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Abstract

The BCH (BNIP2 and Cdc42GAP Homology) domain-containing protein Bmcc1/Prune2 is highly enriched in the brain and is
involved in the regulation of cytoskeleton dynamics and cell survival. However, the molecular mechanisms accounting for
these functions are poorly defined. Here, we have identified Bmcc1s, a novel isoform of Bmcc1 predominantly expressed in
the mouse brain. In primary cultures of astrocytes and neurons, Bmcc1s localized on intermediate filaments and
microtubules and interacted directly with MAP6/STOP, a microtubule-binding protein responsible for microtubule cold
stability. Bmcc1s overexpression inhibited MAP6-induced microtubule cold stability by displacing MAP6 away from
microtubules. It also resulted in the formation of membrane protrusions for which MAP6 was a necessary cofactor of
Bmcc1s. This study identifies Bmcc1s as a new MAP6 interacting protein able to modulate MAP6-induced microtubule cold
stability. Moreover, it illustrates a novel mechanism by which Bmcc1 regulates cell morphology.
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Introduction

The BCH (BNIP2 and Cdc42GAP Homology)-domain-con-

taining proteins have recently emerged as a new class of molecules

involved in the regulation of cell dynamics through the

engagement of specific Rho small GTPases. For instance, BNIP-

2 induces cell protrusions by targeting Cdc42 [1–3] and promotes

muscle differentiation [4]. p50RhoGAP modulates Rho and

Cdc42 activity and controls cell morphology and cell migration

[5]. BNIP-S targets RhoA and displaces p50RhoGAP, leading to

RhoA activation, cell rounding and apoptosis [6,7]. BP-GAP1

enhances RhoA activity, interacts with Cdc42 and Rac1, and

controls cell morphology and migration [8,9]. Recent works have

also suggested that the functions of BCH-containing molecules

could be more diverse. Indeed, BNIP-H (Caytaxin) interacts with

the kidney-type glutaminase to regulate glutamate production and

glutaminase trafficking [7], with the peptidyl-prolyl isomerase Pin1

to control neurite outgrowth [10] and with kinesin-1, an

intracellular transport protein [11].

BMCC1 (Bcl2, the adenovirus E1B 19 kDa interacting protein

2 and the Cdc42 GAP homology BCH motif-containing molecule

at the carboxy-terminal region 1), also called PRUNE2, is a large

molecule highly expressed in the brain as well as in spinal cord and

dorsal root ganglia [12–14]. Overexpression of one of its isoforms,

BNIP-XL (for BNIP-2 Extra Long), has been shown to promote

the formation of short membrane protrusions, to inhibit RhoA and

to suppress cell transformation initiated by Lbc, a RhoA-specific

guanine nucleotide exchange factor [15]. Thus, a putative role for

BMCC1 in the regulation of cytoskeleton dynamics as well as in

apoptosis has been suggested. Interestingly, the BMCC1 transcript

has been shown to be strongly upregulated in spontaneously

regressing neuroblastomas [12], as well as in the neurodevelop-

mental Rett syndrome [16].

BMCC1 encodes several isoforms whose expression pattern and

subcellular localization are unknown. Here, we have identified

Bmcc1s, a novel short isoform of Bmcc1 predominantly expressed

in the mouse brain. We show that Bmcc1s localizes on

intermediate filaments and microtubules in primary cultures of
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astrocytes and neurons, and interacts directly with MAP6 (aka

STOP), a microtubule-associated protein responsible for microtu-

bule cold stability [17,18]. Moreover, we demonstrate that Bmcc1s

overexpression inhibits microtubule stability through the displace-

ment of MAP6 away from microtubules, resulting in the formation

of membrane protrusions.

Results

Characterization of Bmcc1s, a novel brain Bmcc1 isoform
BMCC1 encodes several isoforms [12,13,15]. A compilation of

data from the literature and sequence databases is presented in

figure 1, figure S1 (mouse gene) and figure S2 (human gene). Both

human and mouse genes featured a comparable exon/intron

structure and encoded multiple transcript isoforms, generated by

alternative splicing and by the use of distinct promoters. In the

mouse, Bmcc1 cDNA variants encoded proteins containing either

the N-terminal (N-ter) or the C-terminal (C-ter) end of the

predicted full-length protein (up to 340 kDa) (Fig. S1). The

sequence of the latter category corresponded mainly to the BNIP-2

homology domain, including the BCH domain (encoded by exons

14 to 17), which could vary depending on alternative splicing of

exons 18, 19 or 20 (Fig. S1). Considering the numerous Bmcc1

isoforms, we aimed at defining those expressed in the mouse brain.

59 RACE PCR performed on total adult mouse brain RNAs,

starting from the 39 end of Bmcc1 39UTR (Material and methods

and Fig. 1, Fig. S1A), led to the amplification of a unique 3.9 kbp

product, which we named Bmcc1s for short Bmcc1 (EMBL

accession number FR69337). Two additional 59 Race PCR

experiments starting from exon 12 and from the 59 extremity of

exon 21 did not extend the cDNA further (Material and methods

and Fig. 1, Fig. S1A). Bmcc1s predicted open-reading frame

mainly corresponded to the C-ter variant AK038997 (Fig. S1). It

encoded a 323-amino acid predicted protein with a theoretical

molecular mass of 37 kDa, which was 99% identical to AK038997

and contained a full BNIP-2 homology domain (Fig. 1). To

evaluate the expression profile of Bmcc1s, we first performed RT-

PCR experiments on the 39 end of its 39UTR (Fig. 1), using total

RNA extracted from various mouse tissues (Fig. S3). Amplification

occurred mainly in the brain, demonstrating that Bmcc1s

expression is highly specific to this organ. To detect the cognate

endogenously synthesized Bmcc1s protein, we raised a rabbit

polyclonal antiserum directed against two peptides encoded by

exon 11 and 12, which are present in all C-ter Bmcc1 isoforms

(Material and methods and Fig. 1, Fig. S1). The specificity of this

serum was tested by preincubating it with immobilized in vitro

synthesized GST-Bmcc1s (Fig. S4, see Materials and Methods)

and by immunostaining and immunobloting of HeLa cells

transfected with a plasmid coding for Bmcc1s tagged with V5

(Material and Methods) (Fig. 2A). Both anti-V5 and anti-Bmcc1

antibodies revealed a band at the expected size of about 37 kDa,

as well as a higher band around 50 kDa which could result from

uncharacterized post-translational modifications of the protein

(Fig. 2A). The 50 kDa band was also detected in untransfected

HeLa cells, which endogenously express BMCC1 [12,13]. Since

one of the immunogenic peptides used to generate our antiserum

was fully conserved in human (Fig. S2), this band may represent

the endogenous BMCC1s protein. Finally, anti-Bmcc1 antibodies

strongly detected the V5 positive HeLa cells, and both signals

overlapped (Fig. 2A). Together, these results argued for the

specificity of our Bmcc1 antiserum. The expression profile of

Bmcc1s was next examined by Western blotting in various mouse

tissue lysates (Fig. 2B), as well as in lysates of primary astrocyte and

neuron cultures (Fig. 2C). In tissues, Bmcc1 antiserum recognized

various patterns of bands. In particular, several bands were

detected in brain extracts, demonstrating the expression of Bmcc1

isoforms longer than Bmcc1s. However, a 50 kDa band

corresponding to the higher band detected in Bmcc1s-V5

expressing HeLa cells appeared as the most represented Bmcc1

variant and was not detected in the other tested tissues (Fig. 2B).

The same major band was observed in the developing brain from

birth to adult stage (Fig. S5) and in primary cultures of astrocytes

and neurons (Fig. 2C). This Bmcc1 isoform should thus represent

Bmcc1s.

Bmcc1s localizes on microtubules and intermediate
filaments in neurons and astrocytes

Subcellular localization of endogenous Bmcc1s was analyzed in

primary cultures of DIV 7 astrocytes and DIV 7 neurons. In

immunofluorescence microscopy, Bmcc1s formed punctuate spots

aligned in a filamentous fashion in astrocytes (Fig. 3A) while it was

denser in neurons (Fig. 4A). Colabeling with a-tubulin demon-

strated a colocalization of Bmcc1s with microtubules (in neurons:

cell body 25620% (n = 3); neurites 8069% (n = 3); in astrocytes:

47613% (n = 4)) (Figs. 3A, 4A). Incubation of both astrocytes and

neurons with nocodazole resulted in a partial depolymerization of

microtubules and a parallel displacement of a-tubulin and

Bmcc1s, strongly supporting the association of Bmcc1s with

microtubules (Figs. 3B, 4B). Colabeling experiments also revealed

that part of the Bmcc1s signal colocalized with GFAP (Glial

Fibrillary Acidic Protein), the astrocyte-specific intermediate

filament protein (57616% (n = 4)) (Fig. 3C), and with NF-M, a

component of the intermediate filaments in neurons (cell body

19614% (n = 3); neurites 64612% (n = 3)) (Fig. 4C). Consistently,

immunoelectron transmission microscopy detected endogenous

Bmcc1s on cytoskeleton-type structures compatible with microtu-

bules and intermediate filaments (Figs. 3D, 4D). In order to further

explore the relationship between Bmcc1s and microtubules, we

next examined the possibility of a direct binding of Bmcc1s to

microtubules by standard microtubule binding in vitro assays

(Fig. 5). Bmcc1s remained in the soluble fraction and did not co-

sediment with taxol-stabilized microtubules. Thus, Bmcc1s

colocalizes with microtubules and intermediate filaments, but in

vitro it does not behave as a microtubule-binding protein.

Bmcc1s interacts with the microtubule-associated
protein MAP6

To further explore the functions of Bmcc1s, we searched for its

binding partners by performing GST pull-down assays and

matrix-assisted laser desorption/ionization time of flight

(MALDI-TOF) mass spectrometry. Whole adult mouse brain

lysates were incubated on either immobilized GST-Bmcc1s or on

GST alone expressed and purified from E. coli. As controls, GST-

Bmcc1s and GST were incubated with lysis buffer only. Bound

proteins were eluted and resolved by SDS-PAGE. Visualization by

Coomassie staining revealed a band around 120 kDa in the brain

lysate retained by GST-Bmcc1s which was not present in controls

(Fig. 6A). This band was subjected to trypsin-digestion followed by

MALDI-TOF analysis and was identified as the microtubule-

associated protein MAP6, also called STOP (Fig. 6C). MAP6

displays multiple isoforms which associate to microtubules and

induce their stabilization [18]. In particular, they protect

microtubules from depolymerization when cells are submitted to

cold [19]. Here, MAP6 peptides sorted by mass spectrometry

covered the N-terminal region of the neuronal MAP6 isoforms N-

STOP and E-STOP (Fig. 6C). We next probed a Western blot of

the eluates with the MAP6 polyclonal purified antibody 23N [19]

Bmcc1s Interacts with MAP6/STOP
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Figure 1. Structure of Bmcc1s. (A) Schematic representation of mouse Bmcc1 gene. Exons are boxed, in black for the coding sequence and in
white for the 59 and 39 non-coding sequences. Primers for 59 RACE and RTPCR experiments are indicated by arrows under exons 11, 12 and 21. (B)
Schematic representation of mouse Bmcc1 transcript. (C) Schematic representation of Bmcc1s cDNA and protein. The BNIP2 homology and BCH
domains are indicated. Asterisks show the antigenic peptides used to generate the Bmcc1s antiserum.
doi:10.1371/journal.pone.0035488.g001

Figure 2. Immunodetection of Bmcc1s. (A) Immunoblot of Bmcc1s in lysates of HeLa cells transfected with a plasmid expressing Bmcc1s-V5.
Similar profiles were obtained using the Bmcc1 antiserum or anti-V5 antibodies. Note that the Bmcc1 antiserum recognized an endogenous protein
around 50 kDa (arrow) of the same size as Bmcc1s in untransfected HeLa cells. Immunostaining of HeLa cells transfected with a plasmid expressing
Bmcc1s-V5, using either the Bmcc1 antiserum or anti-V5 antibodies. The antiserum detected only the V5 positive cells, and both signals overlapped.
Scale bar: 100 mm (B) Immunoblot of endogenous Bmcc1 isoforms in mouse tissue lysates using Bmcc1 antiserum. GAPDH expression is shown as a
loading reference. As in HeLa cells expressing Bmcc1s-V5, the Bmcc1 antiserum detected a band around 50 kDa (arrow) in the brain lysate that
appeared specific to this tissue and was the most abundant among the Bmcc1 isoforms. (C) Immunoblot of endogenous Bmcc1 in primary cultures of
astrocyte and neuron lysates at DIV7, using Bmcc1 antiserum. As found in brain tissues, a major band around 50 kDa was detected (arrow).
doi:10.1371/journal.pone.0035488.g002
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(Fig. 6B). No signal was observed either in the GST-Bmcc1s/lysis

buffer or in GST/brain lysate eluates, indicating the specificity of

the Bmcc1s-MAP6 interaction (Fig. 6B). Several MAP6 isoforms

were revealed in the GST-Bmcc1s/brain lysate eluate, namely the

neuronal isoforms N-STOP (120 kDa) and E-STOP (80 kDa), the

astrocyte isoform A-STOP (60 KDa) and a fibroblastic and

astroglial 48 kDa isoform [18,20]. In contrast, the main MAP6

fibroblast isoform F-STOP (42 kDa), also weakly expressed in

astrocytes and neurons, was not detected. To confirm that in vivo

MAP6 is a bona fide Bmcc1s-interacting partner, we immunopre-

cipitated endogenous MAP6 proteins from mouse brain lysates

(Fig. 6D). Western blot analysis of the precipitate revealed the

presence of Bmcc1s, supporting the fact that MAP6 and Bmcc1s

are part of the same physiological complex in the brain. A shorter

Bmcc1 isoform around 40 kDa was also co-immunoprecipitated

indicating the possible interaction of MAP6 with other Bmcc1

isoforms in the brain. To further explore the interaction between

Bmcc1s and MAP6, we next performed Bmcc1s GST pull-down

assays using in vitro purified MAP6 isoforms (Material and

methods). As shown in figure 6E, Bmcc1s specifically retained

the neuronal MAP6 isoforms N-STOP and E-STOP. In contrast,

in the same ionic conditions, the fibroblast MAP6 isoform F-

Figure 3. Subcellular localization of Bmcc1s in primary cultures of astrocyte. (A–C) Confocal section images of primary astrocytes
immunostained for endogenous Bmcc1s (green) and a-tubulin or GFAP (red). Merge images showed that Bmcc1s forms punctate spots mainly
distributed along a-tubulin stained microtubules (A) and partially colocalized with GFAP-positive intermediate filaments (C). Boxed regions in A
indicate the fields enlarged in each image. B. In nocodazole-treated primary astrocytes (10 mM, 1 h), Bmcc1s followed the disrupted a-tubulin
microtubular staining. (D) Immunogold labelling and electron mircroscopy analysis of primary astrocytes showed that Bmcc1s localized on
cytoskeleton-type structures compatible with microtubules (left) and intermediate filaments (right). Bars: 10 mm (A–C); 200 nm (D).
doi:10.1371/journal.pone.0035488.g003

Bmcc1s Interacts with MAP6/STOP
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STOP did not bind to Bmcc1s, as shown above (Fig. 6B). Finally,

in agreement with these results, immunocytofluorescence exper-

iments on primary neurons showed that Bmcc1s partially

colocalized with endogeneous N-STOP (Fig. S6). Altogether,

these results identify Bmcc1s as a new ligand of astroglial and

neuronal MAP6 isoforms.

Bmcc1s inhibits microtubule cold stability
To explore the functional significance of Bmcc1s-MAP6

interaction, we next tested whether Bmcc1s could modulate

MAP6-induced microtubule cold stability. In vitro polymerized

microtubules at 37uC or subjected to cold were recovered by

sedimentation and analyzed by SDS-PAGE and coomassie

staining (Fig. 7A). At 4uC, almost no microtubules could be

recovered. In contrast, they were preserved at 4uC in presence of

N-STOP or F-STOP, demonstrating the microtubule-stabilizing

effect of MAP6. Adding increasing concentrations of GST-Bmcc1s

progressively lowered the level of microtubules in presence of N-

STOP. In contrast, in presence of F-STOP, with which it does not

interact, Bmcc1s had no effect, and neither did GST alone. Thus,

Bmcc1s inhibited the N-STOP-induced microtubule cold stability

in vitro without affecting that of F-STOP. We next assessed this

effect in cultured cells. Transfection of N-STOP in HeLa cells,

which are naturally devoid of MAP6, induces microtubule cold

stability [21]. HeLa cells stably transfected with GFP-N-STOP

(GFP-N-STOP HeLa) were transfected with a Bmcc1s-V5

expressing plasmid. Twenty-four hours following transfection,

cells were placed at 0uC for 45 min and microtubule resistance to

cold was assessed by a-tubulin immunostaining following free

tubulin extraction (Material and methods) (Fig. 7B). In Bmcc1s-V5

transfected GFP-N-STOP HeLa cells, V5 staining entirely

retracted to adopt a ball shape. In addition, a-tubulin staining

was no longer detectable, indicating a complete depolymerization

of microtubules compared to untransfected cells. We next tested

whether Bmcc1s could have the same effect on endogenous MAP6

Figure 4. Subcellular localization of Bmcc1s in primary neurons. (A–C) Confocal section images of primary neurons after 7 days of culture
immunostained for endogenous Bmcc1s (green) and a-tubulin or neurofilament subunit M (NF-M) (red). Merge images showed that Bmcc1s
colocalizes with a-tubulin (A) and NF-M (C) immunoreactivity signal. Boxed regions in A and C indicate the fields enlarged in each image. B. In
nocodazole-treated primary neurons (10 mM, 1 h), Bmcc1s followed the disrupted a-tubulin microtubular staining. (D) Immunogold labeling and
electron microscopy analysis of primary neurons showed that Bmcc1s localized on cytoskeleton-type structures compatible with microtubules (left)
and intermediate filaments (right). Bars: 10 mm (A–C); 100 nm (D).
doi:10.1371/journal.pone.0035488.g004
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in primary cultures of astrocytes and neurons. Cells were

transfected with Bmcc1-V5 and cold-treated in the next 24 h.

After cold treatment, little or no a-tubulin staining could be seen in

Bmcc1s-V5 expressing astrocytes. In addition, V5 staining entirely

retracted to adopt a ball shape, as already observed in HeLa cells

(Fig. 7C). Finally, Bmcc1s-V5-transfected neurons exposed to cold

also lost a-tubulin staining (Fig. 7D). Altogether these observations

indicate that Bmcc1s overexpression inhibits MAP6-induced

microtubule cold stability.

Bmcc1s displaces the neuronal MAP6 isoform N-STOP
away from microtubules and induces the formation of
membrane protrusions

By which mechanism does Bmcc1s inhibit the microtubule

cold-stabilizing effect of MAP6? Since this phenomenon depends

on the direct interaction of MAP6 with microtubules [22], we

examined the subcellular distribution of N-STOP in GFP-N-

STOP HeLa cells transfected or not with the Bmcc1s-V5

expressing plasmid. In GFP-N-STOP HeLa cells, N-STOP

displayed a fibrillar aspect reminiscent of its association with

microtubules (Fig. 8A) [18]. Accumulation of N-STOP staining in

a perinuclear area possibly corresponding to the Golgi apparatus

was also detected as previously described [23]. When Bmcc1s-V5

was transfected in these cells, the N-STOP labeling changed

dramatically (Fig. 8A). It appeared brighter and part of it

completely lost its cytoskeleton-type distribution, being more

diffuse and concentrated at the cell periphery. Surprisingly, in

contrast to untransfected GFP-N-STOP HeLa cells (Fig. 8A) or

HeLa cells transfected only with Bmcc1s-V5 (Fig. 8B), GFP-N-

STOP HeLa cells expressing Bmcc1s-V5 showed numerous

membrane protrusions sprouting up in all directions and densely

labeled for both V5 and N-STOP (Fig. 8A). In order to observe in

parallel N-STOP and the actin and microtubule cytoskeletons,

HeLa cells stably transfected with the Bmcc1s-V5 expressing

plasmid (Bmcc1s-V5 HeLa) were transfected with the GFP-N-

STOP expressing plasmid (Fig. 8C). As demonstrated by double

immunostaining of a-tubulin and N-STOP, part of the N-STOP

staining no longer localized on microtubules. Instead, as observed

above (Fig. 8A), it was diffuse and more concentrated in actin-rich

phalloidin-labeled areas at the cell periphery and in membrane

protrusions (Fig. 8C). Thus, Bmcc1s relocates N-STOP away from

microtubules. In addition, in presence of both Bmcc1s and N-

STOP, numerous membrane protrusions are formed.

Morphological effects are induced by Bmcc1s together
with MAP6

By which mechanism do Bmcc1s and MAP6 induce the

formation of membrane protrusions? HeLa cells expressing only

Bmcc1s-V5 or N-STOP did not show any obvious morphological

change compared to HeLa expressing both proteins, indicating

that the expression of one or the other is not sufficient to induce

the formation of membrane protrusions. We therefore tested the

effect of Bmcc1s transfection in cells expressing MAP6 endoge-

nously. Primary astrocytes at DIV7 and neurons at DIV1 were

transfected with the Bmcc1s-V5 expression plasmid. Cell mor-

phology was analyzed 24 h after transfection. In agreement with

our previous observations in HeLa cells expressing both N-STOP

and Bmcc1s-V5 (Fig. 8A, 8C), in primary astrocytes Bmcc1s-V5

transfection resulted in the formation of long membrane

protrusions sprouting out from the transfected cells in all

directions, without obvious change in the pattern of actin stress

fibers (Fig. 9A). No protrusion could be seen in cells transfected

with a GFP-only expressing plasmid (Fig. 9A). Next, cell

morphology as well as neurite length and number were compared

in Bmcc1s-V5 and GFP-transfected primary neurons (Material

and methods) (Fig. 9B). Compared to GFP, Bmcc1s-V5-expressing

neurons often showed a very complex morphology, with an

increase in the number of ramifications (Fig. 9B). In GFP-

expressing neurons, the length of the longest neurite was

58.1644.8 mm (n = 97), and the number of extensions starting

from the soma was 3.061.4. In Bmcc1-V5 expressing neurons, the

longest neurite reached 82.2649.4 mm (n = 56), and the number

of cell extensions was 4.462.5. These results indicated that

Bmcc1s-V5 significantly increased neurite length (p-value,0.001)

and number (p-value,0.0001). In contrast, actin labeling was

comparable in GFP and Bmcc1s-V5-expressing neurons. We

finally compared the morphology of Bmcc1s-V5 and GFP-

transfected primary neurons prepared from MAP6 deficient mice

[17] (Fig. 9B). Under Bmcc1s-V5 expression, the longest neurite

reached 41.8626.7 mm (n = 42), and the number of cell extensions

was 3.361.8, whereas in GFP-transfected primary Map62/2

neurons, the longest neurite reached 40.2629.3 mm (n = 88), and

the number of cell extensions was 2.661.4. Thus, in Map62/2

primary neurons, Bmcc1-V5 transfection had no significant effect

on neurite length and number (p-value.0.01). Altogether, these

results suggest that Bmcc1s requires MAP6 as a cofactor to induce

membrane protrusions.

Discussion

In this study, we characterize Bmcc1s, a novel isoform of the

BCH domain-containing molecule Bmcc1, predominantly ex-

pressed in the mouse brain. To date, BCH-proteins have been

mostly studied for their capacity to bind and regulate the activity

of Rho-small GTPases [1–9], with the exception of BNIP-H (or

Figure 5. Microtubule Co-sedimentation assays. Taxol stabilized
microtubules were incubated with or without GST-Bmcc1s. The samples
were then sedimented through a 60% glycerol cushion. The superna-
tants (S) and pellets (P) were separated by SDS-PAGE and stained with
Coomassie Blue. Tubulin (50 kDa) was mostly present in the pellet
fraction with or without Bmcc1s, while Bmcc1s was only detectable in
the supernatant.
doi:10.1371/journal.pone.0035488.g005
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caytaxin), which also interacts with the kidney-type glutaminase

[7], the peptidyl-prolyl isomerase Pin1 [10] and kinesin-1 [11].

Here we show that Bmcc1s interacts directly with MAP6,

indicating that the functions of BCH-containing molecules are

more diverse than initially expected. Bmcc1s binds to neuronal

MAP6 isoforms N-STOP and E-STOP, astroglial MAP6 A-STOP

and a 48 kDa astroglial and fibroblastic MAP6 isoform, but not to

the fibroblastic F-STOP. Direct binding experiments with A-

STOP and the 48 kDa isoforms were not performed since their

sequences are not fully characterized. Nevertheless, our results

indicated that interaction between MAP6 and Bmcc1s did not

occur in domains shared by the neuronal MAP6 isoforms and F-

STOP, i.e. all the central microtubule-stabilizing Mc modules and

the microtubule-stabilizing Mn3 [18].

Bmcc1s localized on intermediate filaments and microtubules.

Accordingly, our mass spectrometry analysis of the proteins pulled

Figure 6. Bmcc1s interacts with MAP6. (A) GST-Bmcc1s or GST immobilized on glutathione sepharose beads were incubated with either a lysis
buffer or a mouse brain lysate. After elution, bound proteins were resolved on SDS-PAGE in parallel with the mouse brain lysate, and visualized by
Coomassie staining. A unique band (square) was analyzed by MALDI-TOF, where MAP6 was identified. (B) The presence of MAP6 and the specificity of
its interaction with Bmcc1s were confirmed by Western blot of the GST eluates with 23N, a polyclonal anti-MAP6 antibody. Several bands
corresponding to the neuronal MAP6 isoforms N-STOP (120 kDa) and E-STOP (80 kDa), the astrocyte MAP6 isoform A-STOP (60 KDa) and a 48 kDa
isoform described in total brain protein extracts were revealed. (C) MALDI-TOF analysis revealed the presence of 4 peptides (in red) corresponding to
MAP6. The microtubule-stabilizing modules Mn1, Mn2 and Mc1 of MAP6 are underlined. (D) Co-immunoprecipitation of MAP6 and Bmcc1s was
performed using the 175 monoclonal anti-MAP6 antibody (IP+aMAP6), or no antibody (IP-aMAP6) as control, on mouse brain lysates. Precipitates
were analyzed by Western blotting with Bmcc1 antiserum, in parallel with the mouse brain lysate. Bmcc1s was co-immunoprecipitated with MAP6. (E)
Pull-down experiments of purified MAP6 isoforms: neuronal, N- and E-STOP and the fibroblast F-STOP, by purified glutathione-S-transferase (GST)-
Bmcc1s or GST. Bound proteins were resolved on SDS-PAGE and Coomassie stained. N- and E-STOP were specifically retained by GST-Bmcc1s.
doi:10.1371/journal.pone.0035488.g006
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down by Bmcc1s not only demonstrated its interaction with the

microtubule-associated protein MAP6 but also with the medium-

sized neurofilament protein [24] (data not shown). The association

of intermediate filaments to microtubules specifically involves

detyrosinated microtubules (Glu-MTs) [25,26], a subset of stable

microtubules enriched in MAP6 [19]. Furthermore, MAP6 has

been shown to co-aggregate with intermediate filaments in

neurons [27]. Thus, interaction of Bmcc1s with MAP6 and its

colocalization with microtubules and intermediate filaments may

indicate a role for Bmcc1s in the cross-talk between both

cytoskeletons.

The MAP6-induced microtubule protective effect operates

through its direct interaction with microtubules [22]. Here, we

showed that Bmcc1s inhibited the microtubule cold resistance and

Figure 7. Bmcc1s inhibits the MAP6-induced microtubule cold stability. (A) Inhibition of N-STOP-induced microtubule cold stability by
Bmcc1s in vitro. Microtubules polymerized at 37uC and subjected to cold were recovered by sedimentation and analyzed by SDS-PAGE and coomassie
staining. The observed 50 kDa band corresponds to polymerized tubulin. At 4uC, almost no microtubules could be recovered. In contrast, they were
preserved at 4uC in presence of N-STOP or F-STOP. Adding increasing concentrations of GST-Bmcc1s progressively decreased the level of
microtubules in presence of N-STOP, but not of F-STOP. In contrast, GST alone had no effect. Numbers indicate the final concentration of the proteins
in micromolar in the depolymerization reaction mix. Concentration of tubulin was 30 mM. (B,C,D) Confocal microscopy image projections of cells
transiently transfected with a plasmid expressing Bmcc1s-V5. Twenty-four hours after transfection, cells were exposed to 0uC for 45 minutes.
Following free tubulin extraction by cell permeabilization, cells were fixed and double-stained for a-tubulin antibody (red), and V5 (green). Nuclei
were stained with DAPI (blue). (B) HeLa cells stably transfected with GFP-N-STOP; (C) Primary culture of astrocytes; (D) Primary culture of neurons. In
Bmcc1s-V5 transfected cells (green), a-tubulin staining was almost gone and V5 staining either retracted in a ball shape in the case of GFP-N-STOP
HeLa cells and astrocytes, or filled the cell body in neurons. Bars: 10 mm.
doi:10.1371/journal.pone.0035488.g007
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Figure 8. Bmcc1s overexpression displaces MAP6 away from the microtubules and induces the formation of membrane
protrusions. (A) HeLa cells stably transfected with GFP-N-STOP (GFP-N-STOP HeLa) transiently transfected with an expression plasmid for Bmcc1s-
V5. Twenty-four hours after transfection, cells were fixed and double-stained for N-STOP using the 23N polyclonal MAP6 antibody (green) and for
Bmcc1s-V5 using a monoclonal anti V5 antibody (red). In untransfected GFP-N-STOP HeLa, N-STOP staining showed a microtubule-like pattern. The
Golgi apparatus was also labeled (asterisks). Insert (a) is an enlargement of the squared region showing N-STOP staining in more detail. In the Bmcc1s-
V5 GFP-N-STOP HeLa transfected cell (white arrows), N-STOP labeling became brighter, no longer featuring its typical microtubule-type distribution,
and numerous membrane protrusions (white arrowheads) labeled for both V5 and N-STOP were seen. Insert (b) is an enlargement of the Bmcc1s-V5
GFP-N-STOP HeLa transfected cell. (B) Confocal microscopy images of HeLa cells transiently transfected with an expression plasmid for Bmcc1s-V5.
Twenty-four hours after transfection, cells were fixed and double-stained for Bmcc1s-V5 using a monoclonal anti V5 antibody (green) and for F-actin
using TRITC-conjugated phalloidin (red). (C) Confocal microscopy images of a Bmcc1s-V5 stably transfected HeLa cell (Bmcc1s-V5 HeLa) transiently
transfected with an expression plasmid for GFP-N-STOP. Twenty-four hours after transfection, cells were fixed and stained for N-STOP using the 23N
polyclonal anti-MAP6 antibody (green), for microtubules using a a-tubulin antibody (blue), and for F-actin using TRITC-conjugated phalloidin (red).
Merge images show that N-STOP partially loses its microtubular staining, being more diffuse in the cell, and located in actin-rich membrane
protrusions (white arrowheads). Bars: 10 mm.
doi:10.1371/journal.pone.0035488.g008
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moved N-STOP away from microtubules. Microtubules consis-

tently lost their resistance to the cold. This effect was also observed

in primary astrocytes and neurons transfected with Bmcc1s,

suggesting that endogenous MAP6 no longer interacted with

microtubules. Thus, our results strongly suggest that Bmcc1s, by its

ability to associate with MAP6, regulates MAP6-microtubules

interaction and disrupts it when increased, leading to the loss of

cold resistance. Therefore, Bmcc1s is a new molecular partner of

MAP6 with the capacity to influence its microtubule interaction

and protective functions.

Transfection of Bmcc1s also resulted in numerous membrane

protrusions in astrocytes as well as in neurons, in which the length

of the principal neurites was also increased. In neurons, these

effects were abolished in absence of MAP6. In HeLa cells, the

protruding effect was not observed unless Bmcc1s was co-

expressed with N-STOP. Altogether, these results strongly suggest

the requirement of both MAP6 and Bmcc1s to induce morpho-

logical alterations. What is the mechanism involved? In HeLa cells

coexpressing Bmcc1s and N-STOP, N-STOP appeared partially

relocated from the microtubules, in particular in actin-rich

protrusions. Interestingly, MAP6 not only interacts with microtu-

bules but with polymerized actin in vitro, suggesting that it may

play a role in actin cytoskeleton dynamics [28]. Thus, an attractive

hypothesis would be that, in the presence of high level of Bmcc1s,

MAP6 dissociates from microtubules and binds to actin. In

differentiating neurons, N-STOP when phosphorylated was shown

to colocalize with actin rich areas in spikes and at branching

points, but not with microtubules [28]. Thus, we tested whether

such mechanism could occur under Bmcc1s overexpression in

protein extracts prepared from Bmcc1s and N-STOP transfected

HeLa cells. The molecular weight of N-STOP did not shift in

presence of Bmcc1s (data not shown), suggesting that Bmcc1s does

not influence the phosphorylation status of N-STOP. In vitro, the

effect of Bmcc1s on the N-STOP microtubule stabilizing effect

appeared to be dose-dependent, thus an alternative hypothesis

would be that increased levels of Bmcc1s reduce the level of MAP6

available for microtubule interaction, favoring its link to actin. The

question now arises as to how MAP6 could possibly act on actin

dynamics to induce the formation of membrane protrusions,

which is still an open issue.

In conclusion, Bmcc1s is a novel Bmcc1 isoform predominantly

expressed in the brain and present in astrocytes and neurons. It

localizes on intermediate filaments and microtubules and directly

interacts with the microtubule-associated protein MAP6. Overex-

pression of Bmcc1s displaces MAP6 from microtubules, inhibiting

its protective effect to cold and affecting cell morphology. The

transcription of BMCC1 has been found to be strongly upregulated

in the neurodegenerative Rett syndrome [16]. Thus, the alteration

of astroglial and neuronal cell morphology and the modulation of

MAP6 functions, which result from Bmcc1s upregulation, could

represent molecular and cellular mechanisms involved in this

pathology.

Materials and Methods

Animal experimentation
In compliance with the European Community Council

Directive of November 24, 1986 (86/609/EEC), research

involving animals has been authorized by the Direction Départe-

mentale de la Protection des Populations, Préfecture de l’Isère,

France (permit nu38 09 18). Every effort has been made to

minimize the number of animals used and their suffering. This

study has been approved by the local ethics committee of

Grenoble Institut des Neurosciences.

Data deposition
The sequence of Bmcc1s reported in this paper has been

deposited in the EMBL/GenBank/DDBJ databases: accession

number FR69337.

Antibodies
Polyclonal antibodies against a mixture of two synthetic peptides

of mouse Bmcc1s were raised in rabbit (Covalab). Peptide

sequences were: (24–33) SLDLNGSHPR, and (101–113) SIPEY-

TAEEERED. Numbering refers to EMBL accession number

FR69337. To test the specificity of the antibodies, 1 ml of rabbit

serum was incubated overnight at 4uC with in vitro synthesized

GST-Bmcc1s bound to glutathione-sepharose beads. Eluates were

used to probe Western-blots of mouse brain protein extracts (data

not shown). Primary antibodies used were: Anti-MAP6 polyclonal

23N [19] (dilution 1:1000) and Monoclonal 175 [29], polyclonal

and monoclonal anti-V5 (Sigma-Aldrich) (dilution 1:500), mono-

clonal anti a-tubulin (Sigma-Aldrich) (dilution 1:1000), polyclonal

anti-RhoA (Santa Cruz Biotechnology) (dilution 1:1000), horse-

radish-peroxidase-conjugated monoclonal anti-GAPDH (Sigma)

(dilution 1:2500). Monoclonal antibody M20 against NF-M was

kindly provided by Dr Beat M. Riederer (Hornung et al., 1999)

(dilution 1:10). Secondary antibodies used were: Alexa-conjugated

goat anti-mouse and anti-rabbit IgGs (Molecular probes) (dilution

1:2000), Horseradish-peroxidase-conjugated goat anti-mouse and

anti-rabbit antibodies (Amersham) (dilution 1:2500).

59 RACE PCR RT-PCR and cloning
Elongation of Bmcc1s cDNA 59 end was performed using an

adult mouse brain cDNA library generated by the Marathon

method (Clontech). The reverse oligonucleotides used for the

specific amplification of Bmcc1 were: (first experiment) (3971–

3990 in exon 21) 59-AGGGCTGTGCAGAACCATGA -39,

(second experiment) (398–422 in exons 11 and 12) 59-

TGGCCGTGGGATCTTCATGGTTAGT -39, and (third ex-

periment) (1185–1209 in exon 21) 59-GTGGAGATGTCAC-

CATCCCTGTTGC-39. Elongation time was 5 min, using the

expand High fidelity Taq polymerase (Roche). PCR products were

cloned into pCR2.1-TOPO (Invitrogen) and sequenced. For RT-

PCR, total RNA was extracted from adult mouse tissues using the

RNeasy lipid tissue kit (Qiagen). Reverse transcription was

performed on 1 mg of total RNA using Superscript II reverse

Figure 9. Morphological changes induced by Bmcc1s overexpression requires MAP6. Confocal microscopy image projections of cells
transfected with a Bmcc1s-V5 or GFP expressing plasmid, and stained for V5 (green) and F-actin (detected with TRITC-conjugated phalloidin in red).
Cells were fixed 24 h after transfection. (A) primary astrocytes; (B) primary neurons. The morphology of GFP-expressing cells (green) was unchanged
compared to untransfected cells. In contrast, Bmcc1s-V5-expressing astrocytes and neurons developed numerous membrane protrusions (white
arrowheads). Images in B illustrate representative confocal projections of the effect of Bmcc1s-V5 on neuritic growth and number in wild-type
neurons. The whole Bmcc1s-V5 transfected neuron is shown in the insert. Histograms present means 6 sd of the length of the longest neurite and of
the number of neurites. *** p-value,0.0001 ** p-value,0.001. ns, not significant for 3 independent experiments using the two sample independent
t-test. In neurons, length of the longest neurite, and number of neurites (or cell extensions starting from the soma) were significantly increased by
Bmcc1s-V5 transfection, but not in MAP6-deleted neurons. Bars: 10 mm.
doi:10.1371/journal.pone.0035488.g009
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transcriptase (Invitrogen). PCR was performed using the 59 Race

primer (first experiment) (3971–3990 in exon 21) and the upstream

forward primer (3895–3950) 59-CCCCTAGGGCATACC-

GATGA-39. Control Hprt amplification was performed using

the following primers: Hprt.f 59 GTTGGATACAGGCCA-

GACTTTGTTG 39; Hprt.r 59 GATTCAACTTGCGCT-

CATCTTAGGC 39. Expression construct for Bmcc1s was

performed by RT-PCR on adult mouse brain mRNA using the

Superscript II reverse transcriptase (Invitrogen) and the LA-Taq

polymerase (Takara), with the following primers: (146–170 in exon

10) 59-GGAATGGATATCCACTTCGAGGAGG-39 and (1093–

1117 in exon 21) 59-CGGCTTCTCCTTCAGCTTCATGTCA-

39. Amplification product was cloned into pcDNA3.1/V5-His-

TOPO (Invitrogen). glutathioneS-transferase (GST)-Bmcc1s was

cloned in pGEX-4T1 (Amersham). For this construct, Bmcc1s was

amplified using primers containing EcoR I or Sal I restriction sites

(in italics): (149–163 in exon 10 underlined) 59-GGGAATTCATG-

GATATCCACTTC_39 and (1106–1121 in exon 21) 59-

GGGTCGACGCTACGGCTTCTCCTT-39. Each construct was

verified by sequencing on both strands. The pSG5-N-STOP

expressing plasmid carried rat N-STOP cDNA into the Bgl II site

of pEGFP-C1 (Clontech) [21]. pEGFP-N-STOP plasmid was

generated by subcloning the Bgl II fragment of pSG5-N-STOP.

All numberings for primers refer to EMBL accession number

FR69337.

Protein extraction from mouse tissues and Western
blotting

Adult mouse tissues were dissected and reduced in powder at

280uC, immediately dissolved in PBS with 2% SDS, and 16
EDTA-free Complete Protease Inhibitor (Roche). Lysates were

sonicated twice at 10 Hz (Vibra cell VCX130) and centrifuged

20 min at 10000 g at 4uC. Supernatants were boiled in 56
Laemmli loading buffer. Protein content was measured using the

Pierce 660 nm protein assay reagent (Thermo scientific). Equal

amounts of proteins were separated by denaturing electrophoresis

in NuPAGE 3–8% Tris acetate gradient gel (Invitrogen),

electrotransfered to nitrocellulose membranes, first analyzed using

the Bmcc1 antiserum and HRP-congugated rabbit antibodies, and

then using a GAPDH-HRP coupled antibody. HRP activity was

visualized by ECL using Western Lightning plus enhanced

chemoluminescence system (Perkin Elmer). Chemoluminescence

imaging was performed on a LAS4000 (Fujifilm). GAPDH

expression was used as a loading reference.

Cell culture, transfection and drug treatments
Primary cortical neurons were prepared at embryonic day 15 as

previously described [30]. Primary cultures of cortical astrocytes

were prepared at post-natal day 2 as previously described [31].

HeLa cells (ATCC CCL-2) were grown in Dulbecco’s-modified

Eagle medium (DMEM; Invitrogen) supplemented with 10% fetal

calf serum, in 5% CO2 at 37uC. Stable transfectants for pEGFP-

N-STOP were selected with 500 mg/ml G418 during 15 days.

After 7 days of culture without G418, cells were then maintained

with 250 mg/ml G418 and FACS-sorted. Stable transfectants for

Bmcc1s-V5 were selected by adding 500 mg/ml G418. Transient

transfections were carried out on HeLa or DIV 7 primary

astrocytes with Lipofectamine 2000 according to the manufactur-

er’s instructions (Invitrogen). Primary Neurons were transfected at

DIV1. In this case, cells were incubated only 30 min with the

lipofectamine plasmid mix and returned to their initial culture

medium. Estimation of the neurite length and number was done

24 h after transfection using ImageJ software. Statistical analysis of

the results was done using the T-test. Three independent

experiments were performed. For the microtubule cold stability

analysis, cells were exposed 45 min to the cold on ice,

permeabilized in lysis buffer (30 mM Pipes, 1 mM EGTA,

1 mM MgCl2, 10% glycerol, 1% Triton X-100, pH 6.75) for

1 min and processed for immunofluorescence [23]. Control

experiments were performed using the pmaxGFP plasmid (Lonza).

Microtubule depolymerizing treatment was performed using

10 mM Nocodazole for 1 h at 37uC.

Immunocytofluorescence
Cells were grown on coverslips, fixed in 4% phosphate-buffered

(PBS) paraformaldehyde (PFA) for 10 min at room temperature,

and processed for immunofluorescence as described [32]. See the

‘‘antibodies’’ section for the dilutions of the various antibodies.

Fluorescence images were taken in a SP5 confocal microscope

(Leica). F-actin was detected with TRITC-conjugated phalloidin

(Sigma). Colocalization of Bmcc1s with a-tubulin, GFAP and NF-

M was estimated using the ImageJ software.

Immnunoelectron microscopy
Astrocytes were fixed with 4% (w/v) PFA and 0.1%

glutaraldehyde (Polysciences, Inc, Warrington) in PBS. After

being washed in PBS, the cells were treated with ammonium

chloride (0.13 g/50 ml of PBS) for 30 min at 4uC, gradually

dehydrated in ethanol, and embedded in lowicryl Hm20

(Polysciences) in an AFS REICHERT (Leica) after a progressive

lowering of temperature. After polymerisation under UV light at

45uC below zero for 48 h, pale yellow sections were incubated for

30 min in goat gold conjugate-blocking solution (Aurion, Wagen-

ingen, Netherlands). The sections were washed (three times for

5 min each) in PBS 0.1% bovine serum albumin-c (Aurion).

Sections were subsequently incubated overnight at 4uC in the

same buffer with Bmcc1 antiserum. After extensive washes (six

times for 5 min each), the sections were incubated 1 h at room

temperature in 20 nm gold-conjugated secondary antibodies

against rabbit IgG (1:50, British Biocell International, Cardiff,

UK), washed (six times for 5 min each) in the incubation buffer,

and then in PBS (two times for 5 min), followed by a 5 min

fixation in 2% glutaraldehyde in PBS. After a wash of 5 min in

PBS and six washes of 2 min in distilled water, sections were

counterstained with uranyl acetate and lead citrate for inspection

with a Philips tecnai 12 electron microscope (FEI the Eindhoven,

The Netherlands). Primary neurons (11 DIV) were plated on

thermanox coverslips (Nunc, Inc. Naperville, IL) and frozen in a

Leica HPM 100 apparatus under a pressure of 2100 bar. After

freezing, samples were rapidly transferred to liquid nitrogen.

Cryosubstitution and embedding of the cells were then performed

in a AFS 2 apparatus (Leica) in anhydrous methanol with 1,5%

uranyl acetate at 290uc for 40 h with one change of solution.

After extensive washes in anhydrous methanol, cells were slowly

warmed to 245uC (5uC/h) and gradually embedded in lowicryl

Hm20 (Polysciences). After polymerisation under a UV light at

245uC during 48 h, coverslips were warmed to room tempera-

ture, mounted on resin block and cut in parallel to the cell plan.

The coverslips were completely removed with the glass knife until

reaching the cells. Thin sections were cut using a Leica ultracut E

and incubated 30 min in goat gold conjugates blocking solution

(Aurion). Sections were then washed three times for 5 min in PBS

with 0.1% bovine serum albumin-c (Aurion), and subsequently

incubated overnight at 4uC in the same buffer with the Bmcc1

antiserum (1:200). After six washes (5 min each), sections were

incubated 1 h at room temperature in 10 nm gold-conjugated

secondary antibodies against rabbit IgG (1:50, British Biocell

International) and washed six times 5 min in the incubation buffer,
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twice in PBS and 5 min fixation in 2% glutaraldehyde in PBS.

After a 5 min PBS wash and six washes of 2 min in distilled water,

sections were counterstained with uranyl acetate and lead citrate

for inspection with a Philips tecnai 12 electron microscope (FEI

the Eindhoven, The Netherlands).

Sedimentation of Bmcc1s with Microtubules
All proteins were preclarified at 150,000 g for 15 min in a TL-

100 Ultracentrifuge (Beckman) at 4uC before the experiment

started. Microtubule-binding assay was performed as previously

described, using 40 mg taxol-stabilized microtubules (4 mM) as

substrates and 1 to 4.5 mg of purified GST-Bmcc1s [33].

In vitro effect of Bmcc1s on microtubule stability
Microtubules were polymerized in vitro from bovine brain tubulin

(60 mM) in 2 ml of PEM (Pipes 100 mM pH6.75, EGTA1 mM,

MgCl2 1 mM) containing 1 mM GTP at 37uC. After 45 min,

microtubules were either preserved by dilution in 20 ml of 60%

sucrose/PEM solution at 37uC or diluted with one volume (2 ml) of ice-

cold PEM-T solution (PEM+0.1% Tween 20) containing 2 mM of N-

STOP or F-STOP proteins alone or mixed with either 4, 10, 20,

40 mM of GST-Bmcc1s or 40 mM of GST and incubated for 30 min

on ice. Reaction mixes were then diluted with 20 ml of 37uC solution of

60% sucrose in PEM, loaded on warm 60% sucrose in PEM cushions

(80 ml) and centrifuged at 200 000 g for 30 min at 37uC. Pellets were

briefly washed with 300 ml of PEM solution at 37uC, re-suspended in

Laemmli buffer and analyzed by SDS-PAGE and coomassie staining.

Identification of Bmcc1s-binding proteins
Adult mouse brains were homogenised in binding buffer (PBS

with 5% glycerol, 5 mM MgCl2, 0.1% Triton X-100, and 16
EDTA-free Complete Protease Inhibitor (Roche)) with a Dounce

tissue grinder. Lysates were sonicated twice at 10 Hz (Vibra cell

VCX130). Triton X-100 concentration was adjusted to 1% and

lysates were incubated 1 h at 4uC. After 20-min centrifugation at

10000 g at 4uC, protein content of the cleared lysates was

measured using the BCA protein assay (Thermo scientific). 500 mg

of proteins were incubated with GST-Bmcc1s fusion protein,

bound to glutathione-sepharose beads overnight at 4uC. After five

washes with binding buffer containing 150 mM NaCl, proteins

were boiled in 56 Laemmli loading buffer, separated by

denaturing electrophoresis in NuPAGE 4–12% SDS-polyacryl-

amide gradient gel (Invitrogen), and visualized by Coomassie

staining (BioRad). For mass spectrometry (MS) analyses, gel slices

were reduced, alkylated, and subjected to digestion with trypsin

(Roche) as previously described [34]. The extracted peptides were

dried and resolubilized in solvent A (95:5 water/acetonitrile in

0.1% [wt/v] formic acid). The total digestion product of a gel slice

was used for two liquid chromatography-tandem MS (LC-MS/

MS) analyses (1/5 and 4/5). The extracted peptides were

concentrated and separated on an HPLC system (Ultimate

3000; Dionex), coupled to the nano-electrospray ionization

interface of a mass spectrometer (QSTAR Elite; Applied

Biosystems) using a PicoTip emitter (10 mm in diameter; New

Objectives). HPLC mobile phases contained solvent A and solvent

B (20:80 water/acetonitrile in 0.085% [wt/v] formic acid). Bound

peptides were eluted with a gradient of 5–50% of solvent B.

Information-dependent acquisition was used to acquire MS/MS

data, with the experiments designed so that the three most

abundant peptides were subjected to collision-induced dissocia-

tion, using nitrogen as collision gas. Data from the information-

dependent acquisition experiments were searched twice using

MASCOT (Matrix Science) and PHENYX (Geneva Bioinfor-

matics) software on the NCBI nr Mus musculus database (National

Library of Medicine, Bethesda, 2009 07 03, 143362 protein

entries). All data were validated using myProMS [35].

Co-immunoprecipitation
Adult mouse brains were homogenized in RIPA lysis buffer

(50 mM TrisHCl pH 8.0, 150 mM NaCl, 1% NP-40, 0.5%

sodium deoxycholate, 0.1% SDS, 16 EDTA-free Complete

Protease Inhibitor (Roche)) with a Dounce tissue grinder. After

20 min centrifugation at 10000 g at 4uC, the lysate was precleared

with protein G sepharose (GE Healthcare) and protein content

was measured using the BCA protein assay (Thermo scientific).

5 ml of purified monoclonal 175 anti-MAP6 antibody was added to

500 mg of proteins and incubated at 4uC overnight. Immunocom-

plexes were captured by adding protein G sepharose for 1 hour at

4uC. After five washes with lysis buffer, beads were resuspended

and boiled in 56 Laemmli loading buffer to release immunopre-

cipitates. Samples were separated by denaturing electrophoresis in

NuPAGE 4–12% SDS-polyacrylamide gradient gel (Invitrogen),

electrotransfered on nitrocellulose membranes, and analysed by

Western blotting with Bmcc1 antiserum and HRP-congugated

rabbit antibodies, using Western Lightning plus enhanced

chemoluminescence system (Perkin Elmer).

In vitro Bmcc1s-MAP6 interaction
MAP6 isoforms were expressed as N-terminal His-tagged

proteins in High-five insect cells. The F-STOP protein was

successively purified on anion-exchange Q-sepharose, Nickel-

NTA and calmodulin-agarose columns. The N-STOP protein was

purified by affinity first on a Ni-NTA column and then on a

column carrying the monoclonal 175 antibody. N-STOP was

eluted using the corresponding antigenic peptide. Regarding E-

STOP, affinity purification on Ni-NTA beads was sufficient to

obtain a protein with a high degree of purity. GST and GST-

Bmcc1s were expressed in E. coli and purified on glutathione-

agarose beads according to the manufacturer’s instructions. All the

proteins were extensively dialysed against PEM buffer (PIPES

100 mM pH6.6, EGTA 1 mM, MgCl2 1 mM). For GST pull-

down assays, 10 ml of glutathione-agarose beads were mixed with

either 2 mg of GST-BMCCsh1 or 4 mg of GST and 1.5 mg of one

of the purified STOP isoforms. After 2 h incubation at 4uC in

300 ml of incubation buffer (PEM buffer plus 50 mM KCl, 0.05%

Triton-X100 and 1 mM DTT), the beads were sedimented at

300 g for 30 seconds, washed three times with 500 ml of

incubation buffer and resuspended in Laemmli buffer. Samples

were separated on a 12.5% SDS-PAGE and Coomassie stained.

Supporting Information

Figure S1 Mouse Bmcc1/Prune2 gene, transcripts and
proteins. (A) Schematic representation of mouse Bmcc1 gene. All

exons and introns are at scale, unless indicated. Insert at exons 7a/

7b indicates the orthologous exon 4 of the human PCA3 gene on

the opposite strand, which overlaps with exon 7a. A & B. Exons

are boxed, in black for the coding sequence and in white for the 59

and 39 non-coding sequences. Alternative start and stop codons

are indicated. (B) Schematic representation of mouse Bmcc1

transcripts. Scale is as in A, and transcripts are given with their

accession number, size, library type, and exon composition. Solid

bar under exon 21 indicates DNA arrays probe set. Primers for 59

RACE experiments are indicated by arrows under exons 11/12

and 21. Dashes indicate reading frames that are still open. (C)

Schematic representation of mouse protein Bmcc1 protein

isoforms encoded by the corresponding transcripts shown in B.

Proteins are at scale, with their accession number, size, and library
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type. Corresponding coding exons are boxed in light gray. Dashes

indicate that protein may be longer. Conserved domains described

in [36] are indicated on the top of the longest protein, as the

antigenic peptides (asterisks) used to generate the Bmcc1s

antiserum. In comparison to the human sequences presented in

figure S2, Bmcc1 displays an additional exon 7a, generating

specific C-termini in the N-ter proteins. Second, translation of

mouse C-ter Bmcc1 proteins is initiated at the ATG initiation

codon within exon 10, while in human BMCC1 it starts either in

exon 9b or in exon 9c. Consequently, all Bmcc1 C-ter proteins

share the same N-terminus, which differs in human. Finally, exon

7a overlaps the orthologous human PCA3 exon 4 on the opposite

strand, while human PCA3 coding-exons located in intron 6 do

not overlap with BMCC1 exons [36].

(PDF)

Figure S2 Human BMCC1/PRUNE2 gene, transcripts
andproteins. (A) Schematic representation of the BMCC1 gene.

All indicated exons and introns are at scale. Insert at intron 6

indicates the four PCA3 gene exons on the opposite strand. (A,B)

Exons are boxed in black for the coding sequence and in white for

the 59 and 39 non-coding sequences. Alternative start and stop

codons are indicated. B. Schematic representation of human

BMCC1 transcripts. Scale is as in A, and transcripts are given with

their accession number, size, library type, and exon composition.

Dashes indicate still opened reading frames. C. Schematic

representation of human BMCC1 protein isoforms encoded by

the corresponding transcripts shown in B. Proteins are at scale,

with their accession number, size, and library type. Corresponding

coding exons are boxed in light gray. Dashes indicate that protein

may be longer. Bmcc1-1 to Bmcc1-4 are described in [36].

Accession numbers of the partial transcripts (EST) linking exons

1–6 to the remaining exons, or demonstrating the presence of the

ortholog of mouse exon 18 in human transcripts and gene are in

italics. Conserved domains described in [36] are indicated at the

top of the longest protein, as well as the conserved epitope

(asterisk) used to generate Bmcc1 antiserum.

(PDF)

Figure S3 Expression profile of Bmcc1s. RT-PCR using

total RNA extracted from various mouse tissues on the 39 end of

the Bmcc1s 39UTR. Amplification occurred mainly in the brain,

demonstrating that Bmcc1s expression is highly specific to this

organ. Hprt amplification was used as an internal control.

(PDF)

Figure S4 Specificity test of the Bmcc1s antiserum.
Immunoblotting of adult mouse cortex proteins with the Bmcc1s

antiserum (Control), or the antiserum preincubated on sepahrose

bound GST or increasing concentrations of sepharose bound

GST-Bmcc1s. GAPDH expression is shown as a loading reference.

(PDF)

Figure S5 Immunodetection of Bmcc1s in the post-natal
developing brain. Immunoblot of endogenous Bmcc1 isoforms

in mouse brain lysates of post-natal day (P) 1 to 4 months, using

Bmcc1 antiserum. A major 50 kDa band (arrow) corresponding to

Bmcc1s was detected at all stages.

(PDF)

Figure S6 Bmcc1s colocalizes with the neuronal MAP6
isoform N-STOP in primary neurons. Confocal section

images of primary neurons immunostained for Bmcc1s (green) and

N-STOP (red) using the monoclonal antibody 175 [29]. Bar:

10 mm.

(PDF)
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