expanse of the chip's transistor and energy

e�ciency. The symmetric MPSoC chip is used in a speci�c embedded environment. The cores'

architecture is normally over-dimensioned for control and computing, so that they meet the per-

formance requirement of all the applications. In reality, some tasks need only a small portion of

processing power where in fact they will be running on the over-dimensioned core, hence adding

more die area and consuming more energy. For instance, the Intel SCC [69] integrates 48 Pentium

class IA-32 cores [123], which are highly ine�cient for control tasks and most of the computing

tasks. Another disadvantage is the architecture's reactivity. A SW OS takes lot of time to process

a preemption event, since it must pass by several SW layers before a response can be sent. In

addition, tasks scheduling is not deterministic, since it depends on the number of tasks to schedule

and the number of cores.

The majority of the symmetric MPSoC architectures have monothreaded cores as can be seen

13



Chapter 1. MPSoC architectures for dynamic applications in embedded systems

clearly in Figure 1.3. In some situations, long latencies might occur that can stall the cores' pipeline

up to 75% of its execution time [74]. Typical sources of long latencies are cache misses that require

access to o�-chip main memory, tasks accessing shared resources such as I/O, tasks waiting for a

HW IP to �nish execution, and others. Some techniques might be implemented, such as thread

level speculation (TLS) [52] and data prefetching [30] in order to lower the stall time. However,

those techniques are not yet mature for embedded systems [116, 58] because they are complex

to implement and they consume lot of energy for possible useless computation. Therefore, HW

architects tend to use multithreaded (MT) processors in order to mask those long latencies with in-

structions execution of other thread contexts, hence increasing the symmetric MPSoC architecture's

e�ciency. For instance, the MIPS 1004K [90], NetLogic Microsystems XLR 732 [101], ClearSpeed

CSX700 [33], and IBM PowerEN [28] are some commercial examples that were recently released.

These architectures are suitable for applications that have su�cient multithreaded workloads. For

example, the ClearSpeed CSX700 is used as an accelerator for HPC applications, and MIPS 1004K

is used in the EyeQ3 [96] chip for embedded vision applications, where both applications domain

are multithreaded.

1.2.2.2 Asymmetric heterogeneous MPSoC architectures

Asymmetric heterogeneous MPSoC architectures consist of one or several central control core that

handles multiple heterogeneous computing cores. In a speci�c embedded application domain, each

computing core is designed to perform dedicated functions. Therefore, the computing cores are

not over-dimensioned, which implies better transistor and energy e�ciencies. For instance, the

Seiko-Epson inkjet printer Realoid SoC [124] incorporates 6 customized Tensilica Xtensa LX cores

[141] and 1 NEC V850 control core, where each Tensilica core is customized for a unique step

in the inkjet image processing chain. For mobile applications, energy e�ciency is a major issue

because it determines the mobile terminal's autonomy. Several MPSoC architectures exist such as

ST Nomadik [107], TI OMAP3430 [86], and Google Greendroid [53]. The latter is designed for an

Android platform and incorporates several Conservative cores or C-cores [149], where each core is

designed to accelerate a speci�c hotspot function in an application. Another embedded application

example is the Advanced Driver Assistance Systems (ADAS), which are systems to help the car

driver in its driving process. For these systems, Mobileye fabricates vision MPSoCs such as EyeQ

[134], EyeQ2 and EyeQ3 [96] families. Those architectures consist of one controller core and several

custom HW IPs called Vision Computing Engines (VCEs). Each VCE has a speci�c role in the

vision process application such as �ltering, tracking, video codec, and others. All these MPSoC

examples show the heterogeneity of the architectures, which render them more transistor/energy

e�cient for a particular application domain. For example, Intel's TCP/IP processor is two orders

of magnitude more power-e�cient when running a TCP/IP stack at the same performance as a

Pentium-based processor [26].

However, the main drawback of the asymmetric heterogeneous MPSoCs is their programmability

and resources management. Since each new architecture consists of di�erent types of cores and IPs,

a signi�cant time on software portability and chip programming has to be invested. In addition,

the heterogeneity of the computing cores makes it very di�cult (until this date) for the control core

to perform load balancing between the computing cores through task migrations.

There is not a big number of MPSoC architectures that utilizes MT processors. MT processors
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have been recently investigated, to increase the cores' e�ciency for asymmetric architectures. For

example, the �rst generation EyeQ chip used 2 monothreaded ARM946E cores. The cores su�ered

from low pipeline utilization of only 0.32 IPC due to cache miss rates and bus contention bottlenecks.

In their next generation EyeQ2 chip, Mobileye HW designers decided to use the multithreaded

MIPS 34K [92] cores with 4 HW thread contexts instead of the monothreaded ARM946E core. The

core's IPC increased to 0.9, and the overall chip performance increased 6 times compared to EyeQ.

This is because the multithreaded cores were able to overlap the long stall latencies by executing

instructions from other thread contexts. Also, the high performance gain is due to increasing the

processors' clock frequency from 110 MHz to 330 MHz.

1.2.2.3 Asymmetric homogeneous MPSoC

Asymmetric homogeneous MPSoC architectures consist of one or several central control core that

handles multiple homogeneous computing cores. This solution combines the advantages of sym-

metric and asymmetric heterogeneous MPSoCs. A specialized core for the control renders the

architecture more transistor/energy e�cient than symmetric MPSoC. Furthermore, the various

hardware abstraction layers, between the OS and the hardware, penalize performance and overall

system reactivity. This generates critical sections during hardware/software communication. Use of

dedicated hardware components for control is thus vital to the MPSoC architecture. For instance,

the HW task scheduler of the Ne-XVP [63] chip from NXP Semiconductors takes around 15 cycles

overhead. In addition, due to the increasing diversity of applications that an embedded system

should be able to process, �xed hardware solutions are more and more replaced by programmable

solutions, pushing the �exibility to software. Thus, asymmetric homogeneous MPSoCs are easily

programmable and can function in a multi-application domain. For example, the IBM Cell chip

[120], which is composed of one Power Processor Element (PPE) and multiple Synergistic Pro-

cessing Elements (SPE) [55], is used in application domains such as gaming (PlayStation 3), video

processing, blade server, home cinema, distributed computing and others. It is programmed using

C language with multithreading support for dispatching software threads to the SPEs. The Plural-

ity Hypercore chip [110] is used for real-time video processing, image rendering, software-de�ned

radio, and packet processing application domains. Its programming model relies on a simple,

Task Oriented Programming model, which is directly supported by hardware as opposed to the

intermediation of an operating system layer. Moreover, the support for dynamic load-balancing

depends on the memory architecture. The Cell has a distributed memory architecture, where each

SPE has its local memory implemented as a software cache. In general, dynamic load-balancing

and thread migration is ine�cient in a distributed memory architecture. On the other hand, an

asymmetric homogeneous MPSoC with a shared memory is highly e�cient for load-balancing. For

instance, Plurality Hypercore [110], TOSHIBA Venezia [95] and CEA LIST SCMP [151], support

dynamic load-balancing between all the homogeneous cores, which make them suitable for dynamic

embedded applications.

One main disadvantage of asymmetric homogeneous MPSoC architectures is their scalability.

The centralized control core su�ers from contentions when the number of computing cores increases,

hence the scheduling overhead of the central core also increases. This means that the computing

cores are stalled while waiting the scheduling decision of the control core. For instance, SCMP

[151] can support up to 32 computing cores before starting to su�er from scheduling performances
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degradation. Plurality claims that Hypercore processor can support up to 256 cores [111], however

there are no publicly available benchmarks that show the linearity of the performance gain. Ne-XVP

[63] from NXP Semiconductors can support up to 16 computing cores.

Multithreaded processors are still rarely used in these types of architectures. We could identify 2

architectures that use MT computing cores: NXP Semiconductors Ne-XVP [63] and the ClearSpeed

CSX600 [102]. The Ne-XVP architecture is 16 times more e�cient in silicon area and power than

o�-the-shelf TriMedia TM3270, for applications such as H.264 decoding.

1.2.3 Synthesis

Each MPSoC family has its advantages and disadvantages. However, we should never dissociate

an MPSoC architecture from the targeted embedded application domain. In this thesis, we are

targeting future dynamic embedded applications as explained in section 1.1. These applications are

massively parallel with a high-degree of Thread-Level parallelism (TLP) and dynamic with variable

data-dependent thread execution time. In Table 1.1, we compare the 3 MPSoC families.

Table 1.1: Characteristics comparison of the 3 MPSoC families: Symmetric, Asymmetric Homogeneous, Asym-

metric Heterogeneous.

As can be observed from Table 1.1, the asymmetric homogeneous architecture bridges the gap

between the symmetric and asymmetric heterogeneous MPSoCs families. It combines the ease

of programmability and �exibility from symmetric MPSoCs. Probably the most di�cult thing

for hardware designers as they move to MPSoC design is that they must worry about software

design from the beginning. The hardware architect cannot simply create a machine that is hard to

program, since the time gained to design the MPSoC will be rapidly lost by the software application

development. In addition, asymmetric homogeneous MPSoC are transistor/energy e�cient because

of the separation between control and computing cores. And �nally, the implementation of a central

control core allows for fast dynamic load-balancing between the computing cores with a very small

overhead.

All these characteristics lead us to choose the asymmetric homogeneous MPSoC as the best

architecture design adapted for future dynamic embedded applications despite its scalability limi-

tation. In particular, an asymmetric homogeneous MPSoC, called SCMP [151], will be retained for

the rest of this thesis as the architecture of reference for experimentations and will be explained in
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more details in section 1.3. SCMP is designed to process embedded applications with a dynamic

behavior. In addition, a solution to SCMP scalability limitation will be proposed in chapter 4.

1.3 SCMP: an asymmetric MPSoC

The SCMP architecture is an asymmetric homogeneous MPSoC architecture, which is proprietary

of CEA LIST [150]. SCMP stands for Scalable Chip MultiProcessor. It is designed as a compute-

intensive accelerator for tasks that are ine�ciently processed by the host cores such as dynamic

applications. It is seen by the host CPU as a coprocessor, as shown in Figure 1.4. The software

operating system (OS) running on the host CPU is commonly used for general-purpose processing

or interface management. All control of intensive parallel processes with dynamic behavior must

nevertheless be performed by an e�cient control system. Therefore, in this context, an asymmetric

architecture is the most adequate solution as was previously explained in section 1.2. In this section,

we will present an overview of the SCMP architecture and its components, then we will explore in

more details the programming and execution models of SCMP, and �nally we will show a typical

functionality processing example.

SS

CC

MM

PP

CPUCPU

(RT)OS 

Main Main Main Main 
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Figure 1.4: SCMP system architecture: the host CPU dispatches massively parallel dynamic applications to SCMP

for optimal transistor/energy e�cient acceleration.

1.3.1 Architecture overview

SCMP is composed of three main parts as shown in Figure 1.5: a central controller, processing

elements, and a memory system.

Central Controller : The central controller is an e�cient control component for the overall

SCMP architecture. It holds all the information of the application tasks in a special local memory.

It dynamically determines the list of eligible tasks to be executed on multiple processing elements,
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Figure 1.5: SCMP architecture.

based on control and data dependencies. Then, task allocation follows online global scheduling,

which selects real-time tasks according to their dynamic priority, and minimizes overall execu-

tion time for non-real-time tasks. In addition, the central controller manages memory allocations

and the exclusive sharing of physically distributed and logically shared memory system. It also

prefetches tasks' code in these memories so that the beginning of the task execution does not su�er

from memory latencies. There exist two implementations for the central controller : hardware and

programmable RTOS (real-time operating system). The HW-RTOS is called OSoC (Figure 1.6(a)),

which stands for Operating System accelerator On Chip. It has RTOS specialized components im-

plemented in hardware such as a scheduler unit. It is described in more details in [150]. However,

besides its high reactivity, the main disadvantage of OSoC is its programmability. In fact, each time

we need to implement a new scheduling protocol, the hardware IPs should be modi�ed in VHDL.

Thus, a more �exible implementation is the programmable RTOS, which is called CCP (Figure

1.6(b)). It consists of an optimized processor for control, such as AntX, which is a small RISC

5-stage pipeline core optimized for control and is proprietary of CEA LIST. Most of the RTOS

functionalities are implemented in software. In this thesis, we will use the programmable central

controller for our experimentations.

Processing Elements : A typical processing element or PE in SCMP is composed of 4 com-

ponents: a Control Interface unit (CTRL_IF), an execution core, Translation Lookaside Bu�ers

(TLBs), and cache memories.

The CTRL_IF is the interface between the PE and the central controller. Through this inter-

face, it receives tasks execution/preemption/stop demands from the central controller and updates

its execution status for proper global scheduling.

The homogeneity and heterogeneity of the PEs is identi�ed by its execution core. Heteroge-

neous cores have better chip area and power e�ciency for the SCMP system. Heterogeneity may
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be implemented either in software or hardware. It is possible to implement general-purpose or ded-

icated processors (DSP, VLIW, etc.), coarse-grained recon�gurable resources (ADRES [87], DART

[38], XPP [13], etc.), time-critical I/O controllers (video sensor, etc.), and dedicated or accelerated

hardware components (DMA, IP). These dedicated units can take part in critical processes, for

which no programmable or recon�gurable solution with su�cient computing performances exists.

As mentioned earlier, each task is executed by a prede�ned execution core. This implies there is

no support for task migration and load-balancing between heterogeneous PEs. Thus, in

this thesis, we will use a SCMP system with only homogeneous programmable execution cores as

was discussed in section 1.2.3. Typical core architectures are MIPS1, MIPS32, LEON3, PowerPC,

SPARC V8, and others.

In SCMP, each task has its own virtual address space in the memory. Therefore, each memory

access from the execution core maps in the virtual address space of the task. To map the correct

physical memory region, each PE has a TLB for instruction (I-TLB) and data (D-TLB) for virtual

to physical memory translation. The TLBs are then connected to private L1 Instruction cache

memory (I$) and Data cache memory (D$).

Memory system : The on-chip memory system is a 2-level memory hierarchy: a private

L1 I$ and D$ for each PE, and a logically shared physically distributed L2 memory. They are

connected by a data interconnection network that transfers the memory requests of all the PEs to

the multibanked shared memory. The data interconnection network is a multibus. Initially, all the

task codes are prefetched into the L2 memory. Data is also prefetched via DMA engines. Thus,

there is no o�-chip memory access during task execution on a PE. A special unit called MCMU

(Memory Con�guration and Management Unit) handles the memory con�guration for the tasks. It

divides the memory into pages. In addition, MCMU is responsible of managing the tasks' creation

and deletion of dynamic data bu�ers at runtime, and synchronizing their access with other tasks.

There is one allocated memory space per data bu�er. A data bu�er identi�er is used by tasks

to address them. Each task has a write exclusive access to a data bu�er. Since all tasks have an

exclusive access to data bu�ers, data coherency problems is eliminated without the need for speci�c

coherency mechanisms. A data bu�er access request is a blocking demand, and another task can
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read the data bu�er when the owner task releases its right. Multiple readers are possible even if

the memory latency will increase with the number of simultaneous accesses.

In section 1.3.2, we will describe in more details the functionality and interaction of these units.

1.3.2 Programming models

The programming model for the SCMP architecture is speci�cally adapted to dynamic applications

and global scheduling methods. The proposed programming model is based on the explicit sepa-

ration of the control and the computing parts. As depicted in Figure 1.7, each application must

be manually (the tool chain is still under development) parallelized and cut into di�erent tasks,

from which explicit execution dependencies are extracted. Thus, computing tasks and the control

task are extracted from the application, so as each task is a standalone program. The greater

the number of independent and parallel tasks that are extracted, the more the application can be

accelerated at runtime.
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Figure 1.7: SCMP programming model and an example of a typical CDFG control graph.

The control task is a Control Data Flow Graph (CDFG) extracted from the application (Petri

Net representation), which represents all control and data dependencies between the computing

tasks. The control task handles the computing task scheduling and other control functionalities,

like synchronizations and shared resource management for instance. A speci�c and simple assembly

language is used to describe this CDFG and must be manually written. In addition, a speci�c

compilation tool is used for the binary generation from the CDFG. Once each application and

thread has been divided into independent tasks, the code is cross-compiled for each task. For
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heterogeneous computing resources, the generated code depends on execution core type.

For the computing cores, a speci�c Hardware Abstraction Layer (HAL) is provided to manage all

memory accesses and local synchronizations, as well as dynamic memory allocation and management

capabilities. With these functions, it is possible to carry out local control synchronizations or to let

the control manager taking all control decisions. Concurrent tasks can share data bu�ers through

local synchronizations handled by the MCMU (streaming execution model), or wait for the central

controller decision before reading the input data (control �ow execution model). Each task is

de�ned by a task identi�er, which is used to communicate between the control and the computing

parts.

In SCMP, two programming models are supported: a control-�ow and a streaming programming

model.

1.3.2.1 Control-�ow programming model

The control-�ow programming model allows the execution of a task when all the previous dependent

tasks have �nished their execution, and therefore have produced their intermediate results (Figure

1.8). The task execution order is described in the CDFG that is handled by the control unit. The

task execution follows the run-to-completion model. Therefore, they cannot be preempted by data

or control dependencies. During its execution, a task cannot access data bu�ers not selected at

the extraction step. Consequently, the control-�ow programming model eliminates data coherency

problems, thus there is no need for speci�c coherency mechanisms. This constitutes an important

feature for embedded systems, since the MPSoC architecture is accordingly simpli�ed.
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Figure 1.8: Control-�ow execution model. Reads and writes are non-blocking. Each arrow represents an intercon-

nection through the data network between a Processing Element (PE) and a data bu�er stored in local memories

(Mem). Dark arrows are read/write accesses, whereas gray arrows represent read-only accesses. Task execution

requires only data produced by tasks that have �nished their execution on a PE.

1.3.2.2 Streaming programming model

In the streaming programming model, a task suspends/resumes its execution based on data avail-

ability from other tasks. It follows the streaming/data�ow execution model as shown in Figure 1.9.

When a data is produced by Task A, then Task B resumes its execution. When data is consumed

by Task B, then it suspends its execution. Each task has the possibility to dynamically allocate or
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deallocate bu�ers (or double bu�ers) in the shared memory space through speci�c HAL functions.

An allocated bu�er is released when a task asks for it and is the last consumer. A bu�er cannot

be released at the end of the execution of the owner task. Dynamic right management of bu�ers

enables a data�ow execution between the tasks and is handled by the MCMU.
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Figure 1.9: Streaming execution model. Each arrow represents an interconnection through the data network

between a Processing Element (PE) and a data stored in local memories (Mem). Dark arrows are read/write

accesses, whereas gray arrows represent read-only accesses. Task execution begins as soon as intermediate data are

ready. Local synchronization is a�orded through a memory management unit.

1.3.3 SCMP processing example

As mentioned earlier, SCMP is used in the context of a co-processor for a host CPU. The host CPU

can accelerate applications at runtime. It communicates with SCMP via the System Interconnection

Network used in the system (Figure 1.4). It can ask for execution of a new application, stop or

suspend it, or wake up a suspended application. Multiple applications and multiple instances of

the same application can be executed and managed concurrently by SCMP. To execute a new

application, the host CPU must load all necessary instructions or data for the application into

SCMP local memory. When the transfer is completed, the CPU informs the central controller and

sends an execution order. After execution of the application, an acknowledgement is sent to the

CPU.

When the central controller receives an execution order of an application, its Petri Net CDFG

representation is built into the central controller. Then, the central controller proceeds with the

execution and con�guration demands according to the application status. They contain all iden-

ti�ers of active tasks that can be executed and of coming active tasks that can be prefetched.

Scheduling of all active tasks must then incorporate the tasks for the newly loaded application.

If a non-con�gured task is ready and waiting for its execution, or a free resource is available, the

central controller sends a con�guration primitive to the Memory Management and Con�guration

Unit (MCMU).

Based on the task identi�er, the MCMU allocates a memory space for the context, the code and

the stack of the task. Then, it loads the instruction code related to that task from the o�-chip main

instruction memory and initializes the context. Con�guration of these local memories is sequential
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and takes place only once before execution of the task. Once the transfer is �nished, the address

of the selected memory along with the task identi�er is written into the MCMU.

After its con�guration, the task is ready to be scheduled and dispatched by the central controller.

If there is a free PE, the central controller sends an execution demand to the selected PE. If the

selected task has a higher priority over another task that uses the same type of PE, or a task running

on a PE is stalled waiting for producer data (streaming execution model), the central controller

sends a preemption demand to the selected PE. Then the task execution context is saved. Because

all memories are shared, this execution context can be accessed by another PE, thus enabling easy

task migration from one PE to another.

When a PE receives an execution request, it asks the MCMU for the translation address table

of the task memory through the TLB. This table contains all translations of allocated pages for the

context, the code and the stack. With these addresses the PE can begin executing the task. The

distribution of such data management units among the PEs allows concurrent communications and

data transfers between tasks. I/O controllers are used by the OSoC as other PEs. For example,

a data transfer from a DMA implies moving external o�-chip data to the task memory. Local

transfers can take place, where necessary, via another PE to distribute large amounts of data among

other local memories, thereby improving access memory parallelism. Because all data required to

execute the task are ready and all synchronization has been completed at the task selection level,

the execution then simply consists of processing the data from local memories and storing the result

in a memory open to the other tasks.

1.4 Why these MPSoC architectures are not suitable?

In this chapter, we de�ned the context of our study: massively-parallel dynamic embedded applica-

tions. These applications are highly parallel. The parallelism can be extracted at the thread level

(TLP) and at the loop level. So an application might have more than 1000 parallel threads to be

processed in parallel. Therefore, manycore architectures are natural solutions for these applications.

In addition, the dynamism of those applications requires an e�cient MPSoC solution to manage

the resources occupation and balance the loads in order to maximize the overall throughput. In

this case, we saw in section 1.2.2 that asymmetric MPSoC architectures are the best solution for

fast and reactive load-balancing. They are also highly transistor and energy e�cient because of

the separation between control and computing cores. Finally, we concluded that asymmetric ho-

mogeneous MPSoCs are the best choice for these applications, since load-balancing cannot be done

between heterogeneous cores. Thus, we have chosen SCMP as the architecture of reference for

experimentations, and it was presented in section 1.3.

Besides, currently existing asymmetric homogeneous MPSoCs are not suitable for future

massively-parallel dynamic applications. First of all, they are not scalable to the manycore level

because the central controller is a source of resources contentions. For instance, SCMP can support

up to 32 processing cores before experiencing performances degradation. So, they are not designed

for the manycore era and this will be performance limiting. However, manycore chips have limited

I/O pins in their chip package, hence limited bandwidth [12]. This implies that the more tra�c will

be exercised o�-chip, the more the cores will be stalled on-chip, hence lower aggregate IPC. Thus, it

will be advantageous to explore the bene�ts of hardware multithreading for future manycore chips,
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in order to keep the core as busy as possible and increase the aggregate IPC. In particular, the

homogeneous cores that constitute a manycore chip should be as small and e�cient as possible [10].

In summary, there exist two suggestions for improvements of the currently existing asymmetric

homogeneous MPSoCs: scalability and hardware multithreading. In this thesis, we will �rst inves-

tigate the advantages/disadvantages of hardware multithreading in SCMP architecture, and then

we will propose a novel solution that will target the manycore era. This solution should tackle the

challenges of future massively-parallel dynamic embedded applications.
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Multithreaded processors in embedded

systems

Multitasking? I can't do two things at once. I can't even do one thing at once. �

Helena Bonham Carter, actress
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Traditional high-performance superscalar processors implement several architectural enhance-

ment techniques such as out-of-order execution, branch prediction, and speculation, in order to

exploit the instruction-level parallelism (ILP) of a single-thread sequential program. However, due

to the limits of ILP [156], a more coarse-grained solution consists of exploiting the parallelism at

the thread level (TLP), where multiple threads can be executed in parallel on multicore processors

or concurrently on hardware multithreaded processors.

Embedded processors must have a die size in the order of few mm2 and most consume in the

order of few mW. Thus, they should support simple technology for exploiting ILP, such as pipelining

or VLIW. Non-deterministic ILP boosting mechanisms, such as speculative scheduling, should be

avoided. In this context, processing a single thread stream often leaves many functional units of the

embedded processor underutilized, which wastes leakage power. To compensate the loss in single-

thread performance and to increase the transistor/energy e�ciency of the embedded processor,
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designers are exploiting the parallelism at the thread level (TLP) through the implementation of

embedded multithreaded processors [93, 68, 41].

A hardware multithreaded processor [147] provides the hardware resources and mechanisms to

execute several hardware threads on one processor core in order to increase its pipeline utilization,

hence the application throughput. Unused instruction slots, which arise from pipelined execution

of single-threaded programs by a monothreaded core, are �lled by instructions of other threads

within a multithreaded processor. The hardware threads compete for the shared resources and

tolerate pipeline stalls due to long latency events, such as cache misses. These events can stall the

pipeline up to 75% of its execution time [74]. Thus, the main advantage of multithreaded processors

over other types of processors is their ability to hide the latency within a thread (e.g. memory or

execution latency).

Future manycore architectures tend to use small footprint RISC cores [10] as basic processing

elements. In this case, more processors can be integrated on a single die while keeping the aggregate

cores' energy consumption under a tolerable threshold. Therefore, in our thesis study, we will

consider a 5-stage pipeline, in-order, single-issue RISC core. Then, we will support this core

with hardware multithreading.

In this chapter, we will explore and analyze the performance and e�ciency of multithreaded

processors in embedded systems. First of all, we will provide a classi�cation of the di�erent types of

multithreaded processors that exist in the literature. In particular, two multithreading techniques

for single-issue cores will be retained: Interleaved multithreading (IMT) and Blocked multithreading

(BMT). These multithreaded architectures should meet the embedded systems requirements and

are suitable for manycore architectures. Then, we need to know the surface occupation of each

multithreaded processor type (IMT and BMT), and its overhead with respect to the monothreaded

core. Hence, we will apply the two multithreading techniques on a small footprint monothreaded

core at the RTL level (VHDL), and synthesize all the 3 cores in 40 nm TSMC technology. Finally,

we will compare the performance of the monothreaded, IMT, and BMT cores in a typical processor

system con�guration, and we show the characteristics of each processor type and under which

conditions should be used.

2.1 Classi�cation

There are lot of misconceptions when de�ning the term multithreaded processor. A processor can

be regarded as a simple state machine. It contains a context and an execution core. The context

stores the state of a process/thread in the program counter, data registers and status registers [31].

The execution core performs computation on the stored state. Thus, the state of the process/thread

being executed is advanced by the execution core over the time.

Given de�nitions for a thread context (TC) and an execution core, it becomes possible to classify

di�erent types of architecture by relating the number of contexts to the number of execution cores.

This is shown in Figure 2.1.

The simplest arrangement is the monoprocessor. It has one context and one execution core

(1/1). The multithreaded processor contains multiple contexts, sharing a single execution core

(N/1, where N>1). And �nally, the multiprocessor has groups of contexts and cores, with one or

several contexts per core (M/N, where M ≥ N and N>1).
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Figure 2.1: Thread context v/s execution cores: Monothreaded, Multithreaded, Multiprocessor.

In section 1.2 of chapter 1, we already discussed multiprocessor architectures or MPSoCs that

have monothreaded and multithreaded execution cores.

In this section, we will focus our study on the multithreaded processor. In particular, we will

explore the whole design space solution and focus mainly on characteristics that are relevant to the

embedded systems requirements: explicit and scalar multithreaded cores will be retained for further

analysis. Then, we will discuss two types of multithreading techniques for scalar cores: interleaved

and blocked multithreading. Finally, we will present a cost-e�ectiveness model that will allow us

to conclude which are the best multithreaded processor types that are adapted for the embedded

systems.

2.1.1 Multithreaded processor design space

There exist 3 main characteristics that identify a multithreaded processor (Figure 2.2): parallelism

type, execution core, and instruction issue.

2.1.1.1 Parallelism type

The parallelism type can be explicit or implicit. Explicit multithreading exploits the TLP (thread

level parallelism) that are user-de�ned or OS-de�ned threads. In other words, threads should be

explicitly identi�ed and created in order to be executed by the multithreaded processor. On the

other hand, implicit multithreading exploits the TLS (Thread level speculation) of a single-threaded

program. Threads are dynamically generated by the processor from single-threaded programs

using speculation such as the dynamic multithreading processor [6], trace processor [122], and

the speculative multithreaded processors [133], or statically using compiler support such as the

multiscalar processor [132] and superthreaded processor [145].

Speculative execution is proposed to provide su�cient instructions even before their control

dependencies are resolved. It necessitates register renaming mechanism to allocate a virtual reg-

ister space to each speculative instruction. The result is higher utilization and statistically better

performance for single-threaded programs. Nevertheless, mis-speculations need to be discarded and

all e�ects of the speculatively executed instructions must be disposed. This wastes both energy and

execution time on the mis-speculated path. In terms of hardware cost, the number of functional
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Figure 2.2: Multithreaded processor design space.

units goes up linearly with the required degree of parallelism. Therefore, thread speculation is an

interesting solution for general-purpose processors. However, it should be avoided for embedded

systems for energy and die area constraints.

In embedded systems, simple techniques should be used to increase the performance. Thus,

performance gained from thread level parallelism (explicit multithreading) should compensate the

need for instruction level parallelism extraction using speculation (implicit multithreading).

2.1.1.2 Exection core

The execution core can be scalar or superscalar (Figure 2.3). The simplest processors are scalar

processors. A scalar processor has one ALU (Arithmetic Logic Unit) and maybe one FPU (Floating-

Point Unit). Thus, the maximum theoretical instruction issue is 1 instruction per cycle and the

maximum ILP exploited is 1.

A superscalar execution core has multiple redundant functional units (ALU, FPU, multipliers,

SIMD, etc...). A typical example is the PowerPC 970 [121], which has four ALUs, two FPUs,

and two SIMD units. Multiple instructions from the same thread are issued to multiple functional

units. In this case, the maximum theoretical IPC is equal to the maximal number of fetched

instructions per clock cycle. However, since the ILP of a single thread is limited, functional units

are under-utilized. To compensate this limitation and increase the pipeline utilization, superscalar

processors tend to issue multiple instructions from multiple threads simultaneously at every clock
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one thread and issues 1 instruction per cycle. On the other hand, a superscalar execution core processes one thread

but issues n instructions per cycle depending on the number of functional units. The SMT is a superscalar execution

core that processes m threads.

cycle. This type of architecture is called simultaneous multithreading (SMT) [146]. Most of the

SMT architectures are found in the general-purpose domains such as IBM POWER5 [129], Intel

Pentium4 HT [75], Intel Atom [136], and Sun Microsystems UltraSPARC T1 [80]. They tend to

use large number of redundant functional units (around 8) and hardware threads, which increase

the IPC rate but make the instruction issue/dispatcher unit and thread scheduler more complex

[43]. For instance, the IBM POWER5 [129] is a dual core 2-way SMT, 8-way superscalar processor,

with a die area of 389 mm2 in 130 nm technology. It is typically used in server architectures.

For embedded systems, there exist some more optimized SMT architectures such as simultaneous

thin-thread [155] and Responsive multithreaded architecture [159]. They are 4-way superscalar

processors with small dispatch queues (32).

SMT processors are not suitable for embedded systems domain for 3 main reasons: 1) It is

impossible to determine the WCET since instructions are scheduled dynamically 2) Large die area

because of multiple functional units and registers 3) High power consumption.

Thus, scalar processors are more attractive for embedded systems integration and will be

adapted for our further analysis. In the next section, we will show what the multithreading tech-

niques for explicit scalar processors are.

2.1.1.3 Instruction issue

Finally, two types of instruction issue exist (Figure 2.4): interleaved and blocked.

Interleaved multithreading (IMT), also called switch-on-cycle or �ne-grain multithreading, is a

multithreading technique that issues an instruction from a di�erent thread at every clock cycle using

a round-robin scheduler, with zero context-switching overhead. The �rst well-known architecture

which uses IMT is the Denelcor HEP [76]. It supports up to 50 threads in hardware. Tera MTA

[66] is a derivative of the HEP with similar properties that supports 128 TCs. These architectures
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Figure 2.4: Multithreaded instruction issue types compared with monothreaded: interleaved multithreading (IMT),

blocked multithreading (BMT). IMT issues an instruction from a di�erent thread at every clock cycle with zero

context-switching overhead. On the other hand, BMT allows a thread to run normally as in sequential mode before

being switched out for long latency events. However, the context-switching has some penalty cycles.

do not use caches, and rely on having a large number of threads to hide the memory latency

between successive instructions of a thread. At any point in time, each pipeline stage will contain

an instruction from a di�erent thread. Therefore, there is no need for a complex circuitry that

handles pipeline interlocks (instruction, data, and control dependencies) since each thread can have

just one instruction in the pipeline. Nevertheless, to support su�cient parallelism, the number of

active threads should be equal or greater to the number of pipeline stages, thus more hardware

resources. For instance, MIPS 34K [93], a recent IP for MPSoC integration, has a 9-stage pipeline

and supports 9 TCs. SUN UltraSPARC T2 [127], a CMT processor used for server architectures,

has a 6-stage pipeline for each core and supports 8 TCs. In the IMT, the performance of a single

thread is degraded by 1/n, where n is the number of TCs. Thus, IMT architectures are useful for

throughput oriented architectures. For example, in embedded systems, Eleven Engineering XInc

[44, 79] and Ubicom MASI [2, 49] IMT processors are used in the wireless communication domain.

Another researcher has developed an IMT MicroBlaze soft-IP for FPGAs [99].

On the other hand, blocked multithreading (BMT), also called switch-on-event or coarse-grain

multithreading, allows a thread to run normally as in sequential mode before being switched out

for long latency events such as cache misses, failed synchronization [4], or wait for producer data

in a streaming execution model. These events normally represent points in execution at which

the processor would become idle for a long period of time. In such a case, it is useful to perform

a context switch and execute instructions from another thread to �ll the otherwise idle cycles.

This is only e�ective when the context switch time is signi�cantly less than the idle period of the
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event causing the switch [25]. The main advantage of BMT is that it requires a smaller number

of TCs for multithreading to mask the long latency stalls, which means lower hardware cost than

IMT. For instance, In�neon TriCore2 [68, 103] supports 2 TCs for a 6-stage pipeline, PRESTOR-

1 [138] supports 4 TCs for a 10-stage pipeline, and MulTEP [157], which is based on Anaconda

multithreaded processor [98], supports 2 TCs for a 5-stage pipeline. In addition, each thread can

execute at full processor speed as in single-threaded mode. However, careful processor design

choices must be taken to avoid starving other waiting thread contexts. For instance, if the BMT

processor is well-dimensioned and the cache misses are almost negligible, this means there will be no

context switches, hence other thread contexts will never execute and advance. Thus, for real-time

embedded applications, TCs should have priorities to guarantee the response time. For instance,

in TriCore 2, TC0 is the main thread and TC1 is a helper thread. Another drawback is the context

switch penalty, which is dependent of the number of pipeline stages. In fact, for each thread context

switch, the pipeline should be totally �ushed and reset.

Examples of recent IMT and BMT processors that exist in embedded systems are shown in

Figure 2.5.

Multithreaded processor 
type

Interleaved

‐ MIPS 34K
‐ ELEVEN ENGINEERING Xinc

‐ UBICOM MASI
‐ IMAGINATION TECHNOLOGIES META

‐ UNI. PEKING MT‐ARM
‐ AUB IMT‐MB

Blocked

‐ INFINEON Tricore2
‐ UNI. AUGSBURG Rhamma
‐ UNI. OLDENBURG MSPARC

‐ JAPAN AIST Prestor‐I
‐ UNI. CAMBRIDGE JMA

‐ UNI. VIRGINIA dMT

Figure 2.5: Example of industrial and research interleaved and blocked multithreading processors.

In the next section, we will present a cost-e�ectiveness model that will give us a relationship

between the performance and the implementation cost of a multithreaded processor with respect

to the number of TCs.

2.1.2 Cost-e�ectiveness model

A multithreaded processor is characterized by its number of TCs. The cost-e�ectiveness model is

the relationship between the performance e�ciency and the total implementation cost (transistor

count, power, design complexity, etc...) each TC adds to the multithreaded processor. The cost-

e�ectiveness model (CE) is proposed by Culler [37] and it is given by the following formula:

CE(n) =
E(n)

C(n)
(2.1)
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where E(n) is the processor e�ciency distribution given by:

E(n) = 1− 1∑n
i=0(

r(n)
l(n) )

i. n!
(n−i)!

(2.2)

n is the degree of multithreading, r(n) is the mean service time distribution, and l(n) is the

mean latency penalty distribution.

and C(n) is the total implementation cost given by:

C(n) =
Cs + n.Ct + Cx

Cb
(2.3)

n is the degree of multithreading, Cs is the cost for a single threaded mechanism, Ct is the

incremental cost per thread, Cx is the incremental cost of thread interactions, Cb is the base cost

of an equivalent single thread processor.

The processor e�ciency distribution E(n) of a multithreaded processor is proposed by Agarwal

[4], and it is an extension of [67]. The analytical model relies more on a dynamic execution

model (scheduling) of the threads, hence service/workload distribution information is injected in

the model. The service time intervals between context switches are distributed geometrically. A

latency penalty is distributed exponentially. The processor e�ciency distribution is presented in

equation 2.2.

Saturation point

Saturation region

Threshold 
TC

Figure 2.6: Cost-e�ectiveness of a multithreaded processor when varying Ct [4].

In Figure 2.6, we plot the theoretical processor e�ciency model and the cost-e�ectiveness model

versus the number of thread contexts n. There are two regions on this processor e�ciency graph: a

linear region on the left and a saturation region on the right. The saturation point is reached when

the service time of the processor completely conceals the latency. However, for the same number

of TCs n, the cost-e�ectiveness model shows that when the cost per thread Ct increases beyond
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a certain threshold number of TCs, the cost-e�ectiveness decreases. Therefore, it is necessary to

support the multithreaded processor with a maximum number of TCs not exceeding a certain

threshold in order to obtain the peak cost-e�ectiveness result.

2.1.3 Synthesis

In this section, we investigated the di�erent types of multithreaded processors that exist in the

literature. Based on our classi�cation, explicit and scalar multithreaded processors are retained

due to their simplicity for embedded systems requirements. Then, we saw that there are 2 types

of multithreading techniques that can be adapted for scalar multithreaded processors: IMT and

BMT. Both techniques have their advantages and disadvantages, but it is not yet clear for us which

one has the best transistor e�ciency and which degree of multithreading is the best. Therefore, in

the next section 2.2, we will develop an RTL model of a IMT and BMT core using a small 5-stage

pipeline RISC. Based on the synthesis results, we will be able to choose the optimal number of

thread contexts that �t a very small multithreaded core for embedded systems.

2.2 Implementation of a small footprint multithreaded processor

for embedded systems

We have seen so far (section 2.1) that explicit and scalar multithreaded processors �t the embedded

systems requirements. In addition, the degree of multithreading, or in other words the number of

hardware TCs, should not exceed a certain threshold according to the cost-e�ectiveness model

(section 2.1.2).

In this section, we will provide the answer on the degree of multithreading that is optimal for

a small 5-stage pipeline RISC multithreaded core. First, we will present brie�y a 5-stage RISC

monothreaded core called AntX. Then, we will extend this core to support IMT and BMT. And �-

nally, we will compare the transistor e�ciency of the IMT and BMT cores using the synthesis results

in the 40 nm TSMC technology and the performance results of a simple bubble-sort application.

2.2.1 Monothreaded AntX

AntX is a scalar, in-order, 5-stage pipeline (IF,ID,EX,MEM,WB), monothreaded RISC core (Figure

2.7), developed by the Embedded Computing Laboratory at CEA LIST. It is a 32-bit architecture

designed speci�cally to be used as a low-cost control core in a MPSoC environment. Therefore,

there are no complex units such as a branch predictor, FPUs, and multipliers. Its register �le has

16 32-bit registers.

AntX has a GNU toolchain (antx-elf) that supports its ISA. The ISA has a variable instruction

size (16/32 bit) in order to reduce the instruction memory footprint. So, some basic arithmetic/-

logic/comparison/jump instructions are coded in 16-bit, while other more complex instructions are

coded in 32-bit. The Instruction Fetch (IF) unit fetches a 32-bit instruction from the memory and

handles the aligned/unaligned instructions in a �nite state machine (FSM).

The instruction �ow in the pipeline resembles that of the MIPS-I R3000 described in [62]. One

exception is that the jump/branch instructions are executed in the EX-stage instead of the ID-

stage. They use the ALU in order to calculate the new PC address, so the hardware cost of a
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Figure 2.7: Monothreaded AntX.

dedicated adder is avoided. Another di�erence is that we disabled the delay slot instruction after a

jump/branch instruction using the gcc compiler option '-fno-delayed'. The compiler inserts always

a 'nop' instruction.

The control pipe unit is responsible for handling the data dependencies between the instructions

in the di�erent pipeline stages. For example, when an instruction in the ID-stage wants to read

a data from a speci�c register, and that data is already calculated but not yet committed by the

WB-stage, the control pipe will stall the pipeline until the data has been committed. To solve

this problem, 'data forwarding' techniques between the pipeline stages are supported by AntX.

Data forwarding eliminates most of the pipeline hazards (WAR, WAW, WAW). However, 1-cycle

pipeline stall latency can still occur due to 2 reasons: branch instructions penalty (if taken-branch)

and pipeline interlocks due to load/store instructions in the MEM-stage. The latter is due to

memory access latency during a L1 cache hit when load/store instructions are in the MEM-stage.

On the other hand, if the data is not present in the L1 cache (cache miss), then the waiting time is

more than 1 clock cycle. In fact, those pipeline stalls will degrade the processor performance below

the optimal IPC of 1.

Monothreaded AntX has been synthesized in 40 nm TSMC technology (low power, low threshold

voltage, worst case) with a frequency of 300MHz. We used Design Compiler tool from Synopsys.

The surface repartition of each module is shown in Figure 2.8. The overall core area is 11417 µm2,

which is about 8.05 kilogates.

One clear observation is that the register �le occupies a signi�cant portion of the low-cost

monothreaded core, which is 38% of the total core area. In multithreaded processors, each TC has

its own register �le. Therefore, for a multithreaded AntX with 4 TCs, the new core area increase

will be more than 100%. This implies there is a diminishing return advantage of implementing an

embedded multithreaded processor with more than 2 TCs. This conclusion is also backed up by

the design choice of MIPS 1004K [94], which is a multiple multithreaded core and is synthesized

for only 2 TCs per core. Thus, for the rest of our work, we chose multithreaded processors with 2
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Figure 2.8: Surface repartition of di�erent components in monothreaded AntX for 40 nm TSMC technology. Total

area = 11417 µm2, Total number of gates = 8.05 kilogates.

TCs. In the next section, we will explore in more details the design choices for IMT and BMT.

2.2.2 Interleaved MT AntX

IMT is a multithreading technique that issues an instruction from a di�erent thread at every clock

cycle using a round-robin scheduler, with zero context-switching overhead. When one TC is blocked,

the IMT tries to process instructions from the active TC at half the speed (see Figure 2.4). In this

section, we will modify the monothreaded AntX RTL model described in section 2.2.1 in order to

support interleaved multithreading with 2 hardware TCs [14]. In fact, for a 5-stage pipeline, 2 TCs

are su�cient to eliminate the stall conditions and data dependencies. AntX IMT with 2 TCs (TC1

and TC2) is shown in Figure 2.9.

The following are the main modi�cations for extending the monothreaded AntX to IMT:

• Duplicating the register �le and PC: each TC should have its own register �le and PC in order

to store and switch the context in zero time overhead.

• Duplicating control pipe: the control pipe module is used to manage the instruction �ow and

dependencies of a TC at each pipeline stage. Therefore, it controls the pipeline and validity

of each stage. In IMT, two successive pipeline stages have instructions from di�erent TC.

Therefore, to support 2 TCs, either we have to modify the original control pipe (monothreaded

version) or duplicate it. According to the synthesis results of the monothreaded AntX (Figure

2.8), the surface occupation of the control pipe is only 1%. Accordingly, from development

and validation time perspectives, we duplicate the control pipe. In addition, a multiplexer is
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Figure 2.9: Interleaved multithreaded AntX [14].

added for each I/O signal belonging to the control pipe. This multiplexer switches between

the 2 control pipes depending on the actual TC identi�er in the pipeline stage.

• Duplicating IF module: to manage two di�erent TCs, the IF module can be modi�ed or

duplicated. The �rst one involves modifying the fetch state machine and saving each TC

state at each context switch, which incorporates more development and validation time. The

second one is easier to implement, since the IF module is already validated. Furthermore, in

terms of surface cost, the two solutions would be equivalent. Therefore, the second solution

has been preferred. However, a small modi�cation is required for each IF module to handle

properly the instruction fetching: the state of the FSM should be delayed. This implies that

the FSM depends on two rising edge clock cycles instead of one, since each TC is processed

at half the speed.

• Augmenting the EX/MEM inter-stage register size: when a data cache miss occurs in the

MEM stage for TC1, the pipeline is normally stalled waiting for the data, while TC2 in-

structions could have proceed their execution. Therefore, the EX/MEM register has been

increased to save the EX/MEM state that corresponds to TC1 in order to be reloaded when

TC1's data arrives. If the state is not saved, the MEM module would have the output from

a wrong instruction, and the instruction that caused the data miss would be lost.

• Delaying signals: some signals have been delayed so they correspond to the right TC. For

instance, the bypass PC signal from IF-stage to EX-stage and the execution �ag signal from

EX-stage are delayed by 1 cycle. Otherwise, the instruction execution �ow would be incorrect.

In the next section, we will design the BMT AntX.
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2.2.3 Blocked MT AntX

BMT is a multithreading technique that allows a thread to run normally as in sequential mode

before being switched out for long latency events such as cache misses. In this section, we will

modify the monothreaded AntX RTL model described in section 2.2.1 in order to support blocked

multithreading with 2 hardware TCs. AntX BMT with 2 TCs (TC1 and TC2) is shown in Figure

2.10.

Figure 2.10: Blocked multithreaded AntX.

As we can notice, the BMT AntX resembles a lot to the monothreaded AntX. This is because one

TC is processed in the pipeline at a time. Therefore, there is no need for duplicating the IF module

and the control pipe, or adding extra registers and multiplexers. In fact, the main modi�cations

are related to handling and managing I/O signals coming from external modules such as L1 caches.

This is because the functionality of the BMT is dependent on these signals. The following are the

main modi�cations for extending the monothreaded AntX to BMT:

• Duplicating the RF and PC registers: similarly to the IMT, each TC should have its own

register �le and PC in order to store and switch the context in zero time overhead. In reality,

the context switch will take one cycle as we will explain in the next point.

• Adding a 'control blocked' module: the 'control blocked' module is the essential part of the

BMT core. A cache memory access occurs at the IF-stage (I$) and MEM-stage (D$). Each

request status is either a cache hit or miss that is read back by the 'control blocked' module.

Internally, the 'control blocked' implements a Moore FSM that is triggered by the cache
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memory request status as it is shown in Figure 2.11. Initially, and after the reset signal is

low, it executes TC1 as long as there are no cache misses. When TC1 generates a cache miss,

it goes to the context switch state that stores the appropriate PC value and re-initializes the

internal register and FSM states of each pipeline stage to start TC2 processing. Then, TC2

executes as long as it hits in the cache. The BMT model implements a 'greedy' protocol, which

means that TC1 has higher priority on TC2. Therefore, if the data of TC1 is returned from

upper-level memories and TC2 is still executing, the latter is switched and TC1 resumes. On

the other hand, if TC2 misses in the cache while TC1 has not yet its data, then the pipeline

stalls and waits for one of TC's data to be returned. Finally, the 'blocked control' sends the

appropriate instruction/data responses for the right context to the IF-stage, MEM-stage and

RF.

• Synchronization between 'control blocked' and 'control pipe' modules: this is essential for

proper communication between these 2 modules, especially during a context switch. In fact,

the 'control blocked' module should inform the 'control pipe' module of the currently executing

status of the TC in order to send the appropriate validation signals to each pipeline stage.

Figure 2.11: Blocked multithreaded AntX FSM for 2 thread contexts: TC1 and TC2. The FSM shows that the

BMT processor has 4 execution states: executing TC1, executing TC2, context switching, and stall.

In the BMT FSM in Figure 2.11, the context switch is actually one FSM state. Therefore, the

context switch overhead in BMT costs one clock cycle. But the penalty due to context switching

di�ers if this is due to I$ miss or D$ miss. For an I$ miss, we insert a bubble in IF stage that

causes another one clock cycle of penalty. On the other hand, for a D$ miss at the MEM stage of

the pipeline, the already fetched instructions in the pipeline have to be invalidated before fetching

instruction from the other TC. Thus, context switching penalty causes 5 cycles (1 (CS) + 4).

In the next section, we will evaluate the performance and area of the IMT/BMT AntX using

2 hardware TCs in order to understand the characteristics of each multithreaded core type and

conclude which one has the best transistor e�ciency.
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2.3 Performance evaluation

In this section, we evaluate the transistor e�ciency of the monothreaded and multithreaded pro-

cessors developed in the previous section. First, we provide synthesis results of each processor type,

and a comparison between the surfaces. Then, we analyze the performance of each multithreaded

processor by varying several parameters such as data cache size and L2 data memory latency. These

parameters will inform us under which conditions a speci�c multithreaded processor is an inter-

esting solution. Finally, given the synthesis and performance results, we compare the transistor

e�ciency of each processor type and conclude.

2.3.1 Monothreaded v/s Multithreaded processors: area occupation

To evaluate the surface of each processor type, we use Design Compiler from Synopsys for ASIC

synthesis. The IMT and BMT AntX RTL models have been developed in VHDL and synthesized

in 40 nm TSMC technology (low power, low threshold voltage, worst case) with a frequency of

300MHz, similar to the monothreaded AntX. The surface repartition of IMT and BMT processor

is shown in Figure 2.12(a) and 2.12(b) respectively.

(a) (b)

Figure 2.12: Surface repartition of di�erent components synthesized in 40 nm TSMC technology for a) IMT AntX:

Total area = 19772 µm2, Total number of gates = 13.95 kilogates b) BMT AntX: Total area = 18418 µm2, Total

number of gates = 12.99 kilogates.

IMT AntX has an overall core area of 19772 µm2 equivalent to 13.95 kilo gates. The IMT AntX

has an augmentation of 73.4% in core area compared to the monothreaded AntX. This is mainly

due to doubling the RF, PC, and IF modules, which is essential for proper IMT functioning. In

addition, about 20 multiplexers (64 bits to 32 bits) have been added for IMT.

As for BMT, the overall core area is 18418 µm2 equivalent to 12.99 kilo gates. BMT AntX

has an augmentation of 61.3% in core area compared to the monothreaded AntX. This implies less

surface occupation than IMT AntX.

On the other hand, by considering the area overhead for a complete processor system with

L1 I$ and D$ memories, then the area overhead of a multithreaded processor with respect to a
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monothreaded processor is reduced. The area of a processor system in µm2 is given by equation

2.4:

surface(PE_system) = surface(mono|MT ) + surface(L1_I$) + surface(L1_D$) (2.4)

The L1 cache memories area are estimated using CACTI 6.5 tool [100] from HP in 40 nm tech-

nology. The technology used by CACTI tool is based on ITRS roadmap [125], but it is not similar

to TSMC technology. Therefore, the processor system is not synthesized with the same technology,

but this gives us an idea of the relation between cache size and processor size. We estimate a

direct-mapped cache memory ranging from 512-B to 4-KB. The estimated cache memory area and

the corresponding area overhead of each MT system with respect to the same monothreaded system

con�guration are shown in Figure 2.13:

Figure 2.13: MT processor area overhead with respect to the monothreaded processor. Each MT system has one

L1 I$ and one D$ memory. We show 4 MT systems with di�erent L1 cache sizes. The L1 cache areas are estimated

using CACTI 6.5 tool in 40 nm technology and the processors are synthesized in 40 nm TSMC technology.

We can notice that a 4-KB direct mapped cache memory has a bigger size than all the multi-

threaded processors. This shows how small the processors' size we are using. For instance, for the

IMT processor, its overhead ranges from 43% to 25% depending on the size of the cache memories.

It is also clear that the overhead of the BMT system is smaller than the IMT system.

As a conclusion, BMT AntX processor has a less core area overhead than IMT AntX processor

according to our synthesis results. The main reason is that the surface of the FSM blocked is

smaller than the surface of all the multiplexers added for IMT. In addition, the instruction fetch

module is doubled in IMT. In the next section, we will see the performances of each processor type

in order to conclude on the transistor e�ciency of the IMT and BMT processors.
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2.3.2 Monothreaded v/s Multithreaded processors: performance and transis-
tor e�ciency

In this section, we use a typical processor system environment described in Figure 2.14. The

processor-memory architecture is based on a Harvard architecture with separate L1 instruction

cache (I$) and data cache (D$) busses. It implements a 2-level memory hierarchy with L1 I$ and

D$ memories, connected with an AHB bus to an on-chip L2 instruction and data memories. The

L2 memories contain all the instruction and data codes of the applications.

Figure 2.14: AntX hierarchical memory system: Only the data cache size parameter is varied from 512-B to 4-KB.

The average memory access latency for the instruction and data memories are observed during application execution

and depends on the AHB arbiter. If AntX is multithreaded, then the L1 I$ and D$ memories are segmented per TC,

which means each TC has half the L1$ size compared to the monothreaded AntX.

The processor can be either monothreaded or IMT/BMT AntX with 2 TCs. For the IMT/BMT

AntX, the L1$ memory is segmented per TC in order to limit cache interferences. Therefore,

each TC has half the L1$ size compared to the monothreaded AntX. For this experiment, we

consider a basic bubble-sort application for 600 elements. The application has lot of jump/branch

instructions and data dependencies between instructions. We run 2 instances of the application with

di�erent elements sequentially on the monothreaded processor, and concurrently on the IMT/BMT

processor. In this experiment, we vary 2 platform parameters for a better architecture exploration.

First, the processor type can be chosen to be monothreaded, IMT or BMT. Second, the L1 D$

memory size can be set to 512-B, 1-KB, 2-KB, and 4-KB. This will generate di�erent data cache

miss rates as shown in Figure 2.15. The L1 I$ size is �xed to 512 Byte, which is su�cient for the

bubble-sort application and generates only 0.07% of L1 I$ miss. A L1 cache hit takes 1 clock cycle,

an access to L2 instruction memory due to L1 I$ miss takes 6 cycles, and an access to L2 data

memory due to L1 D$ miss takes 7 cycles on average. L2 memory access time might vary few cycles

(1-2 cycles) depending on the AHB arbiter.
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Figure 2.15: Data cache miss rates for monothreaded and IMT/BMT AntX while varying the cache size: 512-B,

1-KB, 2-KB, and 4-KB.

In this study, two platform parameters are varied: the data cache size (512-B, 1-KB, 2-KB,

4-KB) and the L2 data memory latency (7, 10, 20, 50 cycles). The �rst parameter has an impact

on the data cache miss rate, which increases the access to the L2 data memory. The access to the

L2 data memory is a�ected by the second parameter during a 'load' instruction. For instance, as

a rule of thumb, let us assume that an application contains 30% of load/store instructions that are

equally divided; this implies that approximately 15% of the instruction codes are a�ected by the L2

data memory latency. By varying this parameter, we are modeling di�erent memory technologies.

Both parameters are important for exploring the importance of the multithreaded processor with

respect to the monothreaded processor.

In Figure 2.16, we show the execution time in cycles for all the cache sizes and data memory

latency. We decompose the total execution time into 4 components: e�ective execution time, branch

instruction penalty time due to 'taken' branches, data dependencies stall time due to pipeline

interlocks, and memory stalls time due to cache misses.

For a small memory data latency of 7 cycles (Figure 2.16(a)), the IMT processor overcomes the

performance of the monothreaded processor for all the cache con�gurations. The performance gain

varies between 14.4% and 21.5%. In fact, the performance gain highly depends on the percentage

of data cache misses that each segmented cache generates. Each TC in IMT processor has half

the cache size, hence it generates more cache misses and more pipeline stalls due to L2 memory

access. Due to its interleaving property, the IMT tolerates the pipeline stalls generated by branch

penalties and data dependencies between instructions. Their stall times are hidden completely by

executing instructions from another TC, if it is active. It is clear that 2 TCs are su�cient to hide

all these latencies for a 5-stage pipeline processor. However, for BMT AntX, there is no gain at all.
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Figure 2.16: Performance results in cycles of monothreaded v/s IMT/BMT AntX with a variable L2 data memory

latency. The L1 D$ size varies from 512-B to 4-KB. L1 cache memories are segmented per TC for the IMT/BMT.

In fact, the memory stall latency is not high enough to compensate the context switching penalty,

which is equal to 5 cycles for a D$ miss. Furthermore, BMT does not mask the stall latencies due

to instruction dependencies and branch instructions. All these conditions make the BMT processor

not an interesting solution for small memory access latencies.

However, when increasing the latency of the L2 data memory, more pipeline stalls due to data

cache misses are generated. Thus, BMT processor is more performant under such conditions. For

instance, for 20 cycles (Figure 2.16(c)), the BMT has a gain of 42.2% and 34.7% for 512-B and

1-KB L1 D$ memories, which overcomes the performance of the IMT for the same cache sizes. The

same observations appear for 50 cycles of latency in Figure 2.16(d). In fact, the BMT processor

has enough stall latencies to mask and the penalties due to context switching are minimal. But,

when the sizes of the D$ memory increases, it generates less cache misses for the monothreaded

processor. It reaches almost 0% for a 4-KB L1 D$. On the other hand, the cache misses 13.4% for

the multithreaded processor because of its segmented cache. Therefore, for all memory latencies

and a big D$ size, we see little gain for IMT because it is still able to mask the other types of stalls,

and no gain at all for BMT. Thus, any type of multithreaded processor is not recommended when
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the cache misses are not high enough to generate enough memory stalls latencies. In fact, 2 TCs

are not enough for hiding this high stall latency.

Finally, we compare the transistor e�ciency of the IMT/BMT processor with respect to the

monothreaded processor. The processor-system area is the sum of the processor area and its L1

cache memories given in equation 2.5:

TransistorEfficiency =
IPC

surface(core) + surface(I$) + surface(D$) [µm2]
(2.5)

We are mainly interested by the transistor e�ciency gain of the multithreaded processor with

respect to the monothreaded, which is given in equation 2.6:

Transistor Efficiency Gain(MT ) =
Transistor Efficiency(MT )

Transistor Efficiency(Mono)
− 1 (2.6)

Figures 2.17(a) and 2.17(b) show the transistor e�ciency gain of the IMT and BMT processor

respectively.

(a) IMT (b) BMT

Figure 2.17: Transistor e�ciency gain of MT AntX processor with respect to monothreaded AntX processor. For

the x-axis, we vary the L1 D$ size and for the y-axis we vary the data memory latency in cycles.

The transistor e�ciency results show that the monothreaded processor is more e�cient than

any multithreaded solution when there is a small memory access latency and not enough data

cache misses (i.e. big cache size) that generate pipeline stalls. In the other cases, the BMT is more

transistor e�cient than the IMT processor, and can reach an e�ciency gain of 33% for a small

cache size and high memory latencies.

2.3.3 Synthesis

In this chapter, we designed, based on a monothreaded AntX processor, two small footprint, scalar,

in-order multithreaded processors for the embedded systems: Interleaved Multithreading (IMT)

and Blocked Multithreading (BMT). The synthesis results in 40 nm TSMC technology showed
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that the register �le occupies more than 38% of the overall core area, thus it is not area e�cient

to integrate more than 2 thread contexts (TC) per multithreaded processor. Therefore, we have

chosen to implement a multithreaded processor with 2 TCs.

Both multithreaded processors were synthesized in 40 nm TSMC technology. The results

shows that the IMT and BMT processors have 73.4% and 61.3% increase in core area than the

monothreaded core. Thus, the BMT has a smaller area.

Finally, we compared the performances and transistor e�ciency of both MT cores using a bubble

sort application, while varying the L1 data cache size and the data memory latency. The results

show that there is no de�nitive conclusion on which type of processors is the best. In fact, there

is a trade-o� between the data cache memory size, the data memory latency, and the core area

overhead. Choosing the best processor highly depends on the system designer speci�cations and

the application requirements. For instance, if peak performance is the main design parameter,

then the multithreaded processors o�er a good increase in performance for most of the memory

con�gurations. However, if transistor e�ciency is a design constraint, then the results highly depend

on the architecture parameters (processor, memory, caches, etc.). For instance, for small cache sizes

that generate lot of memory accesses and for high memory latencies, the BMT processor is more

performant and transistor e�cient. We should note that in this experiment, we did not vary the

L1 I$ size, hence there were no processor stalls due to instruction cache misses.

It is worth to note that our experiments are based on a very small-footprint processor core,

which is almost the extreme case in processor design. However, if the initial processor core has

more hardware blocks, hence a bigger area, then our conclusion regarding transistor e�ciency

might change. For instance, for 40 nm technology, the ARM Cortex A5 and MIPS 24 KE have a

core area of more than 250 µm2 and 350 µm2 respectively. These are more than 35 times larger

than AntX monothreaded! In addition, by having a deeper pipeline and branch prediction units,

pipeline stalls are more severe. For instance, in MIPS 24 KE, a branch misprediction costs 5 cycles.

These new types of stalls are advantageous for the multithreaded processor. Another note to take

into consideration is the application type. In our experiment, we used a very simple application

that runs on the processors as standalone until completion. However, in more complex SoCs, the

processors might be doing di�erent types of processing that induces new types of stalls such as

task synchronization, task allocation/deallocation, memory allocation, and others, which are not

directly related to the actual application execution but are necessary for proper SoC functioning. In

addition, the multithreaded application can have di�erent types of threads: computation-intensive

and I/O intensive. The latter is completely masked if it is scheduled on the same multithreaded

processor with a computation-intensive task. For instance, the multithreaded MIPS 34K with 2

TCs is able to achieve 200% in audio throughput applications [143] compared to the monothreaded

MIPS 24KE for only 28% core area increase.

Based on this conclusion, we will explore in the next chapter the performance impact of the mul-

tithreaded processor by running more relevant benchmarks in an asymmetric MPSoC architecture:

the SCMP architecture.
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Asymmetric homogeneous MPSoCs are an interesting solution for massively-parallel dynamic

embedded applications due to their high reactivity and load-balancing between the homogenous

cores. The separation between the control and computing cores makes the asymmetric architecture

highly transistor and energy e�cient. In order to tackle the requirements of future massively-parallel

dynamic applications, the asymmetric homogenenous MPSoC should reach the manycore level.

However, when integrating several cores on-chip, the architecture su�ers from limited bandwidth

[12] due to the limitation of the chip's package I/O pins. This implies that the more tra�c will be

exercised o�-chip, the more the cores will be stalled on-chip, hence lower aggregate IPC. Thus, it

will be advantageous to explore the bene�ts of hardware multithreading for future manycore chips,

in order to keep the core as busy as possible and increase the aggregate IPC.

In chapter 2, we designed, based on a monothreaded AntX processor, two small footprint,

scalar, in-order multithreaded processors for the embedded systems: Interleaved Multithreading
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(IMT) and Blocked Multithreading (BMT). We have shown that there is no de�nitive conclusion

on which type of processors is the best, and that it all depends on the system designer speci�ca-

tions and the application requirements. In this chapter, we use the SCMP architecture, which is

an asymmetric homogenenous MPSoC, to explore the advantages/disadvantages of hardware mul-

tithreading. First of all, we present the simulation framework, called SESAM, where the SCMP

architecture is modeled. Then, we extend SESAM to support multithreaded processors. In par-

ticular, we have developed a new cycle-accurate multithreaded Instruction Set Simulator (ISS) in

SystemC to model the IMT processor with 2 TCs. After replacing the monothreaded processor

by an IMT/BMT processor with 2 TCs, we conduct several benchmarks in order to measure the

e�ciency of the SCMP architecture using multithreaded processors (MT_SCMP).

3.1 MPSoC Simulation environment

Designing an MPSoC architecture requires the evaluation of many di�erent features (e�ective per-

formance, used bandwidth, system overheads...), and the architect needs to explore di�erent so-

lutions in order to �nd the best trade-o�. In addition, he needs to validate speci�c synthesized

components to tackle technological barriers. For these reasons, the whole burden lies on the MP-

SoC simulators, which should be parameterizable, fast and accurate, easily modi�able, support

wide ranges of application speci�c IPs and easily integrate new ones. Simulating a whole MP-

SoC platform needs to �nd an adequate trade-o� between simulation speed and timing accuracy.

The Transactional Level Modeling (TLM) [51, 32] approach coupled with timed communications,

is a solution that allows the exploration of MPSoCs that re�ects the accurate �nal design [57].

Time information is necessary to evaluate performances and to study communication needs and

bottlenecks.

MPSoCs' architectures can have homogeneous or heterogeneous processors, depending on the

application requirements. Choosing the best processor among hundreds of available architectures,

or even designing a new processor, requires the evaluation of many di�erent features (pipeline struc-

ture, ISA description, register �les, processor size...), and the architect needs to explore di�erent

solutions in order to �nd the best trade-o�. The processor Instruction Set Simulator (ISS), which

role is very important, must have the following features: it should be parameterizable, fast and

accurate, and be able to be integrated easily in the MPSoC simulation environment. The ISS mim-

ics the behavior of a processor by executing the instructions of the target processor while running

on a host computer. Depending on the abstraction level, it can be modeled at the functional or

cycle-accurate level.

Lot of works have been published before on single-processor, multiprocessor and full-system

simulators. In [160], the authors illustrate a wide range of simulators, mainly targeting general-

purpose computing. In a more recent work [35], the authors presented an interesting classi�cation

of MPSoC simulators. For our knowledge, there is no published work on a simulator that supports

asymmetric MPSoC architectures and allows their exploration. In this context, we used SESAM

simulation environment [152, 153], which supports asymmetrical MPSoC architectures. SESAM is

developed and proprietary to CEA LIST.

In this section, we present in details the SESAM simulation environment for asymmetric MP-

SoC architectures, and we show how SCMP is modeled in this framework. Then, we show the
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di�erent modi�cations done to SESAM to support multithreaded processors, in particular the cen-

tral scheduler and the processor system. Finally, we realize the need for a multithreaded ISS that

will be developed in section 3.2.

3.1.1 SESAM: A Simulation Environment for Scalable Asymmetric Multipro-
cessing

SESAM is a tool that has been speci�cally built to ease up the design and the exploration of

asymmetric MPSoC architectures, which includes a centralized controller core that manages the

tasks for di�erent types of computing resources. The heterogeneity can be used to accelerate speci�c

processing, but the task migration is not supported. The best trade-o� between the homogeneity,

which provides the �exibility to execute dynamic applications, and the heterogeneity, which can

speed-up the execution, can be de�ned in SESAM. Moreover, this tool enables the design of MPSoCs

based on di�erent execution models (control-�ow + streaming), which can be mixed, to �nd the

best suitable architecture according to the application. It can be used to analyze and optimize the

application parallelism, as well as control management policies. In addition, SESAM can support

simultaneous multiple di�erent applications and mix di�erent abstraction levels, and can take part

in a complete MPSoC design �ow.

3.1.1.1 Framework

The SESAM framework is described with the SystemC description language [105, 54], and allows

the MPSoC exploration at the TLM level with fast and cycle-accurate simulations. It supports co-

simulation within the ModelSim environment [88] and takes part in the MPSoC design �ow, since

all the components are described at di�erent hardware abstraction levels. Besides, SESAM uses

approximate-timed TLM with explicit time to provide a fast and accurate simulation of highly com-

plex architectures that can reach up to 4 MIPS. This model, described in [57], allows the exploration

of MPSoCs while re�ecting the accurate �nal design. A 90% accuracy is pointed up compared to

a fully cycle-accurate simulator. Time information is necessary to evaluate performances and to

study communication needs and bottlenecks. Thus, all provided blocks of the simulator are timed

and the communications use a timed transactional protocol.

To ease the exploration of MPSoCs, all the components and system parameters are set at run-

time from a parameter �le without platform recompilation. It is possible to de�ne the memory map,

the name of the applications that must be loaded, the number of processors and their type, the

number of local memories and their size, the parameters of the instruction and data caches, memory

latencies, network types and latencies, etc. More than 120 parameters can be modi�ed. Moreover,

each simulation brings more than 200 di�erent platform statistics, that help the architect sizing

the architecture. For example, SESAM collects the miss rate of the caches, the memory allocation

history, the processor occupation rate, the number of preemptions, the time spent to load or save

the task contexts, the e�ective used bandwidth of each network, etc. As depicted in Figure 3.1, a

script can be used to automatically generate several simulations by varying di�erent parameters in

the parameter �le. An Excel macro imports these statistics to study their impact on performances.

Thus, the cache parameters, the network bandwidths, as well as the e�ective performance of the

architecture, are ones among many features that can be evaluated to size and explore MPSoCs.
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…

#####################################

# cache parameters 

#

# set_size = associativity ("dm","2w","4w"...)

# strategy = RANDOM, LRU

# write_policy = WRITE_BACK, …

#

######################################

#instruction cache parameters

i_endian 1

i_word_size 32

i_block_size 16

i_cache_size 128

i_set_size 4

i_strategy LRU

i_write_policy WRITE_THROUGH

i_cache_enable true

…

…

number of misses2311

number of hits 6829

number of accesses 9140

miss rate (%) 25.28

hit rate (%) 74.72

…

x nb_simulation

Parameter

File

Compiled

Applications

Statistics
Automatic

Spreadsheet

Common

Parameters

SESAM

Simulator

Script

Figure 3.1: SESAM exploration tool and environment [152, 153].

Because the exploration of many parameters can take a lot of simulation time, SESAM o�ers

the possibility to automatically dispatch all the simulations to di�erent host PCs. Each available

PC core de�nes an available slot, which can be used to execute one simulation. The tool is struc-

tured around a dispatcher and a NFS server. Thus, SESAM can take bene�ts of available PCs to

automatically parallelize simulations and ease the exploration of architectures.

Debugging the architecture is possible with a speci�c GNU GDB [1] implementation. In the

case of a dynamic task allocation modeling, it is not possible to know o�-line where a task will

be executed. Therefore, we built up a hierarchical GDB stub that is instantiated at the beginning

of the simulation. A GDB instance, using the remote protocol, sends speci�c debug commands to

dynamically carry out breakpoints, watchpoints, as well as step by step execution, on an MPSoC

platform. This unique multiprocessor debugger allows the task debugging even with dynamic

migration between the cores. Moreover, it is possible to simultaneously debug the platform and the

code executed by the processing resources.

3.1.1.2 Infrastructure

As depicted in Figure 3.2, SESAM is structured as an asymmetrical MPSoC. It is based on a

centralized Control Manager that manages the execution of tasks on processing elements. SESAM

proposes the use of di�erent components to design new MPSoCs. Other SystemC IPs can be

designed and integrated into SESAM if they have a compatible TLM interface. The main elements

are: the Memory Management Unit (MMU), the Code Loading Unit (CLU), Memories, a set of

Instruction Set Simulators (ISS), a Direct Memory Access (DMA) unit, a Control Manager and

Network-on-Chips (NoC).

The MMU is optional and can bring advanced capabilities to manage all the shared memory

space, which is cut into pages. The whole page handler unit is physically distributed between the

MMU and the local Translation Lookaside Bu�ers (TLB) for each processing core. All the memory

functions are available through the SESAM HAL. It is possible to dynamically allocate or deallocate

bu�ers. There is one allocated bu�er per data block. An identi�er is used for each data block to

address them through the MMU, but it is still possible to use physical addresses. Di�erent memory
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Figure 3.2: SESAM infrastructure [152, 153].

allocation strategies are available and can be implemented.

The CLU dynamically loads task codes from the external memory through a DMA access when

it receives a con�guration command from the Control Manager. Then, in a dynamic memory

management context, it also has to update the MMU to provide the corresponding virtual to

physical address translations. A context and a stack are automatically included for each task.

Di�erent memory elements can be instantiated. The memory space can be implemented as

di�erent banks or a single memory. The former is logically private or shared, while the latter is

only shared between the processors. Memory segments are protected and reserved for the Control

Manager. Multiple readers are possible and all the requests are managed by the NoC.

The processors are designed with the ArchC ADL as processing resources with data and in-

struction cache memories, which are optional. The ArchC tool [114] generates functional or cycle-

accurate monothreaded ISS in SystemC with a TLM interface [15]. A new processor is designed

in approximately 2 man-weeks, but it depends on the instruction set complexity. Its simulation

speed can reach tens of Millions of simulated Instructions Per Second (MIPS). Di�erent models are

available (MIPS, PowerPC, SPARC), as well as a complete MIPS32 processor (with a FPU) at the

functional level. Preemption and migration of tasks are possible services that are available through

an interruption mechanism. It allows to switch the context of the processing unit, to save it, and

to restore the context code from the executed task memory space.

A DMA is necessary to transfer data between the external data memory and the internal

memory space. A DMA is a standard processing resource and takes part in the heterogeneity of the

architecture. It is a fully-programmable unit that executes a cross-compiled task for its architecture.

A 3-dimensional DMA is available. Transfer parameters can afterwards be dynamically modi�ed

by other tasks, to specify source and target addresses de�ned at run-time. Finally, it dynamically

allocates the required memory space for the transfer.

The Control Manager can be either a fully programmable ISS, a hardware component, or a mix

of both. With the ISS, di�erent algorithms can be implemented. Thanks to the SESAM HAL and

an interrupt management unit, the tasks are dynamically or statically executed on heterogeneous

computing resources. In addition, a multi-application execution is supported by this HAL. A

set of scheduling and allocating services in hardware or software can be easily integrated, modi�ed
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and mixed. Besides, a complete hardware real-time operating system is available, named Operating

System accelerator on Chip (OSoC). The OSoC supports dynamic and parallel migration, as well as

preemption of tasks on multiple heterogeneous resources, under real-time and energy consumption

constraints.

Many NoC topologies are supported by SESAM: a multibus, a mesh, a torus, a multistage

and a ring network. These networks are detailed in [57]. All are modeled in approximate-timed

TLM. Data exchanges are non-blocking and deterministic, regardless of the network load or the

execution constraints. The multibus can connect all masters to all slaves, but does not allow master

to master communications. In the mesh or the torus network, one master and several slaves are

linked with a router. An XY routing and a wormhole technique are implemented. The multistage is

an indirect fully connected network. It is divided into di�erent stages composed of 4 input-output

routers, and linked with a butter�y topology. All masters are in one side and all slaves are on the

other side. It uses also a wormhole technique to transfer packets. Finally, in a ring network, a

message has to cross each router when it goes through a ring. A parameter can change the number

of rings. But, each master can connect itself to only one ring. A ring is bi-directional. Besides,

we use a �fo with each memory to store memory accesses from computing resources. In order to

accept simultaneous requests, two arbiters can be used: a FIFO or a fair round-robin policy. All

communications are done at the transactional level and we can accurately estimate the time spent

in every communication.

3.1.1.3 SCMP modeling

To demonstrate the SESAM's capabilities to model new asymmetric MPSoCs, we have used this

framework to carry out the SCMP architecture, which is described in section 1.3. Platform param-

eters, such as latencies and constraints, are characterized by the Synopsys Design Compiler tool.

As depicted in Figure 3.3, the architecture has three internal NoCs. The system NoC interconnects

the external CPU, the external memories and the TLB dedicated to the application, with the core

of the architecture. The CPU represents a host interface that allows the user to send on-line new

commands to SCMP. For instance, it is possible to ask for the execution of new applications. The

TLB Appli is used to store all the pointers of each task for each application in the external instruc-

tion memory. When the simulator starts, it automatically loads all the selected applications into

this memory and update the TLB Appli.

The control NoC is used to connect the CCP (Central Controller Processor), which is the Control

Manager, and all the processors resources through a control interface. In addition, processing

resources can communicate with each other, and with the Memory Con�guration and Management

Unit. The MCMU aggregates the MMU and the CLU presented before. The data NoC is only

used for communication between the processing resources and the local memories. It is a multi-bus

network that connects all PEs and I/O controllers to all shared and banked memory resources.

The CCP prefetches tasks' code before its execution and manages all the dependencies between

tasks. It determines the list of eligible tasks to be executed, based on control and data dependencies.

It also manages exclusive accesses to shared resources, and non-deterministic processes. Then, task

allocation follows online global scheduling, which selects real-time tasks according to their dynamic

priority, and minimizes overall execution time for non real-time tasks.

SCMP supports two types of processing resources: DMA and processor. The DMA unit carries
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Figure 3.3: SCMP infrastructure modeled in SESAM [152, 153].

out input image transfers between the internal local memories and the external data memory.

The processor executes the application C code and is modeled by a cycle-accurate or functional

ISS. The ISS boots on a read-only memory, named system memory, that contains all the system

code. When the initialization is done, it waits for the CCP requests. Currently, SESAM supports

only monothreaded ISS architectures. In the next section, we will extend SESAM to support

multithreaded processors.

3.1.2 Extending SESAM for multithreaded processors

Initially, SESAM is designed for handling monothreaded ISSes. When replacing the monothreaded

ISS with a multithreaded ISS, some modi�cations to SESAM should be conducted on the processor

level and control manager level.

3.1.2.1 Processor level

It consists of multiple multithreaded cores. Each core is a scalar in-order processor. It can process

multiple Thread Contexts (TC) concurrently, where each TC is a virtual processor. In this thesis,

we consider the case of 2 TCs per multithreaded core, which is suitable for embedded systems

requirements as was proven in chapter 2. A Local Thread Scheduler (LTS) synchronizes the exe-

cution of the tasks on multiple TCs according to the PE_MT's multithreading policy. Since it is a

scalar in-order processor, only one instruction is allowed to be issued from one task at a time. For

instance, an IMT core issues the instructions in a round-robin manner between the available TCs,

while a BMT core switches between the instructions of the available TCs whenever one is stalled

on a long latency event, such as a cache miss. Each TC state is sent to the centralized controller.

The TC state can be either running normally, blocked on a cache miss or I/O, or waiting for an

execution demand. Based on these values, the controller has a more global view on all the cores'

status and can perform the right scheduling decision. Each PE_MT has a shared TLB for all

the TCs for proper virtual to physical address translation, and it is connected to a L1 Instruction

memory cache (I$) and Data memory cache (D$). In our architecture, the L1$ is segmented per
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TC in order to limit cache interferences (see Figure 3.4).
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Figure 3.4: Abstraction view of SESAM with multiple multithreaded processors.

3.1.2.2 Control Manager level

The objective of a thread scheduler is to keep busy all the underlying execution resources and

balance the load between them. It holds the information of all the SW threads that can be executed

on the processors in a runqueue. For the case of a multicore system and a SMP OS such as Linux

SMP, the scheduler creates a runqueue per each core. Tasks are migrated periodically from one

runqueue to another whenever a workload imbalance occurs. This works �ne with monothreaded

cores. However, for multithreaded cores, it is not clear which scheduling technique �ts better:

whether to assign one runqueue per multithreaded core (VSMP) or one runqueue per thread context

(SMTC): the objective is the same, keeping all the multithreaded cores active. VSMP and SMTC

are terminologies used by MIPS Technologies.

VSMP: VSMP or Virtual SMP is an OS scheduler architecture that creates one runqueue

per core (see �gure 3.5(a)). If there is one TC per core (monothreaded processor), the scheduler

converges to normal SMP. But in case of multiple TCs per core (multithreaded processor), only one

runqueue is assigned to all the TCs. Then, it is up to the LTS to guarantee an e�cient dispatching

of the tasks to the free TCs. The main advantage of VSMP is its rapid deployment. Only small

modi�cations to the SMP OS need to be done. However, the scheduler does not have a global view

of the workload balance between the TCs and the cores, which might be penalizing in some cases.

Consider for example 2 PE_MTs with 4 TCs each, if PE_MT1 has 3 active TCs and PE_MT2

has 1 active TC, then the VSMP scheduler will treat both multithreaded processors equally, since

both of them are active.

For static VSMP, a task is allocated on a runqueue based on its identi�er using the modulo

operator. No tasks are allowed to migrate to other runqueues. As for dynamic VSMP, the scheduler

scans the execution status of all the PE_MTs. If a multithreaded core is active and another one

is free, it migrates a task from the active to the free runqueue. However, as stated earlier, the

scheduling decision does not take into consideration the exact load of each PE_MT.
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Figure 3.5: a) VSMP scheduler architecture b) SMTC scheduler architecture [18].

SMTC: SMTC or Symmetric Multi-Thread-Context is an OS scheduler architecture that cre-

ates one runqueue per TC (see Figure 3.5(b)). The scheduler has a more global and correct view

of the real physical hardware. Depending on the TC state, the scheduler is able to know which

PE_MT is active and how much tasks are scheduled, which facilitates the global workload bal-

ancing. This will relieve the LTS from doing local task allocation and concentrate only on its

scheduling policy (interleaved, blocked, etc...). Since more execution state informations are avail-

able, the scheduling time might take a little longer than in VSMP as we will see later in section

3.3.3.

For static SMTC, tasks are allocated on each TC runqueue based on its identi�er using the

modulo operator, and no load balancing is allowed. This implies that the LTS has no local

scheduling role, since the tasks are already prede�ned where they will execute. This can be

penalizing, since all the TCs are treated equally as a virtual processor which might lead to severe

load imbalance. On the other hand, for dynamic SMTC scheduler, the native SMP scheduler code

needs to be modi�ed and rethought. At the beginning of a scheduling cycle, the controller receives

the execution state of all the TCs. Then, it executes the scheduling algorithm which is decomposed

into 3 main parts: sorting, allocation, and veri�cation.

The �rst phase creates a sorting list of the tasks that are ready to be allocated and executed. The

sorting decision depends on the task priority and execution state. For example, a blocked task is

put at the end of the sorting list. Then, the �rst NB_PE tasks are chosen to be allocated, where

NB_PE is the maximum number of TCs available in the architecture. For instance, 4 PE_MTs

with 2 TCs each have NB_PE equal to 8. The second phase allocates the tasks on the runqueue

of each TC. Here, the scheduling algorithm has 2 di�erent views of the asymmetric architecture:

virtualized mode and non-virtualized mode. In the virtualized mode, the execution state of all the

TCs of one PE_MT are grouped together in order to form a common architectural state of the

PE_MT. A PE_MT is active if at least one TC is active, and an asymmetric MPSoC architecture

is executing e�ciently if all the PE_MTs are active. Accordingly, ready tasks are allocated on the

corresponding TCs runqueue that turns a PE_MT into active. If all the PE_MTs have at least

one active TC and there are still ready tasks in the sorting list, then the scheduling algorithm
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switches to the non-virtualized mode. In this case, a ready task is allocated on a runqueue of a

free TC. The �nal phase veri�es if the multithreaded processors are well-balanced. For example,

consider a system of 2 PE_MTs with 4 TCs each, if PE_MT1 has 3 active TCs and PE_MT2 has

1 active TC, then the dynamic SMTC scheduler will allow the migration of tasks from runqueue

TC2 of PE_MT1 to runqueue TC1 of PE_MT2. This scenario is not possible for the VSMP

scheduler.

Currently, SESAM supports monothreaded ISS architectures. In order to model SCMP with

multiple multithreaded processors, we need to support SESAM with a multithreaded ISS. Therefore,

in the next section, we will develop a cycle-accurate multithreaded ISS that can be integrated in

the SESAM framework.

3.2 A Multithreaded Instruction Set Simulator

The ISS emulates the behavior of a processor by executing the instructions of the target processor

while running on a host computer. Depending on the abstraction level, it can be modeled at the

functional or cycle-accurate level. The functional ISS model abstracts the internal hardware archi-

tecture of the processor (pipeline structure, register �les...) and simulates only the ISA. Therefore,

it can be available in the early phase of the MPSoC design for the application software development,

where the simulation speed and the model development time are an important factor for a fast de-

sign space exploration. Despite all these advantages, many details are hidden by the functional ISS

model, such as the pipeline stalls, branch/data hazards and other parameters, which tend to be

non-negligible while sizing the architecture. Those parameters evaluate the accurate performance

of the processor and the surrounding hardware blocks such as caches, busses, and TLBs.

The cycle-accurate ISS model simulates the processor at an abstraction level between the RTL

and the functional model. It presents most of the architectural details that are necessary for proces-

sor dimensioning, in order to evaluate in advance its performance capabilities in the MPSoC design.

All these advantages come at the expense of a slower simulation speed and a longer development

time.

In order to mimics the behavior of the multithreaded processor developed in RTL (see section

2.2) and to capture all the pipeline dependencies, the ISS should be cycle-accurate. In addition,

as we saw in section 2.2, there is a diminishing return from having more than 2 hardware thread

contexts per multithreaded processor from a core area point of view.

In this section, we will build a cycle-accurate multithreaded ISS [16] with 2 TCs based on

multiple cycle-accurate monothreaded ISS [15]. Based on a modi�ed ArchC ADL [15], we will

build a cycle-accurate monothreaded ISS for a 5-stage RISC processor.This monothreaded ISS will

be instantiated and encapsulated multiple times to build a cycle-accurate multithreaded ISS. The

multithreaded ISS mimics the behavior of the IMT and BMT processors.

3.2.1 The requirements for ISS and ADL

As stated earlier, we have used SystemC as a simulation environment for MPSoC design space

exploration. SystemC supports IP modeling using the Transaction-Level Modeling (TLM) protocol

[51, 32]. TLM is a high-level approach to model digital systems where details of communication
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among modules are separated from the details of the implementation of functional units or the

communication architecture. Therefore, the multithreaded ISS should �t into the SystemC and

TLM environments, while providing fast simulation speed and high-accuracy level. So in this

section, we investigate the reason to develop a new multithreaded ISS based on SystemC and the

choice of the ADL environment.

3.2.1.1 Why a new ISS?

A SystemC/ISS co-simulation environment provides design �exibility by being able to experiment

with di�erent types and numbers of processor architectures at the early design stages. This ad-

vantage has led researchers [27] to provide SystemC wrappers for traditional standalone ISS such

as SimpleScalar [11]. Other works [21, 36] used the same technique for integrating a non-native

SystemC ISS into a SystemC/ISS co-simulation environment. However, the main drawback of the

SystemC wrappers approach is the slow simulation speed (order of few KIPS) with respect to a

standalone ISS (order of hundreds KIPS to MIPS).

On the other hand, standalone multithreaded simulators exist in the literature, mainly targerting

SMT type of processors. For example, SSMT [85], M-SIM [128] are SMT extensions on top of

SimpleScalar. Other simulators, such as SESC [135] and Sam CMT Simulator kit [104], support

the simulation of chip multithreaded (CMT) processors. Despite of their �exibility and parameters

variability, these full-system simulators are standalone and require SystemC wrappers with TLM

interfaces to be interfaced with other SystemC components.

To our knowledge, no IP-based multithreaded ISS in SystemC with TLM-based interfaces for

MPSoC design space exploration exist in the literature. This is the reason why we had to develop

a cycle-accurate multithreaded ISS in SystemC and TLM-based interfaces.

3.2.1.2 Which Architecture Description Language (ADL)?

The main part of an MPSoC simulator is the architecture description language (ADL), which

generates an ISS at a speci�c level of abstraction. ADLs' modeling levels are classi�ed into three

categories: structural, behavioral, and mixed.

Structural or cycle-accurate ADLs describe the processor at a low abstraction level (RTL)

with a detailed description of the hardware blocks and their interconnection. These tools, such as

MIMOLA [81], are mainly targeted for synthesis and not for design space exploration due to their

slow simulation speed and lack of �exibility.

On the contrary, behavioral or functional ADLs abstract the microarchitectural details of the

processor and provide a model at the instruction set level. The low accuracy is compensated by

the fast simulation speed. Many languages exist such as nML [46] and ISDL [60].

Mixed ADLs are a trade-o� solution between structural and behavioral ADLs. They combine

the advantages of both the structural (accuracy) and behavioral (simulation speed) ADLs. It is the

best abstraction layer for design space exploration. EXPRESSION [61], MADL[113], LISA [109],

and ArchC [114] are examples of mixed ADLs. The last two will be discussed in this literature

review since they are mostly used.
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LISA: LISA, which stands for Language for Instruction Set Architecture, is developed by the

university of RWTH Aachen and is currently used in commercial tools for ARM and CoWare

(LISATek). Processor models can be described in two main parts: resource and operation declara-

tions (ISA). Depending on the abstraction level, the operations can be de�ned either as a complete

instruction, or as a part of an instruction. For example, if the processor resources are modeled at

the structural level (pipeline stages), then the instructions' behavior in each of the pipeline stages

should be declared. Hardware synthesis is possible for structural processor models.

ArchC: A recent type of processor description language called ArchC [118] is gaining special

attention from the research communities [20, 39, 73, 154]. ArchC 2.0 is an open-source Architecture

Description Language (ADL), developed by the University of Campinas in Brazil. It generates a

functional or cycle-accurate ISS in SystemC with its assembler, linker and debugger, from parsing

two input �les (see Figure 3.6): the processor architecture resource description (AC_ARCH) and

the ISA description (AC_ISA) �les. The ISS is ready to be integrated with no e�ort in a complete

SoC design based on SystemC. The functional and cycle-accurate processor models are generated

by a separate simulator generator tool. For instance, actsim and acsim tools generate the cycle-

accurate and functional simulators respectively.

debugger

AC_ARCH

AC_ISA

assembler

simulator

linker

Figure 3.6: The ArchC simulator generator from architecture and ISA description �les.

ArchC 2.0 [114] provides many advantages that lacked in its predecessor ArchC 1.6. First, it

allows the simulator to be integrated and instantiated multiple times in a full SystemC platform,

hence enabling a multiprocessor system simulation. And second, the simulator is wrapped by a TLM

interface to allow processor interruptions and TLM communications with external modules. The

main feature of ArchC is its ability to generate a cycle-accurate ISS with short development time.

Only the behavioral description of the ISA requires an accurate description. The microarchitectural

details are generated automatically according to the architecture resource description �le. There

exists also a graphical framework, called PDesigner [8], based on Eclipse and ArchC processor

models, which allows the development and simulation of MPSoCs in SystemC in a friendly manner.

Since ArchC is an open-source language, we can modify the simulator generator to produce

a processor with customized microarchitectural enhancements, which makes it a great tool for

computer architecture research [119]. Therefore, ArchC is the ADL of choice for building our cycle-

accurate ISS in SystemC. In the next subsections, we will explore in more details the generation of

a monothreaded and multithreaded cycle-accurate ISS and our contributions/modi�cations to the

ArchC ADL to �t our requirements.
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3.2.2 Monothreaded cycle-accurate ISS model

ArchC supports several processor ISA models such as: MIPS-I, PowerPC, SPARC-V8 and ARM.

All these models have a working functional ISS. However, the cycle-accurate ISS version generated

by actsim is not supported for all the ISA models. In our work, we will adapt the MIPS-I

R3000 [62, 148] cycle-accurate ISS model, which is described in more details in [15]. The MIPS-I

R3000 architecture is almost similar to AntX. It does not have a hardware FPU, thus the FPU

instructions are emulated in software by using the compiler option 'msoft-�oat'. First, we will

start by an overview of the generated MIPS-I R3000 cycle-accurate ISS model, then we will show

our modi�cations to the actsim tool in order to support ArchC 2.0 speci�cations.

Overview of the MIPS-I R3000:

The MIPS-I R3000 architecture is implemented as a classic 5-stage RISC processor (IF-ID-EX-

MEM-WB) with 32 registers and an integer pipeline. The implemented MIPS-I ISA is similar to

the optimized version described in [62]. The control instructions (jump and branch) are executed

in the ID stage instead of the MEM stage, and follow the "predicted-not-taken" branch mechanism.

Register forwarding is also deployed to allow instructions in the ID or EX stages to get the correct

operand values from instructions that are further in the pipeline and did not commit yet. Both

techniques reduce the number of pipeline stalls at the expense of adding more logics in the processor

datapath.

The actsim tool generates the cycle-accurate ISS and the decoder shown in Figure 3.7 from

AC_ARCH and AC_ISA �les.
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Figure 3.7: R3000 cycle-accurate model generation by actsim tool.

The cycle-accurate simulator is clearly almost similar to the actual processor architecture. The

pipeline stages, inter-pipeline registers, register �le, program counter (PC), and clock are all in-

cluded in the simulator.

In our work, we utilize the latest available versions of actsim timed simulator generator
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tool included in the ArchC 2.0 package, as well as the MIPS-I R3000 cycle-accurate model

(r3000-v0.7.2-archc2.0beta3). Both tools are still in their beta versions as they contain some

bugs. In other words, the advantages of ArchC 2.0 have not been integrated in the cycle-accurate

simulator. Thus, the generated cycle-accurate ISS cannot be integrated in a multiprocessor

simulation environment. Therefore, in the next section, we will modify the ArchC actsim tool in

order to generate a cycle-accurate ISS compatible with ArchC 2.0 speci�cations.

A cycle-accurate ISS support for ArchC 2.0:

For each pipeline stage, the initial actsim generates a corresponding SystemC module, which

is implemented as a SC_METHOD sensitive to the main clock. Implementing the stages as a

SC_METHOD works �ne in a standalone architecture, with one processor and cache memory.

However, the multiprocessor execution will be impossible since the processor model will always

own the SystemC execution context. In order to integrate the model in a SoC platform and

to communicate with other SystemC IPs, we modify the stages to implement an SC_THREAD

module and SystemC wait() function. This solution does not block the other IP modules from

executing at the same clock cycle as the processor. A pseudo-code for the EX-stage module is

shown in Figure 3.8.

inline void r3000_G_EX::r3000_G_EX::behavior()
{

/* Get the instruction from the previous 
stage register ID_EX */

/* Decode the instruction */

/* Call the generic instruction behavior */

/* Call the format behavior */

/* Call the instruction behavior */

/* Send the instruction to the next 
stage register EX_MEM */

}

inline void r3000_G_EX::r3000_G_EX::behavior()
{

while (1) {

/* Get the instruction from the previous stage 
register ID_EX */

/* wait (previous stage ID has finished); */

/* Decode the instruction */

/* Call the generic instruction behavior */

/* Call the format behavior */

/* Call the instruction behavior */

/* Send the instruction to the next stage register 
EX_MEM */

/* notify the next stage MEM that the results 
are ready */

}
}

Figure 3.8: Pseudo-code for the EX-stage module in ArchC 2.0.

To model the cycle-accurate pipeline correctly, the procedure is implemented as follows: each

stage module executes a while loop, and synchronizes with SystemC wait(). Only the �rst stage (IF)

is sensitive to the main clock and to a synchronization signal (sync), while the others are sensitive
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to an input sync sent from the previous stage. When a new clock signal (sc_clock) arrives, the

IF-stage executes instruction i, and toggles the sync at its output. Then the ID-stage, which is

sensitive to the sync from IF-stage, executes instruction i-1, and toggles its output sync. The same

procedure repeats until WB-stage, which executes instruction i-4, and toggles the sync signal that

is connected back to the IF-stage. Finally, the IF-stage updates the internal pipeline registers and

wait() for the next clock cycle. Note that the pipeline registers are double bu�ered for proper

instruction execution in each stage. Figure 3.9 shows the modi�ed R3000 cycle-accurate model

that is generated by 'actsim'.
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Figure 3.9: New R3000 cycle-accurate model for SoC simulator integration capabilities [15].

The second modi�cation done to the cycle-accurate simulator is the support of a TLM inter-

face and an interruption mechanism. Since the functional simulator already implements the TLM

interface, we reused the same code with some modi�cations to the interruption mechanism. Thus,

the ISS SystemC module implements 2 TLM I/O interfaces: the �rst one receives interrupts from

external sources such as a controller (sc_export), and the second one sends memory access requests

to the memory (sc_port). The R3000 pipeline implements precise exceptions mechanism in order

to avoid any type of pipeline anomalies [62]. So whenever an external interrupt occurs, the R3000

pipeline is �ushed. The �ushing mechanism occurs by inserting a 'trap' instruction in the IF-stage.

The instructions in the pipeline �nish their execution normally. When the 'trap' instruction reaches

the WB-stage, it signals that the pipeline is now empty, and that the execution of the interrupt

service routine is allowed. Then, the appropriate interrupt service routine is called depending on

the interrupt type. For instance, we support 3 types of TLM interrupts: start a new task, preempt

the current task with a new task, and stop the current task. The TLM interrupt protocol is a

modi�ed ArchC TLM protocol [118].

The performance evaluation of our cycle-accurate model necessitates the extraction of pipeline

statistic values. Any degradation in the processor performance is mainly due to pipeline stalls.

Those stalls arise from two types of sources: data dependencies (data and control hazards), and

pipeline interlocks. The latter is due to long memory access latencies when load instructions are in
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the MEM stage and there is a data cache miss. In our model, we can measure the total number of

pipeline stalls due to data dependencies and pipeline interlocks.

This cycle-accurate ISS can only execute one thread context (TC) at a time. The next paragraph

describes the development of a multithreaded ISS, which is able to execute multiple threads at a

time.

3.2.3 Multithreaded cycle-accurate ISS model

The multithreaded ISS [16] is designed to be integrated in a typical processor system environ-

ment based on SystemC language. It keeps the same TLM I/O interfaces as the monothreaded

ISS described in section 2.2.2 in order to look as one ISS/processor to the external world. The

multithreaded ISS uses a modular cycle-accurate technique to mimic the behavior of a scalar mul-

tithreaded RISC. It encapsulates n pre-validated cycle-accurate ISS for the MIPS-I R3000, each

corresponding to one TC. It receives TLM interrupt requests from an external module such as a

hardware controller, and sends TLM memory access requests to the caches. Internally, a scheduler

module synchronizes and schedules all the memory access requests of the n ISS. Figure 3.10 shows

the internal structure of the multithreaded ISS model, denoted by PE_MT. Each R3000 ISSi in

PE_MT simulates only the pipeline stages, which are described previously in Figure 3.9. The

R3000 ISSi is generated automatically in ArchC using actsim tool as described in [15], while the

other block modules (scheduler, TLM demultiplexer) are developed in SystemC.

can_be_scheduled_pe[n]
(TLM)

R3000
ISS[n]

R3000
ISS[1]

PE_MT

External Interrupts 
(TLM)

D

schedulerPolicy

clk
(sc_clock)

To cache memories
(TLM)

From Cache 
memories miss/hit 

(TLM)

Figure 3.10: Multithreaded ISS model [16].

For the controller, the PE_MT looks as n virtual processors. Each internal ISS is a TC;

therefore it has a unique id (vt_id). A vt_id parameter is added to the TLM protocol, so that

every incoming and outcoming TLM packet can be tracked in the platform. All the external

62



3.2. A Multithreaded Instruction Set Simulator

interrupts are input to a 1-to-n TLM demultiplexer (labeled as D in Figure 3.10). It checks the

vt_id of the TLM packet and then forwards it to the corresponding ISS. Then, the ISS handles the

request, updates its internal state and executes the corresponding task. It generates two types of

TLM memory requests: an instruction fetch from the IF-stage and a data memory access from the

MEM-stage. The scheduler module receives TLM memory requests from the n ISS. It synchronizes

and schedules the packets according to a pre-de�ned scheduling policy implemented as an FSM

diagram. Then, it selects one of these packets at a time and transfers it to the cache memories. In

order to facilitate the scheduling decisions of the scheduler, we provide 2 types of information as

input to the multithreaded module:

1. The scheduling status (active/idle) of each ISS, which comes from the external controller

using the can_be_scheduled_pe[n] input (sc_export TLM), where n designates the TC id.

2. The caches hit/miss input (sc_export TLM), which inform the scheduler of the status of each

memory access request in the caches.

For scalar monothreaded processors, there exist 2 multithreading scheduling techniques: IMT

and BMT. Each one has its own FSM diagram implemented in the scheduler. Due to the facility

of their FSM representation and implementation, the IMT is implemented as a Mealy FSM and

BMT as a Moore FSM. Therefore, to add a new multithreading technique, the designer just have

to embed the FSM diagram code in the scheduler without modifying the other components.

Note that the scheduler module is not clocked and is only synchronized by SystemC events.

This is important when a functional ISS (not clocked) is used instead of a cycle-accurate ISS, which

makes the scheduler more general.

In the next sections, we will describe in more details the implementation of an IMT and BMT

multithreaded ISS with 2 TCs (n=2).

3.2.3.1 Interleaved multithreading ISS

An IMT processor executes an instruction from one active thread at a time in a round-robin way.

Therefore, in any 2 consecutive pipeline stages, there is an instruction from a di�erent TC. However,

if one thread is stalled for a long latency event, then the whole pipeline is stalled.

To model this behavior using n separate ISS, the scheduler FSM should allow the execution of

one ISS pipeline until completion, and then switch to another active ISS pipeline in zero cycles.

During the pipeline execution cycle, it generates a maximum of 2 TLM cache memory requests,

one from IF-stage and one from MEM-stage. The FSM switches the thread execution whenever an

ISS pipeline is fully processed. Therefore, we di�erentiate between an IF-stage and a MEM-stage

TLM packet by adding a parameter to the TLM protocol. The FSM for the IMT model with 2

TCs, shown in Figure 3.11, is implemented as a Mealy FSM.

Since each ISS is cycle-accurate, small latency pipeline stalls due to data dependencies are

captured by the ISS itself. As for the cache misses, they are modeled intuitively by the TLM

interface blocking mechanism.

The sequential thread program execution on each ISS does not re�ect the actual behavior of the

IMT pipeline. In fact, the execution speed of each thread should be divided by n and the pipeline

stalls due to data dependencies should be eliminated. This is done by inserting n-1 "dummy nop"
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Figure 3.11: Interleaved multithreading scheduler FSM (Mealy machine).

instructions after each fetched instruction. The "dummy nop" instruction does not access the

memory, thus does not generate an IF-stage TLM request and is transparent to the scheduler. This

requires a slight modi�cation to the IF-stage code of the original MIPS-I R3000 model. A pipeline

execution model of 2 TCs is shown in Figure 3.12.
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Figure 3.12: Interleaved multithreading pipeline representation.

As we can notice, by overlapping the pipeline stages of all the ISS ("dummy nop" are transpar-

ent), we get the pipeline behavior of a scalar IMT processor.

Finally, the scheduler should keep track of the scheduling status of each TC using the

can_be_scheduled_pe[n] input signals from the controller. If one of the threads is scheduled/de-

scheduled, then the scheduler informs the other ISS to adjust the number of "dummy nop" instruc-

tions.
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3.2.3.2 Blocked multithreading ISS

A BMT processor executes one thread as on a monoprocessor, and switches to another thread

whenever a cache miss occurs. Thus, small latency pipeline stalls such as pipeline dependencies are

not tolerated by this model. Therefore, a thread status is de�ned as:

1. ACTIVE: if Thread[i] is scheduled and executing properly without long latency events.

2. NOT ACTIVE: if Thread[i] is not scheduled by the controller or has a long latency event such

as a cache miss and TLB miss or is stalled on data synchronization with another Thread[i+1].

The scheduler FSM requires external signals from the caches (cache memories miss/hit signals

shown in Figure 3.13) in order to perform its decision. In our work, we implement a "greedy" BMT

protocol, where one main thread (R3000 ISS1) has a higher priority than the others (R3000 ISS2 to

R3000 ISSn), thus its execution speed is not altered. This scenario considers that the low priority

threads are helper threads. However, if there are not enough memory stall latencies, the "greedy"

protocol may cause starvation to some helper threads. The FSM diagram for 2 TCs, shown in

Figure 3.13, is implemented as a Moore FSM.

Thread 1 
executes

Thread 2 
executes

PE_MT 
stalls

Thread 1 not active

Thread 1 active

Thread 2 active

Thread 2 not active

Thread 1 active Thread 2 active & 
Thread 1 not active

Thread 1 active

No threads are 
ready

Figure 3.13: Blocked multithreading scheduler FSM using greedy protocol (Moore machine).

Initially, Thread1 executes as long as there is a cache hit. Whenever there is a miss, Thread2

starts the execution and �lls the stalling slot cycles of Thread1. When Thread1's data is returned,

it resumes the execution. Otherwise, Thread2 continues the execution until there is a miss. Then

the whole processor is stalled and waits for one of the threads' returned data in order to resume

the execution, with a higher priority to Thread1 in case of a simultaneous response.

Opposed to the IMT model, the BMT model does not require any changes to the monothreaded

ISS, such as "dummy nop" insertions and memory access packet distinction. The latter implies

that the BMT model is sensitive to a long latency event, whether it comes from an IF-stage or

MEM-stage packet.

In the next section, we will evaluate the performance of the multithreaded processors in SCMP

architecture (MT_SCMP) in order to evaluate its e�ciency.
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3.3 Performance evaluation

In this section, we will evaluate the MT_SCMP architecture, which is modeled in the SESAM

simulation framework described in section 3.1 with multithreaded ISS described in section 3.2

as processing elements. We run two types of applications: control-�ow and data�ow, which are

described in section 3.3.1. Then, we decide which multithreaded processor type (IMT v/s BMT)

suits best for the asymmetric MPSoC requirements. We compare two global thread scheduling

strategies (VSMP v/s SMTC) and choose the one that gives the best performance. The last

two parts evaluate the transistor e�ciency of MT_SCMP and compare it to that of SCMP with

monothreaded processors. First, we compare their area occupation, then their performances using

both types of applications.

3.3.1 Applications description

As stated earlier, we evaluate the MT_SCMP with 2 types of applications: control-�ow and stream-

ing.

3.3.1.1 Control-�ow: labeling algorithm

For the control-�ow application, we have chosen an embedded application called ADAS (Advanced

Driver Assistance Systems). It consists of a camera installed in a car that detects humans on the

roads, in order to detect a pre-crash situation. This is a critical application for automotive systems

and is particularly relevant to this study in terms of dynamism, parallelism and control dependencies.

In ADAS, one part of the obstacle detection process is the connected component labeling algorithm.

The labeling algorithm transforms a binary image into a symbolic image so that each connected

component is uniquely labeled based on a given heuristic. It detects unconnected regions in binary

images. Various algorithms have been proposed [71] [77], but we have chosen an algorithm using

the contour tracing technique [45]. This very fast technique labels an image using only one single

pass over the image. It can detect external and internal contours, and also identify and label the

interior area for each component.

The initial algorithm is parallelized by creating independent tasks with control dependencies

explicitly represented in a CDFG as shown in Figure 3.14. Thus, the application follows the control-

�ow programming model.

To get multiple independent tasks, we cut the image into sub-images and apply the algorithm

on each sub-image. Then, we carry out successively a vertical and a horizontal fusion of labels in

analyzing frontiers between sub-images, and �nally we construct the corresponding tables between

labels and change in parallel all labels into sub-images. As input images, we use a 128x128 pixel

image, cut into 16 8x8 sub-images. This implies that the maximum parallelism is 16. The input

images are a sequence of 3 images taken at di�erent time intervals. They show 2 pedestrians crossing

a road (Figure 3.15), and they are close to a car (order of 10 meters). The labeling algorithm is

implemented on each image.

The computation requirement di�ers for the 3 images as shown in Figure 3.16. Pedestrian3

image takes about 3 times more processing than pedestrian1 image. Pedestrian1 image has 25%

of its sub-images executing the labeling code, since the others are black sub-images (non-balanced

workload). Similarly, pedestrian2 image has 50% (semi-balanced workload) and pedestrian3 has

66



3.3. Performance evaluation

4
3

START

3

1
9

4

2
0

5

2
1

6

2
2

3
5

7

2
3

8

2
4

0

2
5

1
0

2
6

3
6

1
1

2
7

1
2

2
8

1
3

2
9

1
4

3
0

3
7

3
9

4
0

4
1

6
4

END

1 2

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

4
5

6
5

4
4

4
2

4
6

9

DMA load Task
DMA store Task
PE Task

1
5

3
1

1
6

3
2

1
7

3
3

1
8

3
4

3
8

6
3

4
7

4
8

6
1

6
2

TASK(S) Function

0 DMA loading

whole image

1 & 2 Fictive task

3 to 18 DMA loading all

subimages

19 to 34 Labeling

35 to 38 H_correspondence 
and fusion

39 Data 
Synchronization

40 to 43 V_correspondence

44 Fusion

45 and 46 synchronization

47 to 62 DMA storing all 
subimages

63 and 64 synchronization

65 Free shared data 
and End of 
application

Figure 3.14: CDFG of the connected component labeling algorithm used as input for the centralized control

core. The labeling algorithm is decomposed into 16 parallel tasks, where each task performs the labeling algorithm

independently on a sub-image.

(a) Pedestrian1 (b) Pedestrian2 (c) Pedestrian3

Figure 3.15: 3 images of 2 pedestrians crossing a road.

100% (fully-balanced workload). This behavior reveals the dynamism of the connected component

labeling application with respect to the input data.
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Figure 3.16: Dynamic behavior of the connected component labeling application when executed with di�erent

pedestrian images on a single-processor.

3.3.1.2 Data�ow: WCDMA

The data�ow or streaming application is a complete WCDMA (Wideband Code Division Multi-

ple Access) encoder and decoder [117]. This communication technology is based on the use of

Orthogonal Variable Spreading Factor (OVSF) to allow several transmitters to send information

simultaneously over a single communication channel. This application uses a rake receiver with a

data aided channel estimation method. Known pilot symbols are transmitted among data. The

channel estimation algorithm operates on the received signal along with its stored symbols to gen-

erate an estimate of the transmission channel. The processing of pilot frames generates a dynamic

behavior of the application, since this induces a variable execution length. Di�erent blocks of the

application are shown in Figure 3.17(a). The application is pipelined into 13 di�erent tasks as

shown in Figure 3.17(b). To maximize the concurrency between pipelined tasks, a double bu�er is

used between each task. Thus, tasks can independently execute the next frame from the previous

pipelined stage results.

3.3.2 Which multithreaded processor system?

In order to choose which multithreaded processor suits best for MT_SCMP, we run the labeling

algorithm with pedestrian3 image (see Figure 3.15(c)). For the MT_SCMP con�guration, we use

one multithreaded processor, which can be either IMT or BMT with 2 TCs. We vary the L1 I$ and

D$ size from 512-B to 8-KB. The L1 caches are direct-mapped with 16 Bytes/line. In fact, by �xing

the cache associativity and the number of words per line, we only compare IMT and BMT without

any cache interference. For the labeling application, the parallel tasks executes almost the same

code but with di�erent data. Therefore, we segment the L1 caches per TC, and we give each TC the

same amount of cache memory. This is the best cache architecture for this type of application. For

instance, a L1 cache size of 1-KB means 1-KB for each TC. In Figure 3.18, we show the L1 I$ and

D$ miss rate of the overall cache memory. The I$ and D$ miss rates vary from 15.5% to 0.91% and

from 14.7% to 0.34% respectively. It is clear from the results that for cache sizes more than 8-KB,
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Figure 3.17: WCDMA application and CDFG.

we would reach almost an ideal cache memory with no miss rate, which makes the multithreaded

processor not an interesting solution. Therefore, we will limit our exploration to 8-KB.

In Figure 3.19(a), we compare the performances in execution cycles of the monothreaded, IMT

and BMT processors. To better understand the sources of latencies, we decompose the total

execution time into 6 parts: e�ective execution time when the processor is never stalled, stall time
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Figure 3.18: L1 I$ and D$ miss rate for cache sizes between 512-B and 8-KB and for the connected component

labeling application.

penalty due to I$ miss, stall time penalty due to D$ miss, pipeline stall due to data dependencies,

context switch overhead in the case of BMT processor, and other sources of pipeline stalls that can

come from a TLB miss, cache �ush, MCMU processing, etc...These statistics can be revealed from

our multithreaded ISS since it is cycle-accurate.

The results show clearly that the BMT processor overcomes the performance of IMT processor

for all cache con�gurations. By varying the cache sizes, we vary the penalties due to cache misses.

The statistics show that the monothreaded processor is stalled for a signi�cant portion of execution

time because of I$ and D$ misses, which is almost 75% of the total time for 512-B. Under these

conditions, the BMT processor is able to mask those cache miss latencies by executing instructions

from another TC. And even if the context switch penalty is so high because there are lot of cache

misses, the performance gained in BMT is still higher than the IMT. As shown in Figure 3.19(b),

the BMT has a performance gain of 36% compared to the monothreaded processor, while the IMT

has a gain of only 15.5%. As the size of the L1 caches increase, the cache miss rate decreases

and so is the pipeline miss penalty. Therefore, the multithreaded processors does not have enough

cache miss penalties to be masked, and their performance gain is reduced to 9.1% (BMT) and 5.3%

(IMT) for the 8-KB L1$.

Thus, since the BMT has a better performance and a smaller area than IMT, it suits best for

MT_SCMP and we will choose it for the future explorations. It is worth to note that the results

taken in this section are di�erent from that of section 2.3. In fact, in MT_SCMP, the sources of

pipeline stalls and their weight are much higher than that of standalone AntX. This is why BMT
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Figure 3.19: Performance results of MT_SCMP with 1 processor: Monothreaded v/s IMT v/s BMT. The sizes of

the L1 I$ and D$ are varied simultaneously between 512-B and 8-KB. The performance gain of each multithreaded

processor with respect to the monothreaded is plotted in b).

performs better under MT_SCMP conditions than IMT for small memory access latencies.

3.3.3 Which global thread scheduling strategy? VSMP v/s SMTC

In this section, we analyze which global thread scheduling strategy suits best MT_SCMP [18].

For this reason, we run the labeling algorithm on 4 di�erent types of scheduling strategies: VSMP

static, VSMP dynamic, SMTC static and SMTC dynamic. We vary the workload by varying the

input images shown in Figure 3.15. For all the experiments, the number of PE_MTs varies between

1 and 8, where each PE_MT has 2 TCs. The L1 I$ and D$ size is �xed to 2-KB, which gives a

cache miss rate around 10% for the connected component labeling application. In fact, since we

implement the blocked multithreading policy, there should be su�cient pipeline stalls (i.e. cache

misses) in order to guarantee that all the TCs will execute, otherwise we risk resource starvation

and some TCs will never have their share of execution.

3.3.3.1 Static v/s dynamic thread scheduling

In this experiment, we compare the static and dynamic algorithms of the VSMP and SMTC thread

scheduling architectures. In Figure 3.20(a), we plot the number of cycles taken to execute the static

and dynamic versions of VSMP for the 3 pedestrian images. The speedup is more signi�cant for 2

and 4 PE_MTs, which reaches 40% for the pedestrian1 image and goes down to 7% for pedestrian3

image. However, the execution time for 1 and 8 PE_MTs is similar for static and dynamic VSMP.

In fact, in VSMP, there is only one runqueue per PE_MT, which gives the same performance on 1

PE_MT for both static and dynamic algorithms. As for 8 PE_MTs, the VSMP algorithm allocates

2 tasks on each runqueue in the same way for static and dynamic algorithm, since the VSMP does

not see the actual workload per PE_MT.

For the SMTC scheduler, the speedup between the static and dynamic versions is more signi�-
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cant than VSMP as shown in Figure 3.20(b). It reaches 51% for the pedestrian1 image. To under-

stand better the reason for this large performance di�erence, let's consider the case of SMTC static

v/s dynamic in Figure 3.20(b) for pedestrian1 image 3.15(a) and 2 PE_MTs, where the speedup is

51%. The image is cut into 16 sub-images, and the labeling tasks of each sub-image are allocated

�rst horizontally then vertically. The sub-images identi�ers are set from 1 to 16 respectively. This

means that tasks [T1,T5,T9,T13] contain pixels that need to be processed by the labeling algorithm,

which implies more processing times. If PE_MT1{TC1,TC3} and PE_MT2{TC2,TC4}, then

TC1=[T1,T5,T9,T13]; TC2=[T2,T6,T10,T14]; TC3=[T3,T7,T11,T15]; TC4=[T4,T8,T12,T16].

Thus we can clearly see that all the heavy computation tasks are assigned to TC1 runqueue for the

static SMTC scheduler, which leverages the need of a dynamic scheduler.

One other observation is the speedup for 1 and 8 PE_MTs cases. This can be explained by

the fact that the dynamic SMTC scheduler is able to see the exact occupation rate of each TC

and balance the workload between the runqueues so to take a full advantage of the multithreaded

processors. For example, for the pedestrian1 image with 1 PE_MT{TC1,TC2}, all the heavy

computing tasks are allocated on TC1 runqueue in the static SMTC version. This means that TC2

runqueue will be processed much faster than TC1, and the remaining tasks on TC1 will not be

migrated in the static version, which is not the case in dynamic SMTC.

In summary, when we have a balanced workload as in the case of pedestrian3 image, the di�er-

ence between static and dynamic is not signi�cant (less than 10%). But in real-case scenarios, we

expect on average a semi-balanced workload similar to pedestrian2 image.

3.3.3.2 VSMP v/s SMTC

In Figure 3.20(c), we compare the dynamic algorithm of VSMP and SMTC for the 3 pedestrian im-

ages. In all the con�gurations, the dynamic SMTC has a better performance than dynamic VSMP.

The speedup varies between 1% and 11%. Again, the speedup is more important for non-balanced

and semi-balanced workloads, and especially for the cases with large number of multithreaded

processors (PE_MT = 8). In fact, when the number of multithreaded processors increases, the

complexity of �nding the optimal scheduling decision also increases. This is due to the fact that

the scheduling decision for multiple multithreaded processors is di�erent and more complex than

monothreaded processors, which necessitates the need of an e�ective and reactive global thread

scheduler for proper load balancing between the runqueues. Hence, dynamic SMTC gives superior

performance on dynamic VSMP, and this di�erence would be more important if the number of TCs

per PE_MT is bigger than 2.

3.3.3.3 Scheduling overhead

Finally, in Figure 3.20(d), we compare the complexity of the 4 types of thread schedulers. The

results show the average number of cycles taken to complete a scheduling tick. As expected, the

static versions take less time to �nish a scheduling tick compared to their corresponding dynamic

versions. One clear observation is that the scheduling tick of the SMTC dynamic is much longer

than VSMP dynamic, especially when the number of multithreaded processors increases (around

4000 clock cycles di�erence for 8 PE_MTs). The di�erence is expected to increase more when

the number of TC per PE_MT is bigger. This result is not surprising, since the dynamic SMTC
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Figure 3.20: Performance comparison of the di�erent thread scheduling strategies: a) VSMP static v/s dynamic. b)

SMTC static v/s dynamic. c) VSMP dynamic v/s SMTC dynamic. d) Thread scheduler v/s number of clock cycles

per scheduling tick. The speedup line in the �rst 3 �gures is the speedup with respect to the same con�guration.

algorithm has one runqueue per TC, thus performing more tests in order to choose the best TC's

runqueue to allocate the SW task. (see section 3.1.2). In fact, the SMTC has a complexity of

O(NxM), while VSMP is O(N), where N is the number of multithreaded processors and M is the

number of TCs per PE_MT. But, as we saw previously from the results, the scheduling overhead

does not impact the performance, since in an asymmetric architecture, the global thread scheduler

executes in parallel to the computation. On the other hand, in a symmetric approach, the scheduler

executes on the same processor as the computation and hence needs to �nish the scheduling tick

as fast as possible.

In summary, the dynamic SMTC global thread scheduling policy is retained for future explo-

ration.

3.3.4 SCMP v/s MT_SCMP: chip area

In this section, we estimate SCMP and MT_SCMP areas. We want to know the overhead implied

due to multithreading. For this reason, we estimate the area of the components that are a�ected

by multithreading and contribute to increase the overall die area. For instance, the PE system
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(processor and caches) and the interconnection busses (control and data) are the key components

that are a�ected by multithreading. Components such as CCP, on-chip memory and MCMU are

not taken into consideration, since their area is the same for SCMP and MT_SCMP.

In Figure 3.21, we show the area of the processors (Figure 3.21(a)), cache memories estimated

with the CACTI 6.5 tool (Figure 3.21(b)), and the multibus interconnection network (Figure

3.21(c)). For the multibus, we do not consider the area of the wires, so it is only the synthe-

sis results of the I/O ports, bu�ers, and arbiter. The technology used by CACTI tool is based on

ITRS roadmap [125], but it is not similar to TSMC technology. Therefore, the processor system is

not synthesized with the same technology, but this gives us an idea of the relation between cache

size and processor size. So, all these components are synthesized/estimated in 40 nm technology.

(a) (b) (c)

Figure 3.21: Components area in 40 nm technology for a) AntX processor monothreaded and BMT (TSMC) b) L1

cache memory with 16 Byte line and direct-mapped (CACTI 6.5) c) Multibus interconnection network with variable

number of I/O ports (TSMC).

Based on these components area values, we estimate SCMP and MT_SCMP areas. We vary

the number of processors between 1 and 32, and the size of the caches between 1-KB and 32-KB.

In Figure 3.22, we show the percentage increase of each SCMP system with respect to the reduced

SCMP system: 1 monothreaded PE and 1-KB L1 cache memories.

We can notice that as the cache size increases, the di�erence between SCMP and MT_SCMP

systems is negligible. This is because we are using very small cores compared to big L1 cache

sizes. Another observation is the importance and possible transistor e�ciency gain of MT_SCMP

system. In fact, a MT_SCMP architecture with n multithreaded processors can process the same

number of threads as a SCMP system with 2n monothreaded processors. The area overhead of the

SCMP system is much bigger than that of MT_SCMP. So, if we show that the MT_SCMP system

can give comparable performance to that of SCMP, then MT_SCMP is more transistor e�cient.

In the next section, we will examine the performance of both systems using two applications with

di�erent execution models.

3.3.5 SCMP v/s MT_SCMP: performance

In this section, we will compare the performance of SCMP and MT_SCMP architectures. We use

2 embedded applications that suit our requirements in terms of dynamism and parallelism. Each

application has a di�erent execution model. The �rst one, the connected component labeling algo-
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Figure 3.22: Percentage area increase of SCMP with number of processors varying from 1 to 32 and L1 cache

size varying from 1-KB to 32-KB. The processors can be monothreaded and BMT. The percentage area increase is

compared with respect to the initial SCMP system: 1 monothreaded PE and 1-KB L1 cache memories.

rithm described earlier in section 3.3.1.1, has a control-�ow execution model. The second one, the

WCDMA application from the telecommunication domain (see section 3.3.1.2) has a streaming/-

data�ow execution model. Each execution model has its own characteristics that induce di�erent

types of processor stalls as we will see in the following sections.

3.3.5.1 Control �ow

In this experiment, we evaluate the performance and transistor e�ciency of MT_SCMP with re-

spect to SCMP, by running a control-�ow application, connected component labeling, with pedes-

trian3 image (Figure 3.15(c)) as input. As depicted in Figure 3.14, this application has a maximum

thread-level parallelism of 16. Therefore, since the multithreaded processor has 2 TCs, we vary

the number of processors from 1 to 8. In addition, we vary the L1 I$ and D$ sizes from 512-B to

8-KB. In fact, for a cache size greater than 8-KB, the cache hit is almost 100% (see Figure 3.18),

so there is no interest in implementing a multithreaded processor. The L1 caches implements the

write-back + write-allocate cache coherence policy, since it generates less tra�c on the bus between

the caches and the memory. In MT_SCMP, each TC has an equal size of cache. For instance, a

1PE_1K system means that each processor in SCMP has 1-KB of L1$ and each TC in MT_SCMP

has 1-KB. So the L1 cache sizes in MT_SCMP is doubled. This keeps the same cache miss rate

with respect to SCMP, thus it is easier to compare the performances.

In Figure 3.23(a) and Figure 3.23(b), we compare the performances of SCMP and MT_SCMP

respectively. We decompose the total execution time into 3 parts: e�ective execution time, CCP

scheduling overhead, and synchronization overhead. The 'CCP scheduling overhead' is the time

taken by the central controller CCP to schedule threads on the processors. The 'synchronization
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overhead' parameter is equal to zero in the control-�ow application, since it is a run-to-completion

execution model and no threads are synchronizing with each other. In addition to those parameters,

we add the 'context switch penalty' for the MT_SCMP. This penalty is due to switching the TC

and �ushing the processor pipeline during a cache miss.
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Figure 3.23: Performance of SCMP v/s MT_SCMP for control-�ow (labeling) application. The number of pro-

cessors is varied from 1 to 8 and the cache sizes from 512-B to 8-KB. The cache sizes is per TC. 1PE_1K means The

performance is plotted in clock cycles a) SCMP system performance b) MT_SCMP system performance c) Compar-

ison between SCMP and MT_SCMP performance and speedups d) Transistor e�ciency of SCMP and MT_SCMP

with respect to initial system: 1 PE and 512 Byte cache size.

The performance results show that the 'CCP scheduling overhead' is high when the number

of processors is high for both systems. This is due to 2 reasons: the CCP takes longer time to

complete a scheduling cycle when the number of processors is high, and there is no enough thread

parallelism to occupy all the processors. As for MT_SCMP, we notice that the penalty due to

context switching is high when the cache sizes are small. This is logical because there are more

cache misses, hence more local thread context switches.

In Figure 3.23(c), we compare the performance of both systems and we plot the speedup of
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each system with respect to the initial SCMP system: 1 PE and L1$ size equal to 512 Bytes.

We notice that MT_SCMP overcomes the performance of SCMP system. The speedup is higher

when the cache misses are higher. However, when the cache misses are negligible, both SCMP and

MT_SCMP have almost similar performances.

Finally, we compare the transistor e�ciency of both systems with respect to the initial SCMP

system (Figure 3.23(d)). The estimated area of each system is taken from section 3.3.4. The

transistor e�ciency can be greater, equal or less than 1, which corresponds to supralinear, linear,

and sublinear scalability. The latter can be referred as 'typical scalability'. For the majority of the

systems, the transistor e�ciency is sublinear. We can notice that the transistor e�ciency of the

SCMP system is higher than MT_SCMP for most of the system con�gurations.

To summarize, the MT_SCMP architecture gives better peak performance but lower transistor

e�ciency than the SCMP architecture for the control-�ow application. This is the case when

MT_SCMP has a double L1 cache size than SCMP. However, if we consider that the L1 cache

sizes are equal for both architectures, which means that each TC in MT_SCMP has a half cache

size or in other words the PE has an equal cache size as that of SCMP, the results would be di�erent

as shown in Figure 3.24.
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Figure 3.24: Performance and speedup comparison between SCMP v/s MT_SCMP for control-�ow (labeling)

application. The number of processors is varied from 1 to 8 and the cache sizes from 1-KB to 8-KB. The cache sizes

is per PE.

By dividing the cache size of each TC, the number of cache misses is higher for MT_SCMP than

for SCMP. As was shown previously in Figure 3.18, the cache miss rates does not have a linear in-

crease/decrease by varying the cache size. This is why for some con�gurations (i.e: L1 D$ = 1-KB),

the cache miss rate di�erence between a SCMP and a MT_SCMP architecture is not signi�cant,

therefore the MT_SCMP performs better. However, for most of the other cache con�gurations,

the di�erence is almost linear. Thus, even if the multithreaded processors in MT_SCMP are able

to hide some of these latencies, they are not able to perform better than the SCMP architecture.
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This analysis is application dependent and might vary from one application to another depending

on their L1 cache access behavior. In the next section, we will evaluate the performances of SCMP

and MT_SCMP with respect to a streaming application.

3.3.5.2 Data�ow

In this experiment, we evaluate the performance and transistor e�ciency of MT_SCMP with

respect to SCMP, by running a streaming/data�ow application described in section 3.3.1.2: Wide-

band Code Division Multiple Access (WCDMA).

For this experiment setup, we vary the number of processors from 1 to 8 and the L1 I$ and D$

sizes from 256-B to 4-KB. In fact, for a cache size greater than 4-KB, the cache hit is almost 100%,

so there is no interest in implementing a multithreaded processor.

In Figure 3.25(a) and Figure 3.25(b), we compare the performances of SCMP and MT_SCMP

respectively. In the streaming execution model, the 'synchronization overhead' parameter con-

tributes to a non-negligible part of the overall execution time. Initially, we believed that this

overhead can be hidden by using multithreaded processors instead of monothreaded. However, as

Figure 3.25(b) shows, it still occupies almost the same percentage of the overall execution time. In

fact, the CCP scheduler implements a dynamic thread scheduling. When a thread is stalled on a

synchronization, the CCP scheduler is directly informed by the MCMU. Thus, if there are ready

tasks in the scheduling queue, it preempts the stalled processor and executes an active task instead.

The same execution behavior is also applied to MT_SCMP. Thus, the only real limitation is the

application parallelism. If there are not enough task parallelism, then SCMP/MT_SCMP might

su�er from processor stalls due to synchronization overhead. This scenario occurs for the case of 8

processors.

In Figure 3.25(c), we compare the performance of both systems and we plot the speedup of

each system with respect to the initial SCMP system: 1 PE and L1$ size equal to 256 Bytes.

Similarly to the control-�ow application, the MT_SCMP overcomes the performance of SCMP

system. The speedup is higher when the cache misses are higher (small cache size). However, when

the cache misses are negligible, both SCMP and MT_SCMP have almost similar performances.

We notice also that for 8 processors, there is no di�erence between the performances. In fact, for

this con�guration, the application has reached the maximum level of parallelism and the processors

remain stalled most of the time.

Finally, we compare the transistor e�ciency of both systems with respect to the initial SCMP

system (Figure 3.25(d)). The estimated area of each system is taken from section 3.3.4. For the

majority of the systems, the transistor e�ciency is sublinear. We can notice that the transistor

e�ciency of the SCMP system is higher than MT_SCMP for most of the system con�gurations.

To summarize, the MT_SCMP architecture gives better peak performance but lower transistor

e�ciency than the SCMP architecture for the streaming/data�ow application.

3.3.6 Synthesis

In this chapter, we explored the advantages/disadvantages of using multithreaded processors in an

asymmetric MPSoC architecture: SCMP. For this reason, we developed a new multithreaded ISS

in SystemC language and integrated it in SESAM, which is the simulation environment for SCMP.
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Figure 3.25: Performance of SCMP v/s MT_SCMP for streaming (WCDMA) application. The number of pro-

cessors is varied from 1 to 8 and the cache sizes from 256-B to 4-KB. The performance is plotted in clock cycles

a) SCMP system performance b) MT_SCMP system performance c) Comparison between SCMP and MT_SCMP

performance and speedups d) Transistor e�ciency of SCMP and MT_SCMP with respect to initial system: 1 PE

and 256-B cache size.

The new SCMP architecture with multiple multithreaded processors is called MT_SCMP.

We conducted several benchmarks based on a control-�ow and streaming applications in order

to choose which multithreaded processor suits best for MT_SCMP (IMT v/s BMT), which global

thread scheduling for multiple multithreaded processors gives the best performance (VSMP v/s

SMTC), and which asymmetric MPSoC architecture is the most performant and transistor e�cient

(SCMP v/s MT_SCMP).

The results showed that the blocked multithreaded processor (BMT) and the SMTC sched-

uler suits best for MT_SCMP [18], and thus are adapted as �xed system design parameters for

this architecture. Finally, we compared the performances and transistor e�ciency of SCMP and

MT_SCMP by running 2 types of applications: control-�ow and streaming. In order to estimate

both system surfaces, we used synthesis results in 40 nm TSMC technology for the processors and
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the interconnection networks, and estimated the cache sizes using the CACTI 6.5 tool. To summa-

rize the results, the MT_SCMP gave better peak performance, but less transistor e�ciency than

SCMP. In fact, the performance of MT_SCMP highly depends on 5 main parameters: applica-

tion thread-level parallelism, caches miss rate, caches miss latency, memory hierarchy, and global

thread scheduling. The latter implies that for dynamic applications, a dynamic load balancing and

scheduling gives the optimal performance. This is why SCMP is a highly e�cient architecture.

Whether to choose multithreaded processors for SCMP or not, depends on the system designer. If

peak performance is a key parameter, then multithreaded processors are an interesting solution.

However, for transistor e�ciency, monothreaded processors remain a more e�cient solution.

The SCMP architecture is a transistor e�cient architecture for dynamic embedded applications.

However, for high-end massively-parallel dynamic embedded applications with large data sets, there

are lot of parallelism at the thread level (TLP) and at the loop level (LLP) that should be exploited

by the architecture. Thus, SCMP has the following limitations for such applications:

1. Scalability: SCMP is limited to 32 cores. In fact, the CCP is one source of resources contention

and cannot handle e�ciently more than 32 cores. In addition, the surface of the multibus

network increases a lot (order of 10 mm2 in 40 nm TSMC technology) for more than 128 I/O

ports [56], given that each core needs 3 I/O ports. Thus, SCMP does not meet the manycore

requirements for embedded applications.

2. Extensibility: SCMP has a limited on-chip memory for data, which makes it not extensible

for large data set applications.

3. Programmability: Data should be explicitly prefetched from the o�-chip memory using dedi-

cated DMA tasks prior to their utilization by computing tasks. The DMA tasks are identi�ed

and inserted o�ine in the application's CDFG. This lies a burden on the programming envi-

ronment.

4. Parallelism: SCMP does not exploit parallelism at the loop level. Therefore, all the loop

codes are executed sequentially on one PE.

In addition to those limitations, the SCMP architecture does not have enough stall latencies

to be exploited by the multithreaded processors. In fact, SCMP has a dedicated central controller

(CCP) that performs dynamic load-balancing whenever long latency stalls occur due to task syn-

chronization. In this case, the task synchronization overhead will be the same for the monothreaded

and multithreaded processor. Therefore, the only type of stall latencies that remain to be masked

are the memory access latencies due to cache misses, which are very fast in SCMP architecture

(less than 10 cycles).

Based on this conclusion, we will design in the next chapter a new manycore architecture that

tackles the challenges of future high-end massively parallel dynamic applications called: AHDAM

architecture.
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Chapter 4

AHDAM: an Asymmetric Homogeneous

with Dynamic Allocator Manycore

architecture

Any intelligent fool can make things bigger, more complex, and more violent. It

takes a touch of genius, and a lot of courage, to move in the opposite direction. � Albert

Einstein, physicist
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As we saw previously in chapter 1, a manycore architecture is a natural solution for future high-

end massively parallel embedded applications. Those applications are becoming more dynamic

with a variable execution time. Thus, an asymmetric homogeneous MPSoC architecture handles

e�ciently this dynamism by using a dedicated control core that performs dynamic load-balancing

of the tasks between the processing resources.

In addition, we saw in chapter 3 that currently existing asymmetric homogoneous architectures,

such as SCMP, are not scalable to the manycore level. Furthermore, the manycore architecture

should support the processing of large data set sizes that cannot be known in advance and does

not �t in the on-chip memory. This implies a frequent access to the o�-chip memory that stalls the

processors and degrades the performance. For this reason, multithreaded processors could be one
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key element to increase the aggregate IPC of the chip with little die area overhead. Therefore, there

is a need for new transistor and energy e�cient manycore architectures that tackle the challenges

of future massively-parallel dynamic embedded applications.

For all these requirements, we present a new manycore architecture called AHDAM [17]. AH-

DAM stands for Asymmetric Homogeneous with Dynamic Allocator Manycore architecture. It is

used as an accelerator for massively parallel dynamic applications. In particular, it is designed

to accelerate the execution of the loop codes, which often constitutes a large part of the overall

application execution time.

In this chapter, we present in details the AHDAM architecture. First, we start by describing

its applicative system environment in section 4.1 and its programming model in section 4.2. Then,

we explain the overall architecture description and the motivations for each architectural choice in

section 4.3. In particular, we motivate the design of the memory hierarchy architecture and the

need for blocked multithreaded processors as key processing elements by conducting an analytical

study. The functionalities and interoperabilites of the hardware components are described in details.

Then, in section 4.4, we illustrate the AHDAM's execution model. One particularity is that the

loops can be parallelized using OpenMP or any fork-join programming model, and then executed

on special processing elements. Finally in section 4.5, we analyze the maximal scalability that the

AHDAM architecture can reach by conduct a bandwidth analysis study.

4.1 System description

AHDAM is used as an accelerator component for high-end massively parallel dynamic embedded

applications as shown in Figure 4.1.
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Figure 4.1: AHDAM system environment: multiple host CPUs o�oading massively-parallel applications to the

AHDAM architecture. The large data set is stored in multiple o�-chip DDR3 memories.

Depending on the computation requirements, it can be used as a shared accelerator for multiple

host CPUs, or a private accelerator for each host CPU. The host CPU is running an operating

system or bare-metal applications. Typical applications are from the cloud computing, database,

and networking domains. During their runtime, the applications' codes and data are stored in

multiple DDR3 memory banks. Those applications are massively-parallel, hence they require lot of
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4.2. AHDAM programming model

computation power that is highly e�cient to be processed by AHDAM architecture. When a host

CPU encounters a massively-parallel application, it sends an execution demand to AHDAM and

wait for its acknowledgment. Then, the host CPU o�oads the massively-parallel application to

AHDAM. The application is already decomposed into concurrent tasks. The tasks are represented

in a CDFG graph that shows their control dependencies, hence their activation sequence. AHDAM

has su�cient resources to process multithreaded tasks in parallel. In addition to the task level

parallelism (TLP), it can increase the parallelism by exploiting the concurrency at the loop level

(LLP). In fact, most of the application execution time is spent in loops.

In the next section, we will explore in more details the AHDAM programming model.

4.2 AHDAM programming model

The programming model for AHDAM architecture is speci�cally adapted to dynamic applications

and global scheduling methods. It is based on a streaming programming model. The chip's asym-

metry is tackled on 2 levels: a �ne-grain level and a coarse-grain level. The proposed programming

model is based on the explicit separation of the control and the computing parts as shown in Figure

4.2. A sequential application is manually cut into independent tasks from which explicit execu-

tion dependencies are extracted (TLP). Then, the parallel application follows a second path where

OpenMP pragmas are inserted at the beginning of possibly parallelized 'for-loop' blocks (�ne-grain).

In fact, OpenMP [106] is a method of Single-Program-Multiple-Data (SPMD) parallelization, where

each program contains one or more loop regions (LLP). The master thread forks a speci�ed number

of slave threads, and a task is divided among them. Then, the child threads run in parallel, with

the runtime environment allocating threads to di�erent cores. A possible solution to automate the

application decomposition process and insertion of OpenMP pragmas is to use the PAR4ALL tool

from HPC Project [108]. The PAR4ALL tool supports AHDAM HAL for proper tasks generation.

At this stage, the computing tasks and the control task are extracted from the application, so as

each task is a standalone program. The greater the number of independent and parallel tasks that

are extracted, the more the application can be accelerated at runtime, and the application pipeline

balanced.

The control task is a Control Data Flow Graph (CDFG) extracted from the application (Petri

Net representation), which represents all control and data dependencies between the computing

tasks (coarse-grain). The control task handles the computing task scheduling, activations, and

other control functionalities, like synchronizations and shared resource management for instance.

A speci�c and simple assembly language is used to describe this CDFG and must be manually

written or automatically generated by the PAR4ALL tool. A speci�c compilation tool is used for

the binary generation from the CDFG.

For the computing tasks, a speci�c Hardware Abstraction Layer (HAL) is provided to manage all

memory accesses and local synchronizations, as well as dynamic memory allocation and management

capabilities. A special on-chip unit called MCMU (Memory Con�guration and Management Unit)

is responsible for handling these functionalities (more details in section 4.3.1). With these functions,

it is possible to carry out local data synchronizations or to let the control manager taking all control

decisions. Concurrent tasks can share data bu�ers through local synchronizations handled by the

MCMU (streaming execution model). Each task is de�ned by a task identi�er, which is used to
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Figure 4.2: AHDAM programming model and an example of a typical CDFG control graph.

communicate between the control and the computing parts. A task suspends/resumes its execution

based on data availability from other tasks. A data is allocated in a data bu�er. It follows the

streaming/data�ow execution model. When a data is produced by Task A, then Task B resumes its

execution. When a data is consumed by Task B, then it suspends its execution. Each task has the

possibility to dynamically allocate or deallocate bu�ers (or double bu�ers) in the shared memory

space through speci�c HAL functions. An allocated bu�er is released when a task asks for it and

is the last consumer. A bu�er cannot be released at the end of the execution of the owner task. A

dynamic right management of bu�ers enables a data�ow execution between the tasks: it is handled

by the MCMU.

Once each application and thread has been divided into independent tasks, the code is cross-

compiled for each task. For heterogeneous computing resources, the generated code depends on

the type of the execution core. In the next section, we will describe in details how the AHDAM

architecture is designed.

4.3 AHDAM architecture design

AHDAM architecture is an improved version of the SCMP architecture. Our design choices are

based on the benchmarking results conducted in chapter 3 on SCMP with multithreaded processors

and the conclusion deduced in section 3.3.6. We identi�ed the following limitations in the SCMP

architecture:
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1. Scalability: SCMP is limited to 32 cores. In fact, the CCP is one source of resources contention

and cannot handle e�ciently more than 32 cores. In addition, the surface of the multibus

network increases a lot (order of 10 mm2 in 40 nm TSMC technology) for more than 128 I/O

ports [56], given that each core needs 3 I/O ports. Thus, SCMP does not meet the manycore

requirements for embedded applications.

2. Extensibility: SCMP has a limited on-chip memory for data, which makes it not extensible

for large data set applications.

3. Programmability: Data should be explicitly prefetched from the o�-chip memory using dedi-

cated DMA tasks prior to their utilization by computing tasks. The DMA tasks are identi�ed

and inserted o�ine in the application's CDFG. This lies a burden on the programming envi-

ronment.

4. Parallelism: SCMP does not exploit parallelism at the loop level. Therefore, all the loop

codes are executed sequentially on one PE.

In this section, we present the AHDAM architecture. First, we describe the architecture and its

main components. Then, we present the memory architecture and we build an analytical model for

the processor-memory system to compare di�erent memory hierarchies and the processor type. We

show that the split-memory hierarchy adapted in AHDAM is more performant than other systems.

Afterward, we explain the control unit and Tile unit roles and their interoperabilities. Also, by

using a modi�ed analytical model, we show that the blocked multithreaded processor with 2 TCs

boosts the performance over the monothreaded processor. Finally, we conduct a bandwidth analysis

study on di�erent parts of the architecture and show the maximum scalability that AHDAM can

reach.

4.3.1 Architecture description

In fact, the architecture's asymmetry is tackled on 2 levels: a coarse-grain level and a �ne-grain

level. The coarse-grain level represents the concurrent tasks in the CDFG application graph as was

shown in section 4.2, while the �ne-grain level represents the tasks' parallelized loop-region codes.

The AHDAM architecture is shown in Figure 4.3.

AHDAM architecture is composed of 3 main parts: memory units, control unit, and computation

units. The AHDAM architecture is an enhancement to the SCMP architecture, thus they share

some similar functionalities. For instance, the control unit, tasks prefetching and the MCMU are

the same. The latter has some added functionalities that will be explained later in this section.

As for the di�erences, AHDAM architecture has a di�erent memory hierarchy and a di�erent

interpretation of the computation unit. In fact, the computation unit is represented as a Tile

instead of a SCMP's PE. In addition, there are no DMA engines, since data load/store from

external memory is implemented in the task code to easy the programmability. In the following

sections, we will describe in more details the functionality of each unit.

4.3.1.1 Memory units

The AHDAM memory hierarchy is composed of separated L2 instruction memory and data cache

memories.
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Figure 4.3: The AHDAM architecture.

The instruction memory is a shared on-chip multi-banked SRAM memory that stores the codes

of the tasks. The instruction memory size can be well dimensioned since it is designed for the worst-

case size of the di�erent sets of application codes that will be running on AHDAM simultaneously. In

addition, the instruction memory is a shared memory, which is suitable for inter-tile task migration

and load-balancing. The shared on-chip instruction memory is the last level of instruction memory.

As we will see later, the execution model assumes that the instructions are already prefetched

in the instruction memory. Besides, it is implemented as a multi-banked memory instead of a

single-banked multiple Read/Write ports memory. To compare the area occupation of both types

of memories, we use the CACTI 6.5 tool [100] in 40 nm technology and we vary the number of

memory banks v/s the number of R/W ports for a 1-MB memory. The area occupation of each

con�guration is shown in Figure 4.4. It is clear that a multi-banked memory with 1 R/W port uses

less area than one-bank memory with multiple R/W ports.

The multi-bank memory reduces the contentions per bank when multiple Tiles are accessing

simultaneously the instruction memory. This happens when the instruction codes for the tasks are

stored in di�erent memory banks.

The Instruction interconnection network connects the M Tiles to the multi-banked instruction

memory. It is a multibus. According to the author [56], the multibus occupies less die area that

other types of NoCs for small to medium interconnections, and has less energy consumption and

memory access latency.

On the other hand, since we target applications with large data sets, we implement a L2

data cache memory instead of an on-chip SRAM memory as in SCMP. Cache memories have a

bigger area and are less area/energy e�cient than SRAM memories. But caches facilitates the

programmability since the memory accesses to external DDR3 memory are transparent to the
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6.5 in 40 nm technology. The surface in mm2 is plotted as log-scale.

programmer and independent from the data set size. This eliminates the need for explicit data

prefetching using DMA engines which hardens the task decomposition and synchronization as it

happens with the IBM CELL processor [120] for instance. All the L2 data cache memories are

connected to an on-chip DDR controller, which transfers the data memory access requests to the

o�-chip DDR3 memories. More details will be provided in section 4.3.1.3.

A special unit called MCMU (Memory Con�guration and Management Unit) handles the mem-

ory con�guration for the tasks. It divides the memory into pages. In addition, MCMU is responsible

of managing the tasks' creation and deletion of dynamic data bu�ers at runtime, and synchroniz-

ing their access with other tasks. There is one allocated memory space per data bu�er. A data

bu�er identi�er is used by tasks to address them. Each task has a write exclusive access to a data

bu�er. Since all the tasks have an exclusive access to data bu�ers, the data coherency problems

are eliminated without the need for speci�c coherency mechanisms. A data bu�er access request

is a blocking demand, and another task can read the data bu�er when the owner task releases its

right. Multiple readers are possible even if the memory latency will increase with the number of

simultaneous accesses.

4.3.1.2 Control unit

In AHDAM, the CCP (Central Controller Processor) controls the tasks prefetching and execution.

It has similar properties to the SCMP's CCP as described in section 1.3.1. The CCP module is

shown in Figure 1.6(b). The application CDFG is stored in dedicated internal memories. The CCP

is a programmable solution that consists of an optimized processor for control called AntX (see

section 2.2.1), which is a small RISC 5-stage, in-order, and scalar pipeline core. Thus, the RTOS
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functionalities are implemented in software. The programmability feature of CCP allows us to

implement a new and optimised scheduling algorithm in a small amount of time. In addition, the

CCP has special interfaces for receiving/sending interruption demands to the computation units.

4.3.1.3 Computation units

The AHDAM architecture supports M Tiles. The CCP views a Tile as 1 computation unit. But

actually, a Tile has one MPE and N LPEs. In addition, it has a 'special' scratchpad memory

called Thread Context Pool that stores the thread contexts to be processed by the LPEs. The

Thread Context Pool represents the tasks runqueue per Tile, thus AHDAM has M runqueues. Each

runqueue can have one or more thread contexts, where each thread context holds the following

information: start address, input arguments, parent thread identi�er, child thread identi�er, execu-

tion state, etc...The occupation status of all the Tiles' Thread Context Pool are updated in a special

shared scratchpad memory unit called the TCP state. The TCP state is shared by all the Tiles.

The MPE is the Master PE that receives the execution of a coarse-grain task or master thread

from the CCP. It is implemented as a monothreaded processor with su�cient resources (ALUs,

FPUs, etc...) for executing the tasks' serial regions. On the other hand, the LPE or Loop PE,

is specialized in executing child threads that represent loop regions. The LPEs are implemented

as blocked multithreaded VLIW processors with 2 hardware thread contexts (TC). In fact, the

blocked multithreaded processor increases the LPE's utilization by masking the long access to the

o�-chip DDR3 memory that stalls the processors. In addition, the VLIW architecture [48, 115] is

a transistor e�cient solution that increases the LPE performance by exploiting the ILP of the loop

tasks. Each MPE and LPE has a private L1 I$, L1 D$, and L2 D$. For the multithreaded LPE, the

L1 I$ is shared by both TCs, while the L1 D$ is segmented per TC. In this way, we privilege the

execution of 2 child threads from the same parent thread, while limiting their interferences on the

data memory level. The Tile NoC, which is a set of multiple busses interconnecting all the units to

each other and to the external world (control and memory busses), is responsible of forwarding the

cores' request accesses to the corresponding external unit. However, for the memory data accesses,

the requests are grouped by a special MUX/DEMUX unit that forwards the data request to the

DDR controller, then to the o�-chip DDR3 memory. The Tile NoC provides one serial connection

of the Tile to the external world, which eases the implementation of the Control and Instruction

busses.

In summary, AHDAM provides architectural solutions that give ideal conditions for massively

parallel dynamic applications with OpenMP-like tasks such as:

• Two-level asymmetries: this tackles the dynamism of the applications on the task level and

loop level. The former is handled by the CCP and the latter by the MPEs and LPEs. The

CCP handles dynamically the load-balancing of the tasks between the Tiles. The LPEs

implement a farming execution model to improve the scheduling process for irregular loops.

• Manycore: for providing su�cient processing elements to execute the massively parallel tasks.

• Shared on-chip instruction memory : for fast inter-tile task migration and load balancing.

• Shared o�-chip data memory : for supporting large data set applications that cannot �t nor-

mally in the on-chip data memory.

88



4.3. AHDAM architecture design

• Shared inter-tiles LPEs: for handling variable tasks' computing requirements and increasing

the overall resources occupation. It will be explained in more details in section 4.4.

• Multithreaded LPEs: for hiding the LPE pipeline stalls when accessing the o�-chip DDR3

memory, hence increasing the pipeline utilization.

In the following sections, we motivate di�erent architectural design choices. In particular, we

construct an analytical model for the memory hierarchy. Two processing elements are considered:

monothreaded and blocked multithreaded processors. We demonstrate why the L2 instruction and

data memory are splitted, and the advantage of implementing the LPEs as blocked multithreaded

processors.

4.3.2 Why splitting the L2 instruction and data memories?

There is always a compromise for choosing the best memory architecture. In our case, the com-

promise is the on-chip memory size v/s the processor performance. A good architecture design is

achieved when the processor is able to achieve a high performance with the least required on-chip

memory. The processor's CPI is one key metric to measure its performance. Therefore, we build

an analytical model that calculates the monothreaded processor's CPI for di�erent memory hier-

archy architectures. We model 4 di�erent types of processor-memory architectures: SCMP with

1-level cache memory and on-chip main memory, SCMP with 1-level cache memory and o�-chip

main memory, SCMP with 2-levels cache memory and o�-chip main memory, AHDAM with 1-level

instruction cache memory and on-chip instruction main memory and 2-levels data cache memory

and o�-chip data main memory. The 4 processor-memory systems are shown in Figure 4.5. The

processor that is considered in this study is monothreaded, scalar, in-order, with a 5-stage pipeline.

But this study can also apply for a VLIW processor.

The CPI formula for a processor is given by equation 4.1:

CPI = CPIbase+ (1 +%loads/stores) ∗ StallCyclesPerMemoryAccess (4.1)

The CPI formula measures the average clock cycles to execute an instruction. The formula

states that the CPI is the summation of the base CPI and the total number of memory accesses

from the IF-stage and MEM-stage multiplied by the average number of stall cycles for each memory

access (StallCyclesPerMemoryAccess). The base CPI is the CPI with an ideal memory of zero cycle

access. Thus, the base CPI captures only the pipeline data and control dependencies stalls between

the instructions. This number depends on the application code. But for case of simplicity, we

consider that almost 10% of the instructions exhibit pipeline stalls for a 5-stage pipeline. Thus,

CPIbase is equal to 1.1.

Now, the remaining parameter to compute the CPI is the StallCyclesPerMemoryAccess. This

parameter depends on the processor type, the memory hierarchy, the cache memories miss rates,

and the access time between each memory stages. Let us consider the processor-memory system of

Figure 4.5(a). In Table 4.1, we show the reasoning for calculating the StallCyclesPerMemoryAccess

parameter using the probability theory. For each memory unit, we note its memory access time

cost and the probability of accessing this memory throughout the execution. Therefore, for the

monothreaded processor, if the number of memory units is n, then the number of cases is also n.
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Figure 4.5: 4 di�erent processor-memory system architectures.

Then, StallCyclesPerMemoryAccess for the monothreaded processor is calculated by summing

the cost and the probability of all the memory units as shown in equation 4.2:

StallCyclesPerMemoryAccess =
∑

CostCycles ∗ P (TC1) (4.2)

The same reasoning applies for all the others processor-memory systems. Now, let us compare

the CPI performance for the 4 systems. There are lot of architectural parameters that can be

varied. But to facilitate the readability and the interpretation of the results, we will �x the following

parameters:

• CPIbase: as mentioned earlier, the base CPI with ideal memory is equal to 1.1 for a scalar
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a1 = %instructions x I$_L1_HitRate

b1 = %data x D$_L1_HitRate

c1 = %instructions x (1 ‐ I$_L1_HitRate) + 
%data x (1 – D$_L1_HitRate)

Table 4.1: Probability table showing the stall cycles per memory access of level 1 memory hierarchy with seperate

I$ and D$ for a monothreaded PE. Each memory unit in the �rst column has a penalty time in the second column.

The third column shows the probability of TC1 to access the corresponding memory unit.

and 5-stage pipeline.

• Percentage of load/store instructions: we assume a rule of thumb that 20% of an application

instructions are load/store instructions (%loads/stores). This implies that the fraction of

instruction fetches out of all memory accesses (%instructions) and the fraction of data accesses

out of all memory accesses (%data) are around 83% and 17% respectively.

• Memory access time: we consider that a L1 cache memory access time (s1) is included in the

CPIbase with no extra penalty, the access to the on-chip main memory and the L2 cache

memory takes 10 cycles taking into consideration memory bank contentions, and the access

to the o�-chip main memory takes 50 cycles. Any small changes in the latency values do not

alter our conclusions.

• L2 cache memory hit rate: the L2$ memory hit rate is �xed to 80%, which is a reasonable

number for most of the systems.

The only variable parameters are the L1 I$ and D$ hit rate, which vary from 80% to 100%.

In Figure 4.6, we show the CPI for all the 4 processor-memory systems, while varying the L1

I$ and D$ hit rate.

We observe that the processor performance in the SCMP base memory architecture (Figure

4.6(a)) with an on-chip main memory has the lowest CPI, hence the best performance. However,

this implies that SCMP should have enough on-chip memory to store all the applications codes and

data, which is not suitable for large-data set applications. In the second system (Figure 4.6(b)), the

chip has a limited on-chip cache memory, and then it accesses the o�-chip main memory whenever

a cache miss occurs. In this case, the on-chip memory size is minimal but the processor might su�er

from severe pipeline stalls due to the long o�-chip memory access time. The CPI reaches 13 for

the case of 80% L1 I$ and D$ hit rate. To limit the stall time penalty and increase the processor

utilization, most manufacturers adapt a 2-levels on-chip cache memory. This model improves the

processor's CPI as can be seen in Figure 4.6(c), but its performance is still lower than the base

SCMP architecture. If we examine the key parameters that a�ect the overall performance, we

observe that a typical application has 4/5 of instruction accesses and 1/5 of data accesses. The

91



Chapter 4. AHDAM: an Asymmetric Homogeneous with Dynamic Allocator
Manycore architecture

0.8 

0.86 

0.92 

0.98 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 

L1
 D

$
 h

it
 r

at
e

 

C
P

I 

L1 I$ hit rate 

3-3.5 

2.5-3 

2-2.5 

1.5-2 

1-1.5 

0.5-1 

0-0.5 

(a) Monothreaded PE CPI with 1-level cache

memory and on-chip main memory (10 cy-

cles)

0.8 

0.86 

0.92 

0.98 

0 

2 

4 

6 

8 

10 

12 

14 

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 

L1
 D

$
 h

it
 r

at
e

 

C
P

I 

L1 I$ hit rate 

12-14 

10-12 

8-10 

6-8 

4-6 

2-4 

0-2 

(b) Monothreaded PE CPI with 1-level cache

memory and o�-chip main memory (50 cy-

cles)

0.8 

0.86 

0.92 

0.98 

0 

1 

2 

3 

4 

5 

6 

7 

8 

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 

L1
 D

$ 
h

it
 r

at
e

 

C
P

I 

L1 I$ hit rate 

7-8 

6-7 

5-6 

4-5 

3-4 

2-3 

1-2 

0-1 

(c) Monothreaded PE CPI with 2-levels

cache memory (L2 access=10 cycles) and o�-

chip main memory (50 cycles)

0.8 

0.86 

0.92 

0.98 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 

L1
 D

$ 
h

it
 r

at
e

 

C
P

I 

L1 I$ hit rate 

4-4.5 

3.5-4 

3-3.5 

2.5-3 

2-2.5 

1.5-2 

1-1.5 

0.5-1 

0-0.5 

(d) Monothreaded PE CPI with 1-level in-

struction cache memory and on-chip instruc-

tion main memory (10 cycles) and 2-levels

data cache memory (10 cycles) and o�-chip

data main memory (50 cycles)

Figure 4.6: CPI performance of 4 di�erent processor-memory system architectures. A smaller CPI is better.

most design limiting factor is the variable data set size that varies a lot between the applications.

Therefore, in AHDAM architecture, we integrate an on-chip instruction memory similar to that

of SCMP and has fast access times. The data memory hierarchy is splitted from the instruction

memory. Each processor has its private L1 D$ and L2 D$ on-chip memories, while the large data

set is stored in an o�-chip memory that is accesses during L2 D$ memory misses. As can be seen in

Figure 4.6(d), this model improves the processor utilization and has almost the same performance

as the base SCMP architecture. In addition, the on-chip memory size is almost similar to the third

system (Figure 4.5(c)), since the instruction memory size does not occupy lot of space compared

to the data memory. Therefore, AHDAM memory architecture has the best compromise compared

to the other 3 processor-memory systems. Table 4.2 summarizes our discussion.

92



4.3. AHDAM architecture design

Table 4.2: Comparison between the 4 processor-memory systems. AHDAM memory hierarchy architecture has the

best compromise between on-chip memory size and processor performance.

4.3.3 Why is the LPE a blocked multithreaded processor?

After we have de�ned AHDAM memory architecture in section 4.3.1, now we will examine the e�ect

of replacing the monothreaded processor with a blocked multithreaded processor with 2 hardware

TCs. For the BMT processor, the L1 instruction and data cache memories are segmented per TC

as shown in Figure 4.7(a).

To build the analytical model for the BMT processor, we apply the same reasoning as for the

monothreaded processor discussed in section 4.3.2. For case of simplicity, we will show the approach

for the SCMP system with on-chip memory and with a BMT processor with 2 TCs (see Figure

4.7(b)).

Table 4.3 shows the reasoning for calculating the StallCyclesPerMemoryAccess parameter for

the BMT processor with 2 TCs (TC1 and TC2). Each TC can be in one of the memory units. So

�rst, we consider all the possible combinations between the memory units of both TCs. Then, for

each combination, we choose which TC is allowed to execute depending the scheduling protocol, and

we note the cost in cycles and the probability of accessing each memory unit. For a BMT processor

with m TCs and a memory system with n units, the total number of possible combinations is nm.

Then, StallCyclesPerMemoryAccess for the BMT processor is calculated by summing the cost

and the probability of all the memory units as shown in equation 4.3:

StallCyclesPerMemoryAccess =
∑

CostCycles ∗ P (TC1) ∗ P (TC2) (4.3)

We �x the same parameters (CPIbase,Percentage of load/store instructions, Memory access

time, L2 cache memory hit rate) as done previously in section 4.3.2, and we vary only the L1 I$

and D$ hit rate between 80% and 100%.

In Figure 4.8(a), we show the CPI for the AHDAM architecture (see Figure 4.7(a)) with a BMT

processor and in Figure 4.8(b) we compare its speedup with respect to the same system with a

monothreaded PE.
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Figure 4.7: 2 di�erent processor-memory system architectures with a BMT processor.

a1 = %instructions1 x I1$_L1_HitRate

b1 = %data1 x D1$_L1_HitRate

c1 = %instructions1 x (1 – I1$_L1_HitRate) + 
%data1 x (1 – D1$_L1_HitRate)

a2 = %instructions2 x I2$_L1_HitRate

b2 = %data2 x D2$_L1_HitRate

c2 = %instructions2 x (1 – I2$_L1_HitRate) + 
%data2 x (1 – D2$_L1_HitRate)

Table 4.3: Probability table showing the stall cycles per memory access of level 1 memory hierarchy with seperate

and segmented I$ and D$ for a blocked multithreaded PE.

It is clear from these results that the BMT processor increases the pipeline utilization by exe-

cuting another TC while there are long waiting stall cycles, hence a lower CPI. The BMT processor
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Figure 4.8: CPI performance of AHDAM with BMT processor compared to monothreaded processor.

with 2 TCs has a performance gain that reaches 175% (for 80% L1 cache hit rate) compared to

the monothreaded PE for the AHDAM architecture. As the cache hit rate reaches 100%, we see

in Figure 4.8(b) that there will be no performance gain. Therefore, there is a possibility to reduce

the cache sizes, hence less on-chip memory die area and still guarantee a performance gain for the

BMT processor. In summary, the LPE cores are BMT cores with 2 TCs instead of monothreaded

cores in AHDAM.

4.4 Execution model

In this section, we describe a typical execution model sequence in the AHDAM architecture. At the

beginning, AHDAM receives an application execution demand from an external host CPU through

the System bus. The CCP handles the communication. It fetches the application task dependency

graph (CDFG), stores it in its internal memory, and checks the next tasks ready to run to be

pre-con�gured by the MCMU. When the MCMU receives a task pre-con�guration demand from

the CCP, it con�gures the shared instruction memory space and allocates the necessary free space,

then it fetches the tasks instruction codes from the o�-chip DDR3 memory using an internal DMA

engine, and �nally it creates internally the translation tables. At this stage, the CCP is ready to

schedule and dispatch the next tasks to run on available computation units through the Control

bus.

Each task has serial regions and parallel regions. The parallel regions can be the parallelized

loop codes using a fork-join programming model such as OpenMP pragmas. For instance, let us

consider the code example shown in Figure 4.9. It consists of 3 serial regions (S1,S2,S3) and 2

parallel regions (P1,P2). The thread execution is processed in 4 steps: 1) executing the serial

region 2) forking the child threads 3) executing the child threads in parallel 4) joining the child
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threads.

void main() 
{

const int N = 100000, M = 5000000; 
int i, a[N], b[M];

Initialize_vector(&a[0]); //serial part S1

#pragma omp parallel for //parallel part P1
for (i = 0; i < N; i++) //irregular P1

if ( (a[i] % i) == 1)
a[i] = 2 * i; 

else if (a[i] % i) == 2)
a[i] = 4 * i + 1;

else
a[i] = a[i] * i;

Initialize_vector(&b[0]); //serial part S2

#pragma omp parallel for //parallel part P2
for (i = 0; i < M; i++) //regular P2

b[i] = 4 * i + 5;

Print_vector(&a[0], &b[0]); //serial part S3

return 0; 
}

FORK

JOINJOIN

LPELPE
P1P1

IRREGULARIRREGULAR

FORK

JOINJOIN

LPELPE
P2P2

REGULARREGULAR

Figure 4.9: A task code example of serial and parallel regions using OpenMP pragmas (fork-join model) allocated

by the CCP on a MPE.

Fork: The MPE executes the serial region of the task (S1). When it encounters a loop region

using OpenMP pragmas (P1), the MPE executes a scheduling algorithm that uses a heuristic to fork

the exact number of child threads in the appropriate Tiles' Thread Context Pool. The scheduling

algorithm is part of a modi�ed OpenMP runtime. The heuristic determines the maximum number

of parallel child threads required to execute the loop as fast as possible based on: 1) the data set size

2) the number of cycles to execute one loop iteration 3) the Tiles' Thread Context Pool occupation

using the shared TCP State memory 4) the cost of forking threads in the local and other Tiles.

If possible, the algorithm favors the local Thread Context Pool since the fork and join process are

done faster by avoiding the access to multiple busses. However, in some cases, the local Thread

Context Pool is full or not su�cient while the ones in other Tiles are empty. Therefore, the local

MPE has the possibility of forking the child threads in others Thread Context Pool by verifying

their availability using the shared TCP state memory. This can be the case for the parallel region

P2 in Figure 4.9. Finally, the MPE sends the number of forked child threads to the local Thread

Context Pool in order to set a counter, then it goes into a 'dormant' mode to reduce the energy

consumption.

Execute: Then, each LPE (Loop PE) TC executes one child task instance from the local Thread

Context Pool until completion. Forked parallel child threads are executed in a farming model by the

LPEs. As soon as a LPE is idle, it spins on the local Thread Context Pool semaphore trying to fetch

another child thread context. This type of execution model reduces the thread scheduling time and
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improves the LPEs occupation rate. In addition, it optimizes the execution of irregular for-loops.

In fact, some for-loops have di�erent execution paths that render their execution highly variable

as shown in parallel region P1 in Figure 4.9. This scheduling architecture resembles the SMTC

(Symmetric Multi-Thread Context) scheduling model with the MPE playing the role of the global

controller. This has been shown to be the best scheduling architecture for multiple multithreaded

processors [18] (see section 3.3.3.1).

In AHDAM, we implement a fork-join model with synchronous scheduling: the master thread

forks the child threads, then waits to join until all the child threads have �nished their execution.

Therefore, during the execution of the parallel child threads, the MPE is in a dormant mode and

is not preemptable by the CCP. There are 2 advantages from using this execution model: 1) the

LPEs have a full bandwidth to the memory and are not disturbed by the MPE execution 2) easier

'join' process.

Join: When a child thread �nishes execution, it sends a message to the corresponding Thread

Context Pool, then �ushes its L1 and L2 caches, which implement the write-back cache policy.

Then, the Thread Context Pool decrements the counter that corresponds to the master thread.

When the counter reaches zero, all the child threads have �nished their execution and the master

thread is ready to join. Thus, the Thread Context Pool preempts the MPE. The MPE leaves the

dormant mode, �ushes its L1 and L2 caches, and continues the execution of the serial region (S2).

4.5 Scalability analysis

AHDAM architecture is designed for the manycore era. But what is the maximum number of cores

that can be integrated before experiencing performance drawbacks? To answer this question, we

need to analyze each architectural component that might limit AHDAM's scalability.

AHDAM architecture is designed to be scalable horizontally (M Tiles) and vertically (N LPEs).

The horizontal scalability is bounded by the control bus bandwidth, the CCP reactivity, and the

DDR3 controller bandwidth plus its maximum supported number of master interfaces. On the

other hand, the vertical scalability is bounded by the DDR3 controller bandwidth allocated for

each Tile and the MUX/DEMUX component. Thus, the maximum number of Tiles and LPEs is

bounded by the minimal number of these 4 parameters. In the following sections, we will explore

each parameter in details.

4.5.1 Control bus dimensioning

The control bus is the interconnection network where the tasks' execution requests are sent from

the CCP to all the Tiles' MPE as shown in Figure 4.10.

Let us assume that the MPEs and CCP have a frequency of 500 MHz (T=2ns) and that the

control bus is operating on 250 MHz, that is half the processor's frequency. This implies that a

32-bit MPE (4 Bytes) generates a peak bandwidth of 2 GBps and a 32-bit bus supports 1 GBps

peak bandwidth. However, the CCP-MPE communicates normally during the start and the end of

a task. And, each communication packet is equal to 64 Bytes, which are the information needed

to start the execution of a task. So, the overall communication bandwidth depends heavily on the

task granularity. Let us vary the task granularity from 0.01 to 100 µs. The maximum number of

MPEs that can be supported by a 32/64/128-bit control bus are shown in Figure 4.11:
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CCP

MPE MPE MPE
xM

1- Start Task i
2- Stop Task i

3- End Task i

Control bus

Figure 4.10: AHDAM control bus connecting the CCP with M MPEs.
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These results show the optimal case (ideal bus arbiter) that renders the bus overdimensioned.

In fact, there are more communications that happen through the control bus, such as MPE-MCMU

communication. It is clear from this graph that the task granularity has a major impact on the

control bus dimensioning, thus the maximum number of supported MPEs. It should be equal or

greater to 5 µs in order to support more than 100 MPEs.

4.5.2 CCP reactivity

As stated earlier in section 1.2.2.3, the main drawback of asymmetric architectures is their scalability

and the centralized core's reactivity. The centralized control core su�ers from contentions when
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the number of computing cores and application tasks increases, hence the scheduling overhead of

the central core also increases as shown in Figure 4.12. This means that the computing cores are

stalled while waiting the scheduling decision of the control core.
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Figure 4.12: CCP scheduling tick length for variable number of PEs (1->32) and tasks (4->64). The application

is the connection component labeling with variable levels of parallelism (4->64).

As we can notice, the main factor for a high scheduling overhead is the number of tasks to be

scheduled and not the number of cores. Particularly for SCMP, the author [150] has shown that the

tasks length should be equal or greater than 10 times the CCP scheduling tick length, in order to

guarantee the cores' occupation rate to be greater than 85%. This means that for a CCP running at

500 MHz and an average CCP scheduling tick time of 10000 cycles, the scheduling time is equal to

20 µs. Thus, the minimal task length should be equal or greater to 200 µs (order of 10). Therefore,

given the task length constraint and by matching it with the control bus bandwidth constraint in

Figure 4.11, the control unit can support more than 1000 computing cores before starting to su�er

from performances degradation. In AHDAM, the CCP core is the same as in SCMP.

This implies that an asymmetric architecture with a central controller should support medium

and coarse-grained tasks that have an execution time larger than the 10 times the CCP scheduling

tick time. As for �ne-grained tasks, they should have a di�erent scheduling model, such as farming.

In AHDAM, we support coarse-grained tasks on the CCP-MPE level for task-level parallelism and

�ne-grained tasks on the MPE-LPE level for loop-level parallelism.

In summary, the control bus bandwidth and the CCP reactivity are notlimiting factors for the

number of supported Tiles, since the tasks implemented on the CCP level are coarse-grained tasks.

99



Chapter 4. AHDAM: an Asymmetric Homogeneous with Dynamic Allocator
Manycore architecture

4.5.3 DDR3 controller

AHDAM has to exchange data with the outside world, mainly the DDR3 SDRAMs. To facilitate this

communication, we integrate an on-chip DDR3 controller, where all the o�-chip memory accesses

should pass by. The Tile's memory accesses are serialized via the MUX/DEMUX unit, which is then

connected to the DDR3 controller as a host port. For this study, we select the DesignWare Universal

DDR Memory and Protocol Controller IP from Synopsys [137]. The DDR memory controller is

shown in Figure 4.13.

Figure 4.13: DesignWare Universal DDR Memory Controller Block Diagram (Synopsys courtesy).

The DesignWare Universal DDR controller family consists of two high performance components,

the Universal DDR Protocol Controller (uPCTL) and Universal DDR Memory Controller (uM-

CTL). Both are capable of controlling JEDEC standard DDR2, DDR3, Mobile DDR and LPDDR2

SDRAMs. The uPCTL is a bridge between a system-on-chip (SoC) application bus and a PHY for

a DDR SDRAM, such as the Synopsys DesignWare DDR PHYs (Physical interface). The uPCTL

and the DDR PHY together handle the details of the DDR protocol, allowing the application to

access memory via simple on-chip bus read/write requests. As for the uMCTL, it is a multi-port

memory controller which accepts memory access requests from up to 32 application-side host ports.

Therefore, the maximum number of supported Tiles is 32. In addition, this DDR3 Controller sup-

ports data rates up to 2133 MegaTransfer per second which is equivalent to 34.128 GBps for a

128-bit data bus. This con�guration is for a 533 MHz controller clock. Given this bandwidth,

each Tile is allocated approximately 1066.5 MBps. It is worth to note that some designers might

share multiple Tiles per one host port at the expense of reducing the allocated bandwidth per Tile.

This is a correct solution, but as we will see in section 4.5.4, it has a great impact on the vertical

scalability of the architecture. Therefore, we privilege a simple system with one Tile per host port.
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In summary, and based on the CCP reactivity, control bus, and DDR3 controller parameters,

AHDAM architecture's maximum horizontal scalability is limited to 32 Tiles. In the next section,

we will see what is the maximum vertical scalability, in other words the maximum number of LPEs

per Tile.

4.5.4 Vertical scalability

In this section, we will conduct a per Tile bandwidth analysis to know what is the maximum number

of LPEs that can be integrated per Tile, or in other words the vertical scalability limitations. The

MPE computation does not interfere with the LPEs, since we adapt a synchronous scheduling

execution model as described later in section 4.4.

In AHDAM, the memory hierarchy is splitted between instruction and data. The instruction

memory hierarchy does not constitute a source of bandwidth limitations, since the L1 I$ size can

be over-dimensioned for the multiple classes of applications, thus it generates few cache misses. In

addition, the instruction interconnection network is implemented as a multibus to limit simultaneous

accesses to the same memory bank. So, the data memory hierachy (L1 D$, L2 D$, DDR3) is the

source of vertical scalability limitations.

In our study, we assume the LPE is running at 500 MHz. Therefore, it generates a maximum of

500 MOPS, where each OPS (Operation Per Second) is a 32-bit operation. As a rule of thumb, 20%

of these memory accesses are load/store instructions. Therefore, the L1 D$ receives 100 MOPS.

Depending on the L1 D$ miss rate, the output throughput varies. For instance, let us assume the

L1 D$ miss rate is 10% and the L1 block size is 16 Bytes. Thus, the output throughput that is

input to the L2 D$ is equal to 160 MBps. The same reasoning applies for the L2 D$. We assume

that the L2 D$ block size is equal to 64 Bytes. At the end, we divide the total allocated bandwidth

per Tile by the LPE's L2 D$ output bandwidth, and we get the total number of LPEs that can

be integrated in one Tile. The total allocated bandwidth per Tile depends on the number of Tiles.

For instance, 32/16/8 Tiles have 1066.5/2133/4266 MBps respectively.

In Figure 4.14, we show the total number of LPEs for 32/16/8 Tiles. We vary the L1 D$ and

L2 D$ miss rates between 20% and 1%.

The results show that the total number of LPEs heavily depend on the data cache miss rates.

As a system engineer, we dimension the architecture for the worst-case scenario. In our case, we

consider the worst-case to be for 20% miss rates for both data caches. Therefore, according to the

bandwidth analysis, the maximum number of LPEs is 4/8/16 for 32/16/8 Tiles respectively. Of

course, these numbers can be bigger if we are sure that the data cache miss rates will never exceed

20%.

Finally, the MUX/DEMUX unit should guarantee the exact reserved bandwidth for each LPE.

Therefore, it is designed as a Time-division multiplexing (TDM) bus. TDM is used for circuit mode

communication with a �xed number of channels and constant bandwidth per channel. In a TDM

bus, data or information arriving from an input line is put onto speci�c timeslots on a high-speed

bus, where a recipient would listen to the bus and pick out only the signals for a certain timeslot.

For case of simplicity, we implement a static TDM bus. However, a possible optimization is to

implement a dynamic TDM bus, where the allocated bandwidth depends on the activity of each

channel.
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Figure 4.14: Maximum number of LPEs per Tile for 32/16/8 Tiles. The x-axis shows the L1 D$ miss rate, the

z-axis shows the L2 D$ miss rate, and the y-axis (log scale) shows the total number of LPEs that can be integrated

per Tile.

4.6 Discussion

In this chapter, we presented an asymmetric manycore architecture, called AHDAM, that tackles

the challenges of future high-end massively parallel dynamic embedded applications. We presented

in details its programming model and the functionality of all its components. In addition, we

studied the scalability of this architecture and we deduced that it can support 136 processors (8

Tiles x 16 LPEs + 8 MPEs) depending on the application requirement.

In the next chapter, we will evaluate the performance of AHDAM architecture using a real-case

application from the telecommunication domain: radio-sensing. In addition, we will compare it to

the SCMP architecture.
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Chapter 5

Evaluation

Design is not just what it looks like and feels like. Design is how it works. � Steve

Jobs, CEO Apple
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We presented in chapter 4 the AHDAM architecture, which is a novel asymmetric manycore

architecture for future high-end massively parallel dynamic embedded applications. It has a central-

ized control core that performs dynamic load-balancing of the coarse-grained tasks (TLP) between

multiple Tiles (up to 32). Each coarse-grain task contains loop regions that are parallelized us-

ing OpenMP pragmas (�ne-grain task) and executed in parallel on multiple dedicated processors.

Thus, AHDAM architecture exploits the parallelism at 2 levels: TLP and LLP.

In this chapter, we evaluate the performance and transistor e�ciency of AHDAM architecture

by using a relevant embedded application. First, in section 5.1, we describe an application from

the telecommunication domain called radio-sensing. This application has lots of computation re-

quirements, lots of parallelism at the thread and loop levels, a large data set, and is dynamic.

The radio-sensing application is parallelized and ported using AHDAM programming model �ow.

Then, in section 5.2, we show the simulation environment used to model and evaluate the AHDAM

functionalities. And �nally in section 5.3, we evaluate the transistor e�ciency of the architecture

and the importance of an asymmetric architecture. We evaluate its performance by running the

radio-sensing application on di�erent chip con�gurations and we compare its performance with re-

spect to the SCMP architecture and a monoprocessor solution. At the end, we estimate the overall

chip area in a 40 nm technology for multiple chip con�gurations.
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5.1 An embedded application: Radio-sensing

The radio spectrum sensing application belongs to the telecommunication domain. This component,

which can be found in cognitive radios, is developed by Thales Communications France (TCF)

within the SCALOPES project.

We describe the application characteristics (purpose, features, scalability and parallelization

opportunities) in section 5.1.1. Then, in section 5.1.2, we show how the task parallelism is extracted

from the application using PAR4ALL tool.

5.1.1 Application description

The Spectrum Sensing is one of the main functions constituting a cognitive radio. A cognitive

radio is a system characterized by the ability of a terminal to interact with its environment. It

means that this terminal will have skills to sense its surrounding environment (sensing), to decide

(cognitive manager) and to recon�gure (software radio) itself. For instance it will be able to detect

the available frequencies and use them. Within this thesis, the application case that we will develop

and study is more precisely the spectrum sensing step, which occurs at the physical layer as depicted

in Figure 5.1:

Figure 5.1: Spectrum Sensing description (source EDA/CORSAMA consulting).

The spectrum sensing function [70] aims to detect the unused spectrums and to share them with-

out interference with other users. In other words, the already used spectrums are detected in order

to identify spectrum holes. This application is used in the spectrum monitoring devices and the

electronic warfare devices. Usually, spectrum monitoring focuses at signal modulation parameters

and amplitude and does not require real time constraints. Electronic Warfare searches for real-time

output face to regular communication signal or signals available within an identi�cation data base.

The sensing function faces a number of challenges in terms of miniaturization, power consumption,

and timing response. These constraints are even more severe for mobile terminals. Three main

sensing techniques can be used within the scope of spectrum monitoring and sensing: Cooperative

context (Data-aided techniques), Blind Context, Semi-Blind Context. In this application, we will
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5.1. An embedded application: Radio-sensing

limit the use case to a GSM sensing application (cooperative context).

The GSM sensing is composed of 3 main steps:

1. Digital signal pre-processing consisting in signal wideband �ltering and in baseband transpo-

sition as well as in the signal channelization.

2. Processing of "each" channelized digital signal consisting in the parameter estimation and in

the measurement at signal amplitude bandwidth modulation parameters.

3. Processing of "each" symbol consisting in the demodulation of the signal and in the measure-

ment of the symbol stream code parameter.

The algorithm performing these 3 steps is decomposed into 8 operations. In this use case, we

will limit the scope of the GSM sensing application use case to the �rst three main operations,

which constitute the front-end processing. This use case is characterized by a sequential processing

made of basic and unoptimized operations (no feed-back, no FFT). It consists in a strong data

�ow and thus requires strong memory and computational components that can be shared between

the operations. It also implies a management of the dynamic of the signal within the processing.

Figure 5.2 tries to synthesize these three steps, their �ow sizes and related complexities (for GSM

wideband input signal at 40 MHz):

Figure 5.2: Spectrum Sensing main steps, maximal �ows and complexities.

This use case contains various parameters that can be modi�ed. As consequence, it leads to

scalability opportunities. Modifying them will impact the number of operations (complexity) as

well as the �ow size and thus will induce di�erent resources (memory, processing units) usage.

One of the �rst obvious parameters on which we can have an in�uence in this application is the

frequency of the wideband input signal. Another parameter is the size of the bu�ers that varies

with respect to the duration length of the stored data. Indeed, all algorithms can be performed

with limited duration bu�ers. For instance, we can select bu�ers sizes of 100 ms each second. As

a consequence, it will limit the complexity and data �ow size.
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5.1.2 Task decomposition and parallelism

Initially, the radio sensing application is built to run sequentially on a monothreaded processor. The

task level parallelism is explicitly expressed by inserting speci�c pragmas. Then, PAR4ALL cuts

the application in a set of tasks according to these pragmas, generates communication primitives

to implement a double bu�er streaming processing, and the corresponding CDFG control graph

as shown in Figure 5.3. PAR4ALL identi�ed 30 tasks that can run independently (TLP). Once

independent tasks are generated, PAR4ALL identi�es netloops and inserts OpenMP pragmas.

Dataflow

Control-flow

T00: START task
T01: Initialization
T02: Frequency transposition
T03: Wide-band filter (imag. part)
T04: Wide-band filter (real part)
T05: Low-band1 transposition
T06: Low-band1 filter
T07: Low-band2 transposition
T08: Low-band2 filter

T09: Blackman harris window init
T10: cosine table init
T11: sine table init
T12,T16: fictive task
T13: FFT computation
T14: SNR computation
T15: channel detection
T17: END task

Figure 5.3: CDFG of the radio-sensing application.

The loop parallelism (LLP) is detected at runtime depending on the resources occupation. Also

some loops are irregular, which means a variable execution time between the child threads. We

pro�led the application and we examined the hot spots in the code where most of the application

time is spent. We noticed that 99.8% and 95% of the loop regions can be parallelized by OpenMP

for the high-sensitivity and low-sensitivity respectively.

In addition, the application execution time varies with respect to the processed input data,

hence its dynamism. In a real-case scenario, the application might be adaptively recon�gured to

di�erent execution modes, which implies di�erent computation requirements.

In particular, the application could be launched in two di�erent modes in order to �t di�erent
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user QoS. As a result, we de�ned two execution modes:

• high sensitivity: or high accuracy with a bu�er of 100 ms every 1 second, 6 bu�ers, and a

sampling frequency of 102.4 MHz. This gives us a computation requirement of 75.8GOPS, a

data set of 432MB, and a real-time deadline of 6 seconds.

• low sensitivity: or low accuracy with a bu�er of 1 ms every 1 second, 6 bu�ers, and a

sampling frequency of 25.6 MHz. This gives us a computation requirement of 328MOPS, a

data set of 1,025MB, and a real-time deadline of 6 seconds.

The radio-sensing application needs 1.5 MB of instruction memory for storing all the task codes

and stack memories. In a real case scenario, the application implements an adaptive recon�guration

to adjust the input parameters according to the requirements. Thus, it gives an execution behavior

that is highly dynamic and with high/variable computation requirements.

In the next section, we will explain the simulation environment for the AHDAM architecture.

5.2 Simulation environment

AHDAM is a complex architecture that has several components with a special execution behavior,

such as the Thread Context Pool memory and the multithreaded 3-way VLIW LPE for instance.

In addition, the fork-join process inside each Tile necessitates a new and optimized runtime. We do

not have yet a complete simulator for the AHDAM architecture. However, by using a combination

of currently existing simulators such as SESAM and Trimaran [89, 144], and an analytical model

for the AHDAM memory hierarchy architecture, we are able to estimate the AHDAM performance.

The simulation process of AHDAM architecture consists of simulating the serial regions on

SESAM and the parallel regions on Trimaran. The performance gain due to multithreading is

estimated using the analytical model for the AHDAMmemory hierarchy with blocked multithreaded

processors. Let us describe the step by step simulation process of AHDAM architecture for the

radio-sensing application:

First of all, the radio-sensing application runs on the SESAM simulator that models the SCMP

architecture with functional monothreaded MIPS32 ISSes. The monothreaded MIPS32 models

the MPE processor. To evaluate the serial regions, we comment out the for-loops with OpenMP

pragmas regions for all the tasks, or what we call a 'kernel', from the source code. Thus, the total

execution time of each task is the exection time of the serial regions. The serial regions of the tasks

are preemptive and can be migrated to other MPEs for dynamic load-balancing.

For the parallel regions, they should be executed on the LPE, which is a 3-way VLIW architec-

ture. In SESAM, we do not have an ISS for a VLIW processor. This is why we use the Trimaran

simulator 4.0 [89, 144] to estimate their performance. Trimaran is an integrated compiler and sim-

ulation infrastructure for research in computer architecture and compiler optimizations. Trimaran

is highly parameterizable, and can target a wide range of architectures that embody embedded

processors, high-end VLIW processors, and multi-clustered architectures. Trimaran also facilitates

the exploration of the architecture design space, and is well suited for the automatic synthesis of

programmable application speci�c architectures. It allows for customization of all aspects of an

architecture, including the datapath, control path, instruction set, interconnect, and instruction/-

data memory subsystems [144]. In our case, we use Trimaran to evaluate the VLIW processor.
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Trimaran consists of three components as shown in Figure 5.4: the OpenIMPACT compiler, the

Elcor compiler, and the Simu simulator.

Figure 5.4: Trimaran organization: Trimaran uses OpenIMPACT to compile the original source code into an

assembly intermediate representation (IR) called Lcode. The produced Lcode is optimized for ILP, but not for a

speci�c machine. This code is then passed to the Elcor compiler, which is the VLIW compiler, along with a machine

description (MDES) that speci�es the target machine. Elcor compiles the code for the target machine, producing

another IR called rebel. The Trimaran simulator known as Simu consumes the rebel code, executes the code, and

gathers execution statistics.

The VLIW architecture has several con�guration parameters. To simulate the VLIW in the

AHDAM architecture context, we con�gured it to have a 3-way architecture with 2 ALUs, 1 FPU,

a branch unit and 32 registers. The memory con�guration re�ects the AHDAM memory hierarchy

as seen by the LPE: each LPE has a private L1 I$ and D$, and a private L2 D$. Then, the L1

I$ is connected to an on-chip instruction memory with 10 cycles of access time, and the L2 D$ is

connected to the o�-chip DDR3 memory with access time of 50 cycles. The modeled architecture

in Trimaran is shown in Figure 5.5.

Each task of the radio-sensing application is executed 2 times in the Trimaran simulator: the

�rst time with the serial and the parallel regions of the task and the second time with only the serial

regions. The di�erence between both execution times gives the total execution time of the parallel

regions on a 3-way VLIW processor. We consider that the parallel regions are non-preemptable,

which means that once they are allocated on a LPE, they should run until completion.

The VLIW processor implemented in Trimaran is monothreaded. So, in order to estimate

the performance gain of a blocked multithreaded processor, we use our analytical model for BMT

in AHDAM memory hierarchy that was described in section 4.3.3. We estimate the performance

increase due to a BMT multithreaded processor with 2 TCs. We assume that each LPE is executing

2 child threads from the same parent task. The cache miss rates statistics are extracted from the
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Figure 5.5: Trimaran con�guration for modeling the LPE with AHDAM memory hierarchy.

Trimaran simulator.

Then, we inject the new performance results in SESAM simulator and we get the total execution

time of all the tasks, where each task has its serial regions executed on a monothreaded MIPS32

processor and its parallel regions executed on a 3-way blocked multithreaded VLIW processor.

Our model assumes that the penalty due to forking and joining threads is negligible compared

to the execution time of each thread.

We should note that the Trimaran simulator takes advantage of the host processor resources.

For instance, the execution of the trigonometric operations such as sine/cosine are done very fast

(fewer than 10 cycles), since they use the host CPU instructions and are executed directly on the

microprocessor hardware (if the host CPU supports it). This is not the case of the MIPS simulator.

Each sine/cosine function is emulated in software using a polynomial algorithm that takes more

than 100 cycles depending on the input data. Therefore, to have a fair comparison between the MPE

and LPE execution, we implement these functions in Trimaran as polynomial functions extracted

from the generic libc.

5.3 Performance evaluation

In this section, we will evaluate the performance and transistor e�ciency of AHDAM architecture

by running the radio-sensing application in 2 modes (see section 5.1): low-sensitivity and high-

sensitivity.
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The AHDAM architecture is con�gured with 8 Tiles and 4/8/16 LPEs per Tile. All the cores

run at 500MHz, thus the peak performance of AHDAM is 52 GOPS, 100 GOPS, and 196 GOPS

respectively for the 3 con�gurations. The MPE has a 4-KB L1 I$ and an 8-KB L1 D$, while the

LPE has a 1-KB L1 I$ and a 2-KB L1 D$ (1-KB per TC), and a 32-KB L2 D$. The on-chip

instruction memory is equal to 1.5 MB, which is the total size of the tasks' instructions and stack

memories. The necessary cache memory values are deduced from the pro�ling results that are

conducted on each parallel task in the radio-sensing application. The memory access to the on-chip

instruction memory takes 10 cycles, as well as the L2 D$. For the o�-chip DDR3 memory, the

access time is 50 cycles.

First, we motivate the need for an asymmetric architecture for the radio-sensing application.

Then, we evaluate the performance of AHDAM architecture with multithreaded and monothreaded

LPEs, in order to see how the multithreading can boost the performance of AHDAM. In addi-

tion, we compare the performance of AHDAM architecture with SCMP architecture and with a

monothreaded processor. Finally, we estimate AHDAM's area occupation in a 40 nm technology for

8 Tiles and 4/8/16 LPEs per Tile, and we evaluate the transistor e�ciency of AHDAM architecture.

5.3.1 Why an asymmetric architecture?

As mentioned earlier, the radio-sensing application is a dynamic application as shown in Figure 5.6

for the low-sensitivity version executed on SCMP with 8 processors.
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Figure 5.6: Dynamic behavior of the radio-sensing application a) Total application execution time while varying

the input data b) Average percentage variation of each task execution length.

In particular, we vary the input data and we plot the total execution time of the application

in Figure 5.6(a). There is a variation of 29% between the normal input data and data with all

zeros. On the other hand, when plotting the average percentage of variation of each task execution

time in Figure 5.6(b), we notice that there is a huge di�erence between the variation of each task

execution length with respect to the input data. For instance, task 14 varies 356% on average while
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task 10 varies only 0.2% on average. In fact, each task in the application has di�erent computation

requirements.

In addition to its dynamism, the radio-sensing application follows the streaming execution

model. Thus, there are lots of synchronizations between the tasks that might cause the processors

to stall. We execute the low-sensitivity version of the radio-sensing application on SCMP with a

static and dynamic allocation of the tasks. In fact, the central controller of SCMP is similar to that

of AHDAM, so the tasks scheduling and load balancing will be the same. In the static scheduler, the

tasks are allocated to only one processor with no task migration. While for the dynamic scheduler,

the tasks can be migrated between the processors for load-balancing. The results of the static v/s

dynamic scheduling are shown in Figure 5.7.
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Figure 5.7: Static v/s dynamic scheduling on SCMP for the radio-sensing application. The dynamic scheduling

has a speedup of 2.4 over the static scheduling.

The results show that the dynamic scheduler is 2.4 times more performance than the static

scheduler. For the static scheduler, the synchronization overhead constitutes more than 70% of

the total execution time. However, for the dynamic scheduler, the central controller balances the

load dynamically depending on the tasks execution state (active or stalled), thus it is able to �nd

more active tasks to be executed on all the processors. In fact, it is di�cult to have an optimal

static partitioning prior to the execution of the radio-sensing application because of its dynamism.

This implies that the central controller in AHDAM is important for boosting the performance of

dynamic applications.
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5.3.2 AHDAM: with MT v/s without MT

For this experiment, we evaluate the impact of multithreaded processors on the AHDAM archi-

tecture by running the radio-sensing application in 2 modes: low-sensitivity and high-sensitivity.

The LPE is implemented as either a monothreaded 3-way VLIW or a blocked multithreaded 3-way

VLIW. In Figure 5.8, we plot the performance for the 3 AHDAM con�gurations with 4/8/16 LPEs

per Tile, and for the low-sensitivity and high-sensitivity applications.
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Figure 5.8: Performance of AHDAM architecture with LPE as monothreaded 3-way VLIW v/s multithreaded

3-way VLIW. AHDAM architecture has 8 Tiles and 4/8/16 LPEs per Tile. Performance results and gain are shown

for radio-sensing with a) high-sensitivity b) low-sensitivity.

The results show that for the high-sensitivity application, the impact of multithreading is much

higher than that of low-sensitivity. In fact, the high-sensitivity application has a large data set

432MB compared to the low-sensitivity 1,025MB. This huge di�erence has a large impact on the

memory hierarchy performance. More data cache misses are generated, thus more accesses to the

o�-chip DDR3 memory. In this scenario, the blocked multithreaded VLIW processor is useful,

since it is able to hide the memory access latency by executing another thread. The multithreaded

VLIW has a performance gain of 39% on average for the 3 AHDAM con�gurations. On the other

hand, for the low-sensitivity application, the small data set can �t in the on-chip cache memories,

thus there are no frequent accesses to the o�-chip memory. Hence, the CPI of the monothreaded

and multithreaded VLIW processor are almost identical. This explains the low performance gain

due to multithreading, which is 10.5% on average for the 3 AHDAM con�gurations. Also note the

di�erence in performance gain the low-sensitivity application when varying the number of LPEs

per Tile. This is due to the fact that more threads are executed per LPE, hence more cache

contentions between the threads and more accesses to the next level of cache hierarchy. In this

case, the multithreaded VLIW has a better performance (14% in the case of AHDAM (8x4)).
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5.3.3 AHDAM v/s SCMP v/s monothreaded processor

In this section, we compare the performance of the AHDAM architecture with the SCMP archi-

tecture and with a monothreaded processor. The monothreaded processor system is a 1 MIPS32

24K processor with a FPU [91], and a su�cient on-chip memory for data and instructions (432

MB). The memory access time to the on-chip memory is 10 cycles, as well as the L2$ memory. The

processor has a 4-KB L1 I$ and an 8-KB L1 D$, and a 32-KB L2 D$. The SCMP system has 8

MIPS32 24K processors with a FPU. Each processor has a 4-KB L1 I$ and an 8-KB L1 D$, and a

32-KB L2 D$. Similarly to the monothreaded system, there are su�cient on-chip memory for data

and instructions, while the access time is 10 cycles. For the AHDAM architecture, we consider

the 3 con�gurations that were explained previously in section 5.3. The LPEs are implemented as

blocked multithreaded 3-way VLIWs.

The real-time deadline of the radio-sensing application is 6 seconds for both the low-sensitivity

and high-sensitivity con�gurations, which corresponds to 3.109 cycles for a 500 MHz processor

frequency.

The execution times of the low-sensitivity application on all these systems are shown in Figure

5.9.
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Figure 5.9: Performance of AHDAM v/s SCMP v/s mono for radio-sensing with low-sensitivity. AHDAM archi-

tecture has 8 Tiles and 4/8/16 LPEs per Tile. The SCMP architecture has 8 PEs. The real-time deadline of the

application is 6 seconds, which corresponds to 3.109 cycles for 500 MHz processor frequency (much higher than the

y-axis scale.

As we can notice in this �gure, both the SCMP and AHDAM were able to meet the real-time

requirements, while the monoprocessor was slightly above with an execution time of 7.84 seconds.
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The AHDAM(8x16) has a speedup of 126 compared to the monothreaded processor, while the

SCMP(8) has only a speedup around 6. For this application requirement, the SCMP performance

is su�cient to get the required results since the computation requirements are low (328 MOPS).

However, when running the high-sensitivity application, the performance requirements are much

higher as shown in Figure 5.10.
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Figure 5.10: Performance of AHDAM v/s SCMP v/s mono for radio-sensing with high-sensitivity. AHDAM

architecture has 8 Tiles and 4/8/16 LPEs per Tile. The SCMP architecture has 8 PEs. The real-time deadline of

the application is 6 seconds, which corresponds to 3.109 cycles for 500 MHz processor frequency.

The results show that none of the architectures is able to meet the real-time requirements

under 6 seconds except AHDAM(8x16) architecture, which has a speedup of 574 compared to the

monothreaded processor. In fact, the application has a lot of LLP and can be exploited e�ciently in

AHDAM. Despite the theoretical peak performance of AHDAM(8x8) of 100 GOPS, it only reaches

75.8 GOPS for the high-sensitivity application.

In the next section, we will estimate the overall AHDAM area in 40 nm technology.

5.3.4 AHDAM: chip area estimation

At this stage, AHDAM architecture is not synthesized as a complete chip. However, we are able to

estimate the area of the key components in AHDAM architecture in a 40 nm technology, such as the

processors (CCP, MPE, LPE) and the memories (instruction memory, Thread Context pools, L1

cache memories, L2 cache memories). For the interconnection networks and busses, we synthesized

them in a 40 nm technology and we assumed that the wires are placed above the processors and
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caches during the place and route process, thus not occupying more chip area. In Table 5.1, we

summarize the area occupation of each component for an 8x16 AHDAM architecture, which implies

8 Tiles and 16 LPEs.

AHDAM unit Component 
name

Area of 
component 

(um2)

Number of 
components

Total area 
(um2)

Source of
results

Control

AntX 11400 1 11400 Synthesis TSMC
1-KB L1 I$ 6292.32 1 6292.32 CACTI 6.5

2-KB L1 D$ 11743.3 1
11743.3

CACTI 6.5
Control bus 2412.5 1 2412.5 Synthesis TSMC

Tile

MIPS24K 360000 8 2880000 www.mips.com
4-KB L1 I$ 18650.7 8 149205.6 CACTI 6.5
8-KB L1 D$ 36288.2 8 290305.6 CACTI 6.5

3-way MT VLIW 87053.47 128 11142844.16 Synthesis TSMC
1-KB L1 I$ 6292.32 128 805416.96 CACTI 6.5
2-KB L1 D$ 11743.3 128 1503142.4 CACTI 6.5
32 KB L2 D$ 116531 136 15848216 CACTI 6.5
TCP (32-KB 
scratchpad) 86638.8 8 693110.4 CACTI 6.5

Tile NoC 13237.5 8 105900 Synthesis TSMC

Instruction
memory

Instruction
memory

(1.5 MB SRAM) 19674031.36 1 19674031.36 CACTI 6.5

Instruction 
network 113125 1 113125 Synthesis TSMC

Table 5.1: AHDAM components area occupation in 40 nm technology and for 8 Tiles and 16 LPEs per Tile.

For the 8x16 AHDAM architecture, there are 1 CCP implemented using the AntX processor, 8

MPEs implemented as MIPS24K with FPU [91], and 128 LPEs implemented as a 3-way blocked

multithreaded VLIW with FPU. The CCP and the LPEs have a 1-KB L1 I$ and a 2-KB L1 D$,

while the MPEs have a 4-KB L1 I$ and 8-KB L1 D$. Both the MPEs and the LPEs have a

32-KB L2 D$. Each Tile has a 32-KB scratchpad memory for the Thread Context Pool. Also,

as mentioned earlier in section 5.1.1, the radio-sensing application necessitates 1.5 MB of on-chip

instruction memory. The CCP, the LPE and the interconnection networks are synthesized in a

40 nm TSMC technology, while the MPE area value is taken from MIPS website [91] for a 40 nm

TSMC technology. The cache memories and SRAM memories areas are estimated with the CACTI

6.5 tool. The technology used by CACTI tool is based on ITRS roadmap [125], but it is not similar

to TSMC technology. Therefore, the processor system is not synthesized with the same technology,

but this gives us an idea of the relation between the cache size and the processor size. So, all these

components are synthesized/estimated in a 40 nm technology.

In Figure 5.11, we show the surface repartition of the 8x16 AHDAM architecture based on the

3 main components: processors, cache memories, SRAM memories, and interconnection networks.

The total area is estimated to be around 53 mm2 excluding the on-chip DDR3 controller, the

MCMU, and the MUX/DEMUX units.
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Figure 5.11: AHDAM architecture surface repartition in 40 nm technology for 8 Tiles and 16 LPEs per Tile. The

total estimated area is equal to 53 mm2 excluding the interconnection networks, the on-chip DDR3 controller and

the MCMU.

We can notice that the computing cores take 27% of the overall die area, which is quite a

good number compared to recent MPSoC architectures. In fact, the key design parameter taken in

AHDAM design is to reduce the size of the on-chip memory and integrate more e�cient processors

for computation. The interconnection networks occupy only 0.4% of the overall die area.

The AHDAM architecture can be used for di�erent application requirements, having di�erent

needs in thread parallelism. Therefore, in Figure 5.12, we compare the area of di�erent con�gura-

tions of AHDAM architecture with 8 Tiles and 4/8/16 LPEs per Tile.

As depicted in this �gure, the area di�erence between AHDAM architecture with 136 cores and

40 cores is only 67% for more than 3 times the number of cores. Therefore, it would be advantageous

to select an AHDAM architecture with a higher number of cores, hence a higher peak performance,

for only a small increase in chip area.

Finally, we evaluate the impact of multithreaded VLIW on the overall AHDAM area. In Figure

5.13, we show the AHDAM architecture surface with monothreaded VLIWs and multithreaded

VLIWs for 8 Tiles and 4/8/16 LPEs per Tile.

The estimated chip area results show that the multithreaded processors have a small impact on

the overall chip area. It is only 2.8% more for AHDAM(8x4), while it reaches 7% for AHDAM(8x16).

As we saw in section 5.3.2, the performance gain due to multithreading is much higher than the

overall chip area increase, hence a high transistor e�ciency of the AHDAM architecture.

5.4 Discussion

In this chapter, we evaluated the performance of the AHDAM architecture with respect to a mas-

sively parallel application from the telecommunication domain called radio-sensing. The high-
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Figure 5.12: AHDAM architecture surface with 8 Tiles and 4/8/16 LPEs per Tile.

sensitivity con�guration of this application is characterized by its large data set of 432MB and its

high computation requirement of 75.8GOPS. In addition, 99.8% of its execution time is spent in

loops that can be parallelized using OpenMP pragmas.

AHDAM architecture is simulated using a combination of simulator tools such as SESAM and

Trimaran, and using the analytical model of the BMT processor described in section 4.3.3.

We conducted several experimentations that lead to interesting conclusions:

1. The asymmetric property of the AHDAM architecture is essential for the dynamic applications

to increase their performance. The dynamic scheduling gave a speedup of 2.4 over the static

scheduling for the radio-sensing application.

2. A multithreaded VLIW LPE boosts the performance of the AHDAM architecture for only

a small area increase. For instance, the AHDAM(8x16) with multithreaded VLIWs gives a

performance gain of 39% for only 7% area increase, as compared with monothreaded VLIWs.

Hence, multithreading is a transistor e�cient solution for the AHDAM architecture.

3. The VLIW architecture signi�cantly increases the performance of the architecture since it

exploits the ILP of the application with only a small area increase. This is why we tend to

see VLIW architectures in lot of MPSoC solutions such as Tilera TILE64 [142, 19].

4. Exploiting the loop-level parallelism in hardware boosts signi�cantly the performances, since

a large portion of the execution time is spent in loops.
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Figure 5.13: AHDAM architecture surface with monothreaded VLIW and multithreaded VLIW for 8 Tiles and

4/8/16 LPEs per Tile.

5. By splitting both instruction and data memories, and implementing a cache architecture for

the data, we improved the programmability of the architecture. New applications are easily

ported on AHDAM.

6. AHDAM architecture can e�ciently and e�ectively meet the performance requirements of

future high-end massively parallel dynamic applications.
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If you have a lemon, make Lemonade. � Warren Hinckle, journalist
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To tackle the challenges of future high-end massively-parallel dynamic embedded applications,

we have designed the AHDAM architecture, an asymmetric manycore architecture. Its architec-

ture permits to process applications with large data sets by e�ciently hiding the processors' stall

time using multithreaded processors. Besides, it exploits the parallelism of the applications at the

thread and loop levels. AHDAM architecture tackles the dynamism of these applications by dy-

namically balancing the load between its execution resources using a central controller to increase

their utilization rate.

Synthesis of this work

In chapter 1, we de�ned the context of our study: massively-parallel dynamic embedded applications.

These applications are highly parallel. The parallelism can be extracted at the thread level (TLP)

and at the loop level. So an application might have more than 1000 parallel threads to be pro-

cessed in parallel. Therefore, manycore architectures are natural solutions for these applications. In

addition, the dynamism of those applications requires an e�cient MPSoC solution to manage the

resources occupation and balance the loads in order to maximize the overall throughput. Asymmet-

ric homogeneous MPSoC architectures are the best solution for fast and reactive load-balancing.

They are also highly transistor and energy e�cient because of the separation between control and

computing cores. However, these architectures have shown some limitations that prevent them from

being scalable to the manycore level and e�cient for the long latency memory accesses. Therefore,

we have chosen the SCMP architecture as the architecture of reference for experimentations, in

order to propose a design improvement of its performance. In particular, we explored two types of

architectural improvements: hardware multithreading and scalability.

First of all, we investigated the advantages/disadvantages of hardware multithreading for em-

bedded systems in chapter 2. We started by designing two small footprints, scalar, in-order multi-

threaded processor for the embedded systems based on a monothreaded AntX processor: Interleaved

Multithreading (IMT) and Blocked Multithreading (BMT). The synthesis results in a 40 nm TSMC

technology showed that the register �le occupies more than 38% of the overall core area, thus it

is not area e�cient to integrate more than 2 thread contexts (TC) per multithreaded processor.

Therefore, we have chosen to implement a multithreaded processor with 2 TCs. Both multithreaded
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processors were synthesized in a 40 nm TSMC technology. The results shows that the IMT and

BMT processors have 73.4% and 61.3% increase in core area versus the monothreaded core. Thus,

the BMT has a smaller area. Finally, we compared the performances and transistor e�ciency of

both MT cores using a bubble sort application, while varying the L1 data cache size and the data

memory latency. The results have shown that there is a trade-o� between the data cache memory

size, the data memory latency, and the core area overhead. Choosing the best processor highly

depends on the system designer speci�cations and the application requirements.

Based on this conclusion, we explored in chapter 3 the performance impact of the multithreaded

processor in the SCMP architecture. For this reason, we developed a new multithreaded ISS in

SystemC language and integrated it in SESAM, which is the simulation environment for SCMP. The

new SCMP architecture with multiple multithreaded processors has been called MT_SCMP. We

conducted several benchmarks based on control-�ow and streaming applications in order to choose

which multithreaded processor suits best for MT_SCMP (IMT v/s BMT), which global thread

scheduling for multiple multithreaded processors gives the best performance (VSMP v/s SMTC),

and which asymmetric MPSoC architecture is the most performing and transistor e�cient (SCMP

v/s MT_SCMP). The results have shown that the blocked multithreaded processor (BMT) and

the SMTC scheduler suits best for MT_SCMP [18], and thus are adapted as �xed system design

parameters for this architecture. Finally, we compared the performances and transistor e�ciency

of SCMP and MT_SCMP by running 2 types of embedded applications: connected component

labeling (control-�ow) and WCDMA streaming. The MT_SCMP had better peak performance,

but less transistor e�ciency than SCMP. Whether to choose multithreaded processors for SCMP or

not, depends on the system designer. If peak performance is a key parameter, then multithreaded

processors are an interesting solution. However, for transistor e�ciency, monothreaded processors

remain a more e�cient solution. As for high-end massively-parallel dynamic embedded applications

with large data sets, there are lots of parallelism at the thread level (TLP) and at the loop level

(LLP) that should be exploited by the architecture. The SCMP architecture has shown scalability,

extensibility, programmability, and parallelism limitations for such applications.

Therefore, we proposed a novel solution that target the manycore era in chapter 4. The proposed

architecture is called AHDAM, which stands for Asymmetric Homogeneous with Dynamic Allocator

Manycore architecture. AHDAM has been designed to tackle the challenges of future high-end

massively parallel dynamic embedded applications. It is used as an on-chip accelerator and it

exploits the parallelism at the thread level (TLP) and loop level (LLP). We presented in details

its programming model and the functionality of all its components. In addition, we studied the

scalability of this architecture and we deduced that it can support 136 processors depending on the

application requirement; hence AHDAM has reached the manycore level.

Finally in chapter 5, we evaluated the performance of AHDAM architecture with respect to a

massively parallel dynamic application from the telecommunication domain called radio-sensing.

The high-sensitivity con�guration of this application is characterized by its large data set of 432MB,

its high computation requirement of 75.8GOPS, and its dynamism. In addition, 99.8% of its execu-

tion time is spent in loops that can be parallelized using OpenMP pragmas. AHDAM architecture

was simulated using a combination of simulator tools such as SESAM and Trimaran, and using

the analytical model of the BMT processor that we have developed. After we have conducted

several experimentations, we concluded that the asymmetric property of the AHDAM architecture

is essential for the dynamic applications to increase their performance. The dynamic scheduling
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gave a speedup of 2.4 over the static scheduling for the radio-sensing application. In addition, mul-

tithreading boosts the performance of AHDAM architecture and is a transistor e�cient solution.

Finally, AHDAM architecture is a powerful improvement over SCMP and can meet the performance

requirements of future high-end massively parallel dynamic applications.

My PhD works and results contribute today to the CEA LIST roadmap and the LCE laboratory

activities. However, there are still some important validations to the proposed architectural con-

cepts in AHDAM architecture that should be done before industrializing the solution, and which

we summarize them in the next section.

Perspectives

Short term

Despite the evaluations we have conducted in this thesis, there are lots of proposed concepts in

AHDAM architecture that still need explorations, developments and improvements. The short

term perspectives can be divided into three main steps: development of a simulator, building a

prototype, and comparison with other manycore architectures.

In the �rst step, we need to develop a simulator for AHDAM, mainly an extension of the

SESAM simulator environment. New components should be developed in SystemC that did not

exist previously for the SCMP architecture, such as the L2 cache memory and its protocols, the

Thread Control Pool and the TCP state scratchpad memories. In addition, a multithreaded VLIW

ISS should be developed. Then, we need to encapsulate all the Tile's units in one module in order

to look as one PE for the CCP, and validate all the Tile functionalities. In particular, the Tile NoC

architecture should be investigated. Finally, the L2 instruction and data memories should be split.

After building the AHDAM simulator environment, the proposed runtime environment for fork-

join threads should be developed. This runtime is a critical part of the AHDAM functionality and

the intra-Tile and inter-Tile management. The heuristic behind �nding the optimal number of

threads to be forked should be investigated in more details, since it is an important parameter for

the overall loop-regions acceleration. In addition, the farming execution model should be validated.

At this stage, we can experiment new features in global scheduling, such as the possibility to execute

more than one task on each Tile by allowing the preemption of the MPEs and the LPEs in order

to dynamically adapt the resources depending on the application requirements. Furthermore, new

concepts of memory management can be tested, such as the dynamic allocation of data bu�ers

in the o�-chip DDR3 memory, and implementing a data prefetcher from the DDR3 to the L2$

memories.

Having the AHDAM simulator and runtime environment in place, it would be interesting to

continue the development of the automatic programming toolchain that we started in chapter 4. It

could be based on the PAR4ALL tool. This will allow us to port any legacy code easily to AHDAM

architecture.

The second main step consists of building a prototype of the AHDAM architecture on a hardware

emulation board. This prototype will be the proof of concept of the architecture. Having such a

test chip prototype, we can estimate to an accurate value the transistor and energy e�ciency of

the AHDAM architecture as well as the multithreaded processors. In particular, we can render the

AHDAM chip more energy e�cient by exploring new load-balancing strategies inside each Tile and
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between the Tiles, and integrate the strategies in the runtime environment. Other energy e�cient

techniques such as DVFS can be implemented on FPGA, but it would be more accurate on a �nal

ASIC solution. We can image that each Tile is running on a di�erent frequency level and can be

controlled by the CCP depending on the application requirements.

Finally, the third main step consists in comparing AHDAM architecture with other relevant

manycore solutions such as Tilera TILE64 [142, 19], ST Microelectronics P2012 [84], and Kalray

MPPA [72]. For this reason, we need to port several relevant dynamic embedded applications from

several domains that have lots of parallelism and computation requirements. These applications

should run on all these chips and a fair comparison would be conducted. At this stage, we are

ready to conduct a technological transfer of the AHDAM chip solution to industries and nation-

al/European projects. In particular, we can develop two versions of AHDAM chip: low-end and

high-end. The �rst version targets the embedded market, while the last one targets the server

market, and especially cloud computing. What would di�erentiate both chips is the number of

Tiles, the number of LPEs per Tile, and the load-balancing strategies utilized in the chip that

would target performance or energy e�ciency.

Long term

On the long term, there are several architectural improvements that we imagine for AHDAM

architecture.

As the process technology improves, there are more concerns about the reliability of the AH-

DAM architecture. AHDAM could be used in critical domains such as military, nuclear and space

applications, where fault tolerance is a non-negligible architectural decision. We can imagine that

AHDAM chip would be fault-tolerant on the Tile, MPE and LPE levels by integrating spare com-

ponents.

In addition, as we are experiencing nowadays, there is a huge gap between the processor and

memory speed. This does not seem to change in the future unless a new technological breakthrough

has been found for the memory technologies. Assuming this is not the case, there should be an

architectural solution for keeping the LPE multithreaded processors from stalling. One solution

would be to increase the number of hardware threads per LPE. But as we saw previously in chapter

2, this is not a transistor e�cient solution for small footprint processors, a new technique would be

to use a N out of M static interleaving multithreading architectures. This technique implies that

a multithreaded processor has N foreground threads (hardware thread contexts) and M virtual

threads stored in a special scratchpad memory close to the multithreaded processor. In this way,

we are increasing the number of supported child threads per LPE.

AHDAM chip is a manycore architecture. But as we saw in chapter 4, there are also limitations

to the scalability of the architecture. One solution would be to integrate more DDR3 controllers on-

chip, thus increasing the number of Tiles. Another solution to the scalability problem is to consider

AHDAM architecture as an optimized cluster in a multi-cluster environment. Then, by using a

hierarchical solution, we can increase the number of cores dramatically (more than 1000 cores). At

this stage, we could imagine that the AHDAM programming model is extended to support MPI

communication between the di�erent AHDAM clusters. Thus, AHDAM would support OpenMP

+ MPI.

Finally, the on-chip SRAM and cache memories can be stacked on top of the cores using a 3D
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stacking technology [50]. This would be a dramatic improvement to the chip size, since 73% of

the chip estimated area is occupied by the cache and SRAM memories. Thus, more cores could

be integrated and the memory access times would be faster. This will improve the performance of

AHDAM chip and perhaps new architectural improvements should be proposed when using a 3D

stacking technology.
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