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« Theories come and go, but fundamental
data always remain the same »
Mary Nicol Leakey: 1913-1996

Abstract

In this review article, which corresponds to lectures given by one of us (N.A) at
the third « Euroschool on Exotic Beams » held in Leuven in September 1995, we
present experimental results and theoretical developments in heavy-ion elastic and
inelastic scattering and Giant Resonance excitation. The paper contains a short review
of the field with special emphasis on more recent results and problems. We start by
recalling the theoretical situation concerning the description of nucleon-nucleus elastic
scattering. We show that in the framework of the local density approximation, complex
potentials derived from fundamental effective nucleon-nucleon interactions, describe
successtully the data. However, the main part of the discussion on elastic scattering, (s
dedicated to the description of intermediate energy heavy-ion elastic scattering. We

present different folding models for the calculation of the real part of the nucleus-



nucleus optical potential, M3Y, DDM3Y,.... The theoretical predictions are compared
to experimental data mainly obtained at GANIL. We show that a new density dependent
interaction which reproduces the equilibrium density and the binding energy of normal
nuclear matter, leads also to a satisfactory description of heavy-ion elastic scattering
angular distributions. This interaction reproduces also the density and energy
dependence of the nucleon optical potential. We present a new simple effective
interaction with a real and imaginary part for peripheral heavy-ion collisions at
intermediate energies. Finally the effect of the isospin and spin terms of the effective
nucleon-nucleon interaction on the nucleus-nucleus folded potentials is discussed.

We introduce the deformed optical model potential which is the most frequently
used model, to obtain inelastic scattering transition potentials. However the most direct
approach to obtain transition potentials is from the folding of the transition densities
with an effective nucleon-nucleon interaction and the ground state density of the
nucleus which is not excited. We show that the predictions of the optical and folding
model are very different, especially for transitions dominated by nuclear excitation. The
difference between the cross sections estimated within the deformed optical model and
the folding model increases with multipolarity. Following the theoretical work of R.
Satchler, we recommend the use of a folding model to extract deformation lengths and
multipole moments from inelastic scattering measurements.

We present the state of the field concerning Electric Giant Resonances and
multiphonon excitations. We introduce the different sum rules which can be found
usually in the literature and we show the link between them. The excitation of Giant
Resonances with intermediate energy or high energy heavy ions, measured at GANIL or
GSI and the technical problems met in the analysis of these experiments are discussed.
Recent results concerning the two-phonon excitation of the Giant Quadrupole and
Dipole mode are presented. Concerning the breathing mode, macroscopic and
microscopic prescriptions introduced to access the compressibility of the nuclear matter
are discussed. We show, in the light of theoretical arguments developed recently by J.P.
Blaizot and collaborators, that microscopic calculations remain the most reliable tool
for the determination of the nuclear matter compression modulus from the energy of the

monopole vibration of nuclei.
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[. OPTICAL MODELS AND ELASTIC SCATTERING

I-1. INTRODUCTION

The optical model is the simplest and most successful model to describe the
scattering of nuclei. It describes the interaction of two nuclei in terms of a potential.
The interaction of two nuclei (even if one of them is a single nucleon) is a complicated
many body problem. For the purpose of describing elastic scattering, the optical model
attempts to replace this problem by the much simpler one of two structureless bodies

interacting via a simple potential U(7,). Except for a possible dependence on the spins
of the two nuclei, this potential is usually assumed to depend only upon the distance 7,

between the centers of mass of the two nuclei. Whenever non-elastic scattering is
possible, there is a loss of flux from the elastic channel. Hence the optical potential

must be absorptive. This is accomplished by making the potential complex.

Fig.1.1 Coordinates used for (u) single-folding, and (bj double folding [Su83)



[f an incident nucleon « interacts with each target nucleon i through a nucleon-
nucleon potential, or effective interaction w(fF, - 7|) . where |7, - 7| is the distance

between them, (see Fig. 1.1), then the overall potential it experiences due to the target

nucleus 1s
UG = [ py(FuF, - F )dr (1.1)

where p,(7) is the density of the nucleus A at the position i. The nucleon-nucleon

effective interaction has a short range and therefore for separation distances greater than
about 1 fm it decreases exponentially. Hence when folded into the nuclear density

distribution, the resulting potential has a shape which loosely follows p (%) but with a

more rounded surface (Fig.1.2).

'

Fig. 1.2 Comparison between the shape of a density distribution and the potential

obtained by folding it with a short-ranged interaction [Sa83].

The potential (1.1) describes the scattering of two particles, where the target is
undisturbed and elastic scattering is the only possible process. But other reaction
channels are possible and their existence affects the elastic scattering. For example, an
incident nucleon may excite the target nucleus which then deexcite and the system does
not return to the entrance channel. If an excitation of this type takes place, we have a
non-elastic event. The projectile is then lost from the entrance channel and may be

thought of as being absorbed. If we are not interested in the details of the non elastic



process, but only in their effect on the elastic scattering, we can represent this
absorption by adding an imaginary term to the optical potential.

In the same way as for nucleons, potentials for composite projectiles like
deuterons, a-particles and heavier ions can be constructed. In this case we must
integrate over the nucleons in the projectile as well as in the target. If the density

distribution in the target is p () and that in the projectile is p,(F), equation (1.1) is

replaced by the following formula
U(7) = [] paF)pu )Ry )R, (12)

where 7, =7, —r +r,. The folding expressions (1.1) and (1.2) are easy to evaluate. If

we work in momentum space the double-folding reduces to a product of three Fourier
transforms while the single-folding reduces to a product of two transforms (§1.3).
Clearly the additional integration over the projectile distribution will lead to a potential
much like that of eq. (1.1) but with an even more diffuse surface.

There are two important ingredients in the calculation of the above potentials (eq.
(1.1) and eq. (1.2)), the effective nucleon-nucleon interaction and the density
distribution of the colliding nuclei. The central part of the effective interaction may be

written as:
_ - o i - - oud - -5
U= Uy +UGT T, T U000, +U,T,7,0,0, (1.3)

For calculating the effective nucleon-nucleon interaction the most popular
approach parallels that used in the nuclear shell model. In it, one calculates the
scattering of two nucleons while they are embedded in nuclear matter of various
densities. The nuclear medium provides an average potential in which the nucleons
move, allows propagation off the energy shell and, through the Pauli principle, modifies
the scattering by blocking intermediate virtual states that are occupied by other
nucleons [Sa83]. The Bethe-Golstone equation for this scattering problem is solved,
yielding a density-dependent reaction or G-matrix (an extensive discussion on Bethe-
Goldstone equation and G-matrix, can be found in [Pr75]). The G-matrix so obtained is
still a complicated object, and attempts have been made to find simple representations

that are easier to use in spectroscopic applications, that is by generating simple



mathematical formulae which reproduce the G-matrix elements. In an approach,
appropriate for low energies [Be77], the G-matrix for scattering of one nucleon by a
bound nucleon was assumed to be very close to that for two bound nucleons. The
effective interaction was represented by a sum of Yukawa functions (M3Y
interactions), the strengths of which were adjusted to reproduce the G-matrix elements.

From their origin in G-matrices for bound nucleons, M3Y effective interactions
are real and have to be supplemented by phenomenological imaginary parts. [n addition,
they contain no explicit density dependence or energy dependence. These deficiencies
have been rectified in density and energy dependent calculations of the G-matrix.
J.P.Jeukenne et al. [Je77], starting from the Bruekner-Hartree-Fock approximation and
Reid’s hard core nucleon-nucleon interaction have calculated and parametrized the
energy- and density dependence of the isoscalar, isovector and Coulomb components of
the complex optical potential.

A discussion of the different methods applied for obtaining the « microscopic »
nucleon-nucleon interaction is lengthy and goes beyond the scope of the present article.
We would like to insist on the fact that « microscopic » approaches denote attempts to
understand the scattering in terms of the motions of individual nucleons and their
interactions instead of using phenomenological, one-body potential models. In that
sense folding models incorporate more nuclear structure information than
phenomenological approaches.

The second important ingredient in these calculations is the density distribution of
the colliding nuclei. The most direct measure we have of the densities, to be used in
equations (1.1) and (1.2), comes from electron scattering. This yields information about
the charge density and hence primarily about the proton distribution. However, for light
nuclei with N=Z, it is not unreasonable to assume that the neutron and proton
distributions are the same. Average expressions, of Fermi shape, of the proton and

neutron density distributions were proposed some years ago by Negele, [Ne70].

pk
Fry= g (1.4
P l+expl(r-c,)/a,l (14)

where a,= 0.54

cp=(0.978+0.0206A”)A‘3 and p,



k =N or Z. This parametrization reproduces reasonably well the experimental charge
density distribution, its accuracy is poorer however for light nuclei.

For unstable nuclei, for which the densities are obviously not known from
electron scattering experiments, theoretical density distributions have to be used.
Analysis using folded potentials for nucleon-nucleus and nucleus-nucleus elastic and
inelastic scattering will be presented in §1.2 and §1.3.

The short range of the nucleon-nucleon interaction implies that the shape of the
potentials resulting by folding the nucleon-nucleon interaction with a density
distribution loosely follows the shape of the density distribution. In that sense equation
(1.4) justifies a posteriori the use of phenomenological potentials of Woods-Saxon
form which have been widely used to study the dynamics of elastic scattering. The real
part of these optical potentials is given by the expression:

Ulr)=V, /(1+exp((r-R))/ a,)) (1.5)

where Vi, R, and a, are known as the well-depth, radius, and diffuseness respectively,
similar expressions are used for the imaginary and the spin orbit part of the nuclear
potential. Analysis using phenomenological potentials for describing nucleon-nucleus
and nucleus-nucleus elastic and inelastic scattering have been presented in many
publications.

To study the sensitivity of the elastic and inelastic scattering angular distributions
with respect to the nuclear potential (elastic scattering) and to the transition potential
(inelastic scattering) the data are usually confronted to the predictions of the optical
model and to the predictions of the distorted-wave Born approximation (DWBA),

The differential cross section for elastic scattering from the potential U(r) can be

expressed directly in terms of the scattering amplitude £(8), gg—z =|£(6)" where the

scattering amplitude is given by the expression

f(B):%i(ZHI)e"’" sind, P, (cos §) (1.6)

=0



where &, is called the phase shift and is related to the asymptotic behavior of the radial

wave function u,(r):
TR l”
u(r), _,.=se ’sm(kr~7+5,) (L.7)

solution of the Schrondinger equation

dzu,
dr?

+ [—";?(5 Uy~ ’(’rﬁ ”]u, =0 (18)

Many codes are available today, ECIS [Ra81], PTOLEMY [Rh80], FRESCO
[Th88],....which can be used to perform these calculations. In the next chapters we shall
mainly focus our attention on the origin of the optical and transition potentials

parameters, rather than on technical details concerning the codes.



1-2. NUCLEON-NUCLEUS ELASTIC SCATTERING

Elastic neutron and proton scattering from nuclei is most frequently described in
terms of complex optical potential models. These are often phenomenologically based,
using standard form factors for the potential wells, with the .depths and geometries
determined by fitting experimental data [Va91]. However, the potentials can be derived
from the more fundamental effective nucleon-nucleon interaction by applying folding
integrals [Ge89]. Microscopic optical potentials derived from both the nuclear matter
calculation of Jeukenne, Lejeune, and Mahaux [Je77], and the energy and density
dependent t matrix of Brieva and Rook [Br78] have been successful in describing
nucleon scattering from medium and heavy nuclei [Me83]. The extension of these
calculations to light nuclei constitutes a severe test of the applicability of the local
density approximation that is used to obtain optical potentials for finite nuclei from
calculations performed in « infinite nuclear matter » The spherical potential derived
from the work of Jeukenne, Lejeune, and Mahaux (JLM) provides also a consistent
description of differential cross sections of nucleon scattering from light nuclei whereas
the interaction of Brieva and Rook (BRVG) gives less satisfactory agreement [Pe85].
The starting point for computing JLM potentials, is the Brueckner-Hartree-Fock
approximation and the Reid hard core nucleon-nucleon interaction which provide, for
energies up to 160 MeV, the energy and density dependence of the isoscalar, isovector
and Coulomb components of the complex optical model potential in infinite nuclear
matter. In order to provide the reader with usable expressions, Jeukenne, Lejeune, and
Mahaux have parametrized their numerical results for the real and imaginary parts in an

analytical form. For instance, the real part of the optical model V,(p,E) potential is

given by the expression:

Vo (p.E)=3 a,p'E (1.9)

The coefficients ay are tabulated in [Je77]. The choice of the powers of p
appearing in Eq.(1.9) is largely arbitrary. The only physical requirement is that for small
densities the potential Vy(p,E) must become proportional to the probability of having
another nucleon in the neighborhood of the incident particle. The expression (1.9) has



been fitted to the calculated values of Vi(p,E) in the energy interval 10 < [ < 160

MeV.
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Fig.1.3 Dependence on density and energy of the quantity V,(p,E)/ p

As an example of these calculations Fig 3.1 shows the behavior of the strength of

the ratio ¥,(p,£)/ p in infinite nuclear matter versus p, where p is the nuclear density

p=2K; /(37*), and K; denotes the Fermi momentum. This ratio decreases with
increasing energy and increasing density.
The optical potential of a finite nucleus is obtained by applying equation (1.9) but

with p(r) the density distribution of the nucleus.

Ve(r)+iWe(r) = V(pXr), £) + iW((r),E) (1.10)

This approximation is known as the local density approximation [LDA]. The local
density approximation provides root mean square radii, for different nuclei which are
too small. This was ascribed to the fact that the local density approximation does not
include accurately the effect of the range of the effective interaction. This was included

in a phenomenological way by convoluting the potential obtained in the local density



approximation with a Gaussian form factor ~exp(-(rit)’). The range parameter t was

chosen equal to 1.2 fm in the original work of [Je77].

Velry= () [V(oXr), EYexpl—F 7| /1% )dr (L11)

The JLM central potential has been extensively studied by S. Mellema et al.
[Me83] and J.S. Petler et al. [Pe85]. It has been particularly successful in describing
elastic neutron and proton scattering from stable nuclei, provided the imaginary
potential is adjusted slightly by a normalization factor of the order of Aw~0.8. A finite
range parameter of the nuclear force t of 1.0 fm for both the real and the imaginary
potentials, has been proved to yield better results than the initial value of t=12 fm.
These calculations require the nuclear ground state matter densities as input. The proton
point-nucleon density p, is obtained by unfolding the proton charge distribution from
the charge density measured by electron scattering. The neutron density p, is assumed
to be the same as for protons for the N=Z nuclei and, in others cases, was determined by
applying the assumption Pa=(N/Z)p,. Fig. 1.4 show for neutron scattering on '°O at
26MeV, the results of three separate JLM calculations for different values of Aw and
shows the sensitivity of these calculations to small variations of the depth of the
imaginary potential [Tr94]. Fig.1.5 was adapted from [Pe85] and shows the results of
JLM and BRVG microscopic calculations for 13C(n.,n) and 13C(p,p) elastic scattering at
a number of energies between 10 and 35 MeV. It is obvious that the JLM results
provide a better description of the experimental data than the BRGV results, which for
l3C(n,n) overpredict the measured cross sections at forward angles and lie under the
data at larger angles. The JLM central potential has been particularly successful in
describing elastic neutron and proton scattering from many light and intermediate mass
nuclet.

We extended these calculations in the case of unstable nuclei. In all cases, we will
use a renormalization factor A,,=0.8 for the imaginary part and a range parameter t=1.0
fm as was done for stable nuclei. The density distribution of ''Li is presented in the

upper part of Fig.1.6. It was provided by the relation [Be78]:

P a0 = Shwinf (112)
p.n
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where y(r) 1s the eigenfunction of protons and neutrons (p,n) bound in a potential well
and depends on the binding energy of the particles in the well.

The solid line presents the result of a calculation for a two-neutron separation energy of
"'Li of the order of 0.500 MeV in agreement with the experimental results [Ta88],

[Fu91], whereas the dotted line corresponds to a calculation for a separation energy of

the order of 10 MeV.
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Fig. 1.6 (upper part) Density distributions of "'Li corresponding to two different
values of the rms radius. (lower part) JLM calculations for the system "'Li-p at

60MeV nucleon for the two density distributions.

The root mean square radii corresponding to these two density distributions are 3.20 fm
and 2.88 fm respectively. The value of 3.20 fm is in qualitative agreement with the
experimental value of the root mean square radius of ''Li of 3.16 fm, whereas the value

of 2.80 is a typical value for the interaction radius of light, not halo, unstable nuclei in



the A=11,12 mass region [Ta88] The solid and dotted lines in the lower part of Fig. 1.6
are the results of JLM calculations for the system ''Li+p at 60MeV/nucleon and for the
two density distributions presented in the same figure. The two calculations are
compared to the experimental data obtained by Moon et al. [M092]. The experimental
results are in better agreement with a calculation using a nuclear matter density
distribution with a long tail and a root mean square radius of 3.20 fm. Very recently the
"'Li density distribution was calculated by J. Dechargé and J. F. Berger [De95]. In their
many-body calculations the only input 1s the well tested, finite-range DI1S effective
interaction of Gogny. Pairing correlations are included in a constrained Hartree-Fock-
Bogolyubov (HFB) calculation. The resulting density distribution is shown in the upper
part of Fig.1.7 (dotted line).
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Fig.1.7 (upper part) Density distributions of '"'Li within HFB and GCAM
approaches. (lower part) JLM calculations for the system ! 'Li-p at 60AleV nucleon for

the two density distributions.



HFB calculations do not take into account long range collective correlations
which may be important in the case of halo nuclei, since loosely bound neutrons can
occupy orbits having a broad range of radial extension. Long-range collective
correlations were introduced by using a Generator Coordinate Method (GCM) type
formalism. The resulting density distribution is shown in the upper part of Fig.1.7. The
mean square radii of the ''Li nuclear matter density distribution for the HFB and GCM
calculations are 2.80 fm and 342 fm respectively. These microscopic density
distributions were also introduced in the JLM code to calculate the "Li+p angular
distributions. The results of these calculations are shown in the lower part of Fig.1.7.
The JLM calculation with the GCM density distribution is in better agreement with the
experimental data than the calculation using the HFB density distribution. It is therefore
clear from these different analyses that the parameter-free JLM calculations may
reproduce proton plus unstable nucleus elastic scattering, when a ‘realistic’ nuclear
matter density distribution is used. Certainly this type of JLM calculations have to be
extended to other measurements involving other unstable nuclei and in that sense the
conclusion drawn from this ''Li+p elastic scattering analysis have to be considered as
« preliminary ».

In a recent work we have measured proton-nucleus elastic scattering angular
distributions for *He, "Li, '°Be and !'Be secondary beams. These data, together with
proton-nucleus elastic scattering angular distributions for *He, °Li and ''Li measured by
[Ko93] and [Mo092], were analyzed using the standard phenomenological optical
potential [Va91] and within the framework of the JLM model In order to best
reproduce the data, the real potential has to be decreased and the imaginary potential
increased for all nuclei, except 'Li for which the standard potentials give satisfactory
results. The fact that very similar renormalizations are necessary for two different
potentials, a phenomenological one and a microscopic one, where the halo is explicitly
included, indicates that the trend observed is not model dependent. Such
renormalizations would appear to be related to the break-up processes which should be
important for loosely bound light nuclei.

One of the ultimate goal of these studies is to obtain information on nuclear
densities. To achievement of this goal pass through a theoretical description of break-

up processes in proton plus nucleus elastic scattering.



1-3. NUCLEUS-NUCLEUS ELASTIC SCATTERING

During the last decade, the double folding model has been widely used by many
groups to descnibe the heavy ion scattering, due probably to its simple handling in
numerical calculations. In this model the potential is obtained by folding the
distributions p,(7) of the centers of mass of the nucleons in the ground state of the two
interacting nuclei with an effective nucleon-nucleon interaction (7, ) (see eq.1.2)

Because of the integration over two densities, this is often called the double-
folding model. The expression (1.2) involves a six-dimensional integral. However, it is
quite simple to evaluate in the momentum space where it reduces to a product of three

one dimensional integrals. If we denote the Fourier transform of a function f(7) by:

F(k) = | dF exp(ik7 ) /(F) (1.13)
then

f(F)=(22) | dk exp(ik) f (k) (1.14)

In the case of u(7,), one gets

u(flz)=(2n)"jdk‘z7(1€)exp(ﬂ€u?+7: -7)) (1.15)
and

Ue(F) = 27)™ [ dF, [ dF, p (7)) 0, (7, Via( Yexp(ik (R + , - F,))dk

= (27:)‘3jbA(E)ba(—E)a(E)exp(iEé)d/}' (1.16)
Therefore

Up(k) =D ,(k)p,(-k)u(k) (1.17)

The Fourier transform of (1.17) provides the optical potential in r space.

The original version of the folding model which was based on the M3Y effective
nucleon-nucleon interaction, seems to deliver satisfying results in most cases where the
heavy ion interaction is dominated by strong absorption, i.e., when the elastic-scattering

data are sensitive to the heavy ion optical potential only in the surface region. However,



it is well established now that in certain cases, where the data are sensitive to the optical
potential over a wider radial domain, the simple double folding model fails to give a
good description of the data [Sa79]. Therefore, some further developments of the
folding model have been made to obtain more realistic shape of the folded potential.
One of the approaches is to apply on the M3Y interaction, an explicit density
dependence to account explicitly for the in-medium effects which are more substantial
at small internuclear distances. The resulting interaction is the density dependent M3Y
interaction (DDM3Y) [Az85]. Recently the double-folding model was generalized for
the calculation of the nucleus-nucleus potential using a new version of the density-
dependent M3Y interaction which reproduces consistently the equilibrium density, and
binding energy of normal nuclear matter as well as the density- and energy dependence
of the nucleon optical potential [Kh94]. However all these approaches suffer from the
fact that the imaginary potential is treated in a phenomenological way. To overcome
this difficulty R. Satchler has proposed a new simple nucleon-nucleon interaction which
is appropriate for peripheral collisions (no density dependence) at intermediate energies
[Sa%94].

In this chapter we shall describe briefly these models and compare some
experimental elastic scattering angular distributions to the theoretical predictions.

1-3-a) The M3Y effective interaction and its density dependent versions

The oldest and most popular effective interaction is the M3Y interaction. In the

M3Y approach the u,, and u,, components of equation (1.3) have the form

—~r -2.5r
U (r) =| 79995 — 21345 __| Mev (1.18)
4r 2.5r
and
e-4r e—Z.S
Uy (r) = ~| 4886 < — 1176 MeV (1.19)
4r 2.5r

The form (1.18) and (1.19) is not antisymmetrised for the nucleons in different
nuclei, but the individual wavefunctions for nuclei a and A are themselves assumed
antisymmetric. The dominant correction arising from antisymmetrisation will be the

single-nucleon exchange, which for nucleon-nucleus scattering has been called "knock-



on exchange”. This term is included formally in the double folding integral by replacing
u(r,) by (1-P12) (7, ), where P|; exchanges all the coordinates of nucleons 1 and 2. It
has been found that the effect of the single nucleon exchange can be estimated by
replacing -Pjau(7,) by the pseudopotential J(E)(R,). The strength j(E) of the
pseudo-potential associated with the term g is j(E£) = 276(1 - 0.005E / A) MeV fm’

and the effective interaction becomes,

—4r ~2.5r

-2134¢
r 2.5r

e

Uy (r, E) = [7999 4

—-276(1-0.005E / A)J(F)] MeV

(1.20)

The folding model with a properly chosen effective interaction, the M3Y
interaction, has been successful in reproducing the scattering of many systems with
bombarding energies in the range of 5 to 20 MeV per nucleon [Sa79]. The real
potentials for these systems are given correctly if the calculated folded potentials are
renormalized by a factor N where N =111+0.13. The only exceptions established so
far (for stable nuclei) occurs for the scattering of °Li and *Be which require a reduction
in the strength of the calculated folded potential by a factor of about two [Sa79]. In the
case of °Li this effect was shown, by a complete coupled-channels reaction model, to be
due to the breakup of this loosely bound nucleus. The breakup effect can be represented
by a dynamical polarization potential which has a strongly repulsive real part in the
surface, and an additional absorptive (imaginary) part [Sa86].

The M3Y interaction contains no explicit density-dependence or energy
dependence. As a result, it is well adapted only for a small range of nuclear densities,
around 1/3 of the normal nuclear matter density.

At intermediate energy, where the interpenetration of the nuclei is important, it is

necessary to introduce a density dependence in the interaction. The DDM3Y interaction

1s defined by [Az85]

w(E,p,r)=g(E,r)f(E,p) (1.21)
where

f(E,p)=CEN! +a(E)e 7| (1.22)



and g(E.r) is the original M3Y interaction, whose spin and isospin independent part is
given by eq.(1.20). E is the bombarding energy per nucleon, r is the internucleon
separation, and p is the density of nuclear matter in which the interacting nucleons are
embedded. It is usual to assume that the local density is simply the sum of the two

individual densities at that point: p(7) = pP.(R)+p,(7) for a nucleon at 7, in nucleus
A Interacting with a nucleon at 7, in nucleus a. This is called the frozen density

approximation. This assumption ignores any readjustments due to their mutual
interaction or to the Pauli principle, and is really justified only for peripheral collisions
where the density overlap is not large.

The parameters of the density-dependent factor (1.22) were determined at each
energy E so that the volume integral W(E,p,r) matched the volume integral V(p,EYp
(see fig.1.3) of the real part of the reaction-matrix interaction calculated in the JLM
formalism, for various densities of nuclear matter from p=0.008 to p=0.185 fm>. Since
the parameters of the DDM3Y interaction were fitted to the JLM results, the DDM3Y
potential is very close to the JLM one. The parameter values for the energy range E=3
to 90 MeV are shown in Fig 1.8,
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Fig. 1.8 Parameter values for the density-dependent factor of eq.(1.22) as

Junctions of the energy per nucleon. The parameters a and C are dimensionless, while

Bis in units of fm’; - ‘ .
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Because the dependence on density weakens the interaction as the density
increases, the potentials obtained by using DDM3Y interaction are much more shallow
at small radii, by almost a factor of two. This feature is essential for high energy light
ton scattering, which is sensitive to the interior region. Heavy ion elastic scattering is
mostly sensitive to the potential in the surface, where the DDM3Y potentials have a
slightly less steep slope than the M3Y ones. If the potentials are represented in the
vicinity of the strong absorption radii by exponentials Viexp(-r/a), the values « for the
DDM3Y are about 10% larger than for the M3Y interaction

Although M3Y double folded potentials were developed by Satchler to reproduce
elastic scattering data below 20 MeV/nucleon, these potentials were also applied at
higher energy for different systems [Ro88], [Az85). The results are illustrated on
Fig.1.9-1.11 which present the experimental and calculated angular distributions for the

systems 160+12C, 28S;, 40Ca, 90Zr and 208Pb at 94 MeV/nucleon.
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Fig.1.9 Elastic scattering angular distribution measured for the system °0-"’C

at 94 MeV nucleon.

In each case, the different curves correspond to fits obtained with (W-S)
potentials (solid lines), M3Y double folded potentials (dashed lines), or density-



dependent M3Y (DDM3Y) potentials (dotted lines). The imaginary part was assumed
to have a Woods-Saxon or in some cases a squared Woods-Saxon form [Ro88]. Indeed,
one of the limitations of the double-folded potentials, for heavy ions collisions, is
related to the imaginary part of the potential. Even if the nucleon-nucleon interaction is
complex, the imaginary part that is deduced by applying the folding procedure is not
appropriate for composite systems where additional sources of absorption, such as
transfers or break-up, contribute to the imaginary potential and cannot be accounted for
by this procedure. Therefore, the imaginary potential has to be treated
phenomenologically. The simplest prescription is to assume that it has the same shape
as the real folded potential and thus introduce an additional free parameter, the
imaginary strength. But it happens that the experimental data require a different shape
for the absorptive potential. In these cases a Wood-Saxon potential with 3 free
parameters is usually taken. In all cases, very good fits could be obtained, with the
exception of the M3Y potential for the lightest targets. The different curves for the three
heavy targets could not be distinguished. However these fits correspond to
normalization factors which differ considerably from 1. Table 1 gives the values of the
normalization factors which were obtained in the fitting procedure. For M3Y potentials,
the normalization factor is roughly constant for all systems and equal to 0.66 on
average.

These results are summarized in Fig.1.12, with some other results at lower
energies or for other systems [Az85], [Br82], [St79], [Sa84], [Br86].

System °0+1°C P0-TSi T0+7Ca P0+%Zr 0+ pp
NM3Y) 0.67 0.64 0.68 0.64 0.64
N(DDM3Y) 119 1.05 1.05 0.87 0.83

Table 1: Normalization factors of double folded potentials which best fit the

measured elastic angular distributions, measured at 94 MeV nucleon,

They show a contrast to the low energy situation where N is roughly equal or
even larger than 1. The large values of normalization factor obtained at low energy in
the case of the system 160+208Pb are related to the threshold anomaly at the Coulomb
barrier. The general trend is a regular -decrease from N=1.1 below 20 MeV/nucleon
down to 0.7 around 100 MeV/nucleon. This shows that the energy dependence included
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Fig.1.10 Elastic

scattering angular distribution
measured for the system

1%0+%5Si at 94 MeVinucleon

Fig.1.11 Elastic
scattering angular distributions
measured for the systems
°0+%“Ca, ®Zr and **Pb at 94

MeV/mucleon
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in the M3Y interaction, represented by relation (1 20). is not sufficient to reproduce the
real potential reduction at high energy. It is also interesting to note that such an energy
dependence is in disagreement with the predictions of microscopic models [Br7s],
(Br77], [Fa84], (Sa83b), for the nucleus-nucleus potential which predict that, due to the
disappearance of Pauli blocking at high energy, the depth of the nuclear potential
should increase up to around 50 MeV/nucleon. This discrepancy is, as yet not well
understood. However it should be noted that the nucleon-nucleon interaction potential
decreases with increasing energy between 10 and 140 MeV [Je77].

Na

1.5 y

1.0F ° .

0.5 4

N T
Ecm/i (Mev)

Fig.1.12 Normalization factors of the density independent double Jfolded
potentials which best fit the '"C-"C, "0-"2C, "%0-"pp, and “ar-Ni, 105, Bpy

elastic angular distributions. The curves are to guide the eye, {Ro88].

Concerning the DDM3Y interaction, the normalization factors obtained decrease
from 1.2 for the lightest systems down to 0.8 for the heaviest one. The values deduced
for 160+12C and 160+28S; are not very different from those obtained in the case of a
elastic scattering (N=1.3) [Ko84], or for the system '2C+!2C in the same energy range
[Br88], whereas the value 0.8 obtained for the heaviest systems 1s very close to the

results found for other heavy systems (*0Ar+60Ni, 120Sn. 208Ph) or at lower energies
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[AZ85]. Therefore one can conclude that the density and energy dependence included in
the DDM3Y interaction does not provide an overall description of all data.

These problems are probably related to the fact that both M3Y and DDM3Y
interactions cannot reproduce correctly the basic features of normal nuclear matter. For
example as mentioned above, the M3Y interaction is well adapted only for a smal]
range of nuclear matter densities at around one third of that of normal nuclear matter.

The total nuclear matter energy per particle is given by,

E _3nk}

A 10m

+ 2000 + [, e r1a*s) (1.23)

where J, = I u,(r)d’r is the volume integral of the direct part of the M3Y interaction

and j,(x)=3/,(x)/ x where J,(x), is the nth order spherical Bessel function. up(r) is

given by eq.(1.18) and (1.19) whereas Uex(r) is the exchange part of the M3Y
interaction evaluated recently by D.T. Khoa et al. [Kh88]. up(r) and ugx(r) have the

following explicit form:

—~3r -~2.57
uD(r)=[7999e ~2134% J

4r 2.5r
(1.24)
-~dr -2.5r -0.7072r
ug(r)= 46315 — _1787° __ _7847¢
4r 2.5 0.7072~

The equilibrium density of the nuclear matter p, is determined from the saturation
condition

SEN o (1.25)

Cp A P'Po=

The nuclear compressibility k, is defined as the curvature of the binding energy

E/A with respect to the density
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2.2

(=

k=90' (2,

(1.26)

Due to the attractive character of the M3Y forces (1.24), the potential-energy
term in eq.(1.23) becomes dominant at high densities, and keeps the nuclear matter
binding energy decreasing with increasing density (the dash-dotted line in the upper part
of Fig.1.13). The saturation condition is therefore not fulfilled and the nuclear matter is
collapsing [Kh93]. For the more general expression of the DDM3Y interaction where
the exchange potential is properly taken into account,

Upey (D7) = S(PYupy gy (7) (1.27)

where f{p) is given by eq.(1.22). With parameters fixed for the low incident energy of 5
MeV/nucleon, the saturation condition (1.25) is fulfilled with the equilibrium binding
energy E/A=15.9 MeV and density po=0.07 fm™ (the dashed line in the upper part of
Fig.1.13). The compressibility obtained in this case is K=129.2 fm and corresponds to a
very soft equation of state.

D.T. Khoa and W. von Oertzen [Kh93] have readjusted the parameters in
eq.(1.22) to reproduce the empirical values of the saturation binding energy (E/A=16
MeV) and density (pp=0.17 fm?) via eq. (1.25) and (1.26), respectively. The density
dependent interaction obtained in this way (DDM3Y1) gives K=149.5 which is close to
the lower limit of the compressibility found from different studies of the monopole
vibrations (§34). The DDM3Y1 parameters are given in table 2 and the nuclear
equation of state obtained with this interaction is shown as solid line in the upper part of
Fig. 1.13. Due to the exponential form of the density dependence in eq.(1.22) one cannot
get a higher value for K by readjusting the parameters. To obtain higher values of K,
D.T. Khoa and W. von Oertzen [Kh93] chose a different form for f(p), which was
introduced first by Myers in the single folding calculation [My73]

f(p)=C(l-ap”) (1.28)

The parameters of the new density dependent interactions, dubbed as BDM3Y0
for B=2/3, which is the value originally used by Myers, and BDM3Y1, BDM3Y?2 and
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BDM3Y3 for integer values of B ranging from | to 3, are also given in table 2. Different
nuclear equations of state obtained with these interactions are shown in the lower part

of (Fig.1.13). One can see that the larger the B parameters the harder the nuclear

equation of state.
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Fig.1.13 Different nuclear equations of state generated by the original M3Y

interaction and its DDM3Y, eq.(1.22), density dependent versions (upper part). The
lower part shows the results obtained with the BDM3Y, eq.(1.28), density dependence
with parameters giving nuclear compressibilities K =170 — 454 MeV (table | ).

[KR93].

It was found that in order to reproduce the energy dependence of the nucleon

optical potential, the linear energy dependence (g(E)=1-0.003E) is the most appropriate

mathematical expression. The most general form of the energy and density dependent

M3Y potential is given by

Up o) (0, E.1) = S(P)EYup gy, (F) (1.29)
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do/da,.,

where the parameters for f(p) are given in table 2.
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Fig.1.14 Fits of the elastic 12C~12C and 160-160 scattering data given by

different types of the optical potential. The real parts of the optical potential were

calculated using different density dependent versions of the M3Y interaction, while the

imaginary parts were assumed to have a volume Woods-Saxon shape.

The results obtained with these interactions in the case of light systems such as

12C+12C and 160+160 between 10 and 30 MeV/nucleon are very impressive [Kh93],
[Kh94], [Kh95]. As can be seen in Fig.1.14, very good fits can be obtained on the

complete angular range covered by the !2C+I2C and !60+160 data, with a

renormalization of the folded potential by at most 10%. Excellent fits were obtained

also for the '°0O+"C and '“O+™Si data which were measured at somewhat higher

energies,
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interaction
DDM3Y!
BDM3YO0
BDM3Y1
BDM3Y?2
BDM3Y3

fip)
eq.(1.24)
eq.(1.30)
eq.(1.30)
eq.(1.30)
eq.(1.30)

C
0.2845
1.3827
1.2253
1.0678
1.0153

a B k(MeV)
36391 29605 fm' 1495
1135 fm’ 2:3 1701
1.5124 fm’ 1.0 210.6
5.1069 fm® 2.0 332.1
21.073 fm’ 3.0 453.6

Table 2: Parameters of different dependent versions, eq.(1.22) and eq.(1.28), of

the M3Y interaction. The nuclear matter compressibility K was obtained using

eq.(1.26).

Fig.l.15 The same as
Fig.1.14. for the "*0-""C and
80-#Si data at Ei = 1503

MeV.
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(Fig.1.15), [Ro88]. The 'O+"C data at 1503 MeV, have been shown to be
sensitive to the real part of the optical potential at distances of 3-6 fm while the « strong
absorption » radius for this system is at about 6.2 fm, [Ko88], [Ro85].
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The different curves correspond to different parametrisations of the density
dependence which generate different equations of state for the cold nuclear matter. In
this context, the nuclear density overlap, which occurs during refractive heavy-ion
scattering, opens an alternative approach to the study of the equation of state. Indeed, it
has been shown that refractive scattering data, which in most cases require a rather
transparent optical potential, are very sensitive to the real part of the potential at small
distances. Such data imply that among the different types of folded potential, the
DDM3Y1 and the BDM3Y!1 potentials with parameters given in table 2, are the most
relevant ones. From these analyses it was concluded that the nuclear compressibility
K =150-210 MeV is the most realistic for the cold nuclear matter [Kh95].

1-3-b) A new simple effective interaction for peripheral heavy-ion collisions

at intermediate energies

The M3Y interaction and its density dependent versions give the real part of the
optical potential. The imaginary part in most of the folding analyses, is taken in some
phenomenological form with parameters adjusted to give the best fit to the scattering
data. In order to overcome this problem, R. Satchler decided to explore a purely
phenomenological approach [Sa94], taking a three parameter Yukawa nucleon-nucleon
Interaction  including a real and imaginary part, but assumed to be 1soscalar,
independent of spin and without any density dependence in a first attempt. It may be

wTitten as:

-5

Uy = —(u+m'); (1.30)
sit

where s is the distance between the two nucleons. Very good fits were obtained for a
large number of data sets, selected between 10 and 100 MeV/nucleon. Fits to the data
were optimized by adjusting the values of v and w for a given range of t. Fig.(1.16)
shows an example of the quality of the fits and the sensitivity to variations in t when the
presence of nearside-farside interference oscillations allows the optimum range to be
determined easily. The optimum values determined in this way clustered within
t=0.7£0.1 fm, with no indication of a dependence on bombarding energy. This value

of t results in fits to the data (with two adjustable parameters v and w) as good as those



obtained with four or more parameters when using a phenomenological Woods-Saxon

potential.

Fig.1.16 [llustrating  the
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sensitivity of the scattering of
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the range t of the interaction. Solid
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Fig.1.17 Real strengths v ol ° Yikawa i

versus  energy for various
projectile-target  combinations,
when the range is t=0.7 fm. The
projectile is identified by the

symbol. The bracket draws the

attention to the four data for °Li,

three of which coincide in value.

There is an apparent discrepancy between the results for 'O on 10 targets at the
nearby E=84 MeV/nucleon (v = 33+4 MeV) and those for %0 at E=94 MeV/nucleon
(v=45%6 MeV, see also §1-3-d). If one gives most weight to the "0 data, the energy
dependence of the real strength is given qualitatively by the straight line shown in
(Fig.1.17) and eq.1.31. The imaginary strength w remains close to the real one; v ~ w
to within about 20%.
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U=w=60~0.3§ MeV (1.3

Signs of the threshold anomaly appear for '°O at the lowest energies; L begins to
increase faster than (1.31) when E/A falls below about 10 or 15 MeV/nucleon.

These results will have to be refined in order to introduce, for example, a density
dependence which can also reproduce the data presenting refractive features. This
interaction is useful as it provides a direct and consistent way of relating the scattering
measurements to the underlying nuclear structure, namely, density distributions in the

case of elastic scattering and transition density distributions in the case of inelastic

scattering.

1-3-¢) Isospin and spin dependence of the effective nucleon-nucleon

interaction

In general only the isoscalar or central term of the nucleon-nucleon interaction

Log is considered in calculating folded potentials, [eq.(1.2)]. The nucleon-nucleon

interaction however depends on isospin [eq.(1.3)]. The isovector term Lo} gives a
symmetry potential contribution to the folding integral which depends on the difference

(Pa-pp) between the neutron and proton densities. This latter term vanishes if either or

both of the nuclei has zero isospin (or Pn=pp). It takes the general expression
U2) = [[[pn@) = 0y GO o) = p oy (R on o), (1.32)

With the assumption that pn=(N/Z)pp=(N/A)p, this becomes

N -Z \(N,~-Z - - -
U..<r;>=(‘ - )( = ‘)Hp.;(n>pa<rz>um<r,:)dr‘,da (1.33)
“ta A

[n the case of the M3Y interaction (eq. (1.18) and (1.19)) -Uﬂz-.—O.S and

Vo

therefore one obtains
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UdR) 1N, -Z, N, -7,
UGF) 2 4 4,

a

(1.34)

The influence on the elastic scattering of the isospin part of the nucleon-nucleon
potential was investigated recently by J.A. Christley et al. [Ch95b], and even in the case
of exotic nuclei such as **0+**Ca, causes only minor changes to the elastic scattering

distnbution.

Fig. 1.18 Effects of adding a

vector spin-orbit coupling term to ’

the scattering of 0-%7Zr at o o° 7O mNey

E’4A=84 MeV nucleon. Solid curve: g o |

no spin-orbit; dotted curve: é B

addition of spin-orbit term based ;10 4 ~

on M3Y model, with the strength €07 | W
increased ten times; dash-dotted o~ e ;\
curve: addition of Wust-type spin- 00 10 20 30 40 SO 60 70 80

en (deg)
orbit term. The data are from

[Li93].

The central part of the nucleon-nucleon interaction contains also a spin-spin term.
Measurements of the scattering of polarized °Li ions at the lower energies has
demonstrated the presence of spin-orbit coupling, but the effect on the cross section is
in general very weak and does not affect heavy-ion elastic scattering results. This
contribution was studied for "O+%*Zr elastic scattering at 84 MeV/nucleon. To gain
some idea of the possible effects of a vector spin-orbit coupling upon the 'O elastic
scattering, R. Satchler has made some exploratory calculations, [Sa%4]. The first choice
was to use a Woods-Saxon parametrisation of the spin orbit potential with parameters
Vio=1 MeV, r,,=1.1 fm and &, ,=0.7 fm. This set of parameters has been used by Wust
et al. [Wu79] to explain polarization effects observed in the ®Sr("*0,"*N) transfer
reaction at low incident energy E/A=6 MeV/nucleon. The other choice was suggested
by folding calculations for “’Al on some light nuclei using the M3Y spin-orbit
interaction. The resulting spin-orbit potential can be represeated by a Woods-Saxon
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potential with parameters V, ,=1.2 MeV, r, =069 fm and @,,=0.57 fm. Fig. 1.18 shows
the results of the calculation for 'O scattering on  “Zr. The cross sections obtained
using the short-ranged M3Y-based spin orbit coupling cannot be distinguished from
those in the absence of spin-orbit effects, in the angular range measured. Indeed the
cross section changes remained very small even when the M3Y spin-orbit potential
strength is increased by a factor of ten. Fig. 1.18 demonstrates that the Waust et al.
choice of spin-orbit coupling produces large changes in the scattering cross sections.
This spin orbit coupling is obviously too strong to be accommodated with what is
known on high energy heavy ion elastic scattering. However these theoretical
calculations drew attention to the possible role at high energy of spin-orbit coupling for

nuclei with non zero spins.
1-3-¢) Study of elastic scattering induced by light unstable nuclei

Experimental programs for the study of elastic scattering induced by light
unstable nuclei have been started at different laboratories.
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Fig. .19 Elustic scattering angular distribution for *He~"2C at 41.6 MeV u The
solid curve is calculated from the parameter-free four-body eikonal model with a

Faddeev wave function for °He. The dashed curve was obtained using a density-
dependent double folding model.
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Measurements of elastic scattering angular distributions of halo nuclei without
contaminations from target excitations were obtained recently at GANIL, for the system
®He+"*C [Kh96). The theoretical cross section was calculated within a few-body eikonal
model. To calculate “He elastic scattering the model requires three inputs: the *He
three-body wave function plus the a+"°C and n+"*C optical potentials at the relevant
energy per nucleon. Once these are chosen the calculation is completely parameter-free.
Fig. 1.19 shows the measured angular distribution plotted against the result of the four-
body calculation using a realistic Faddeev model wave function for *He (solid curve).
The dashed curve is the result obtained by folding the “He density and a 2-parameter
Fermi density-dependent DDM3Y interaction. This kind of calculation has been
successful in describing elastic scattering of light stable beams on a ’C target in the
same energy range, and it is interesting to sce how it compares with data with unstable
neutron rich beams. The present data do not extent far enough to distinguish
unambiguously between the results. The deep minimum in the dotted curve at 7° may
be due to ambiguities in the imaginary potential in this kind of calculation. Further
experiments extending at backward angles would be of interest to explore this issue.
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2. INELASTIC SCATTERING
2-1. THE DISTORTED WAVE BORN APPROXIMATION

The goal here is to present a simplified description of inelastic scattering for
collective transitions, since these transitions are particularly sensitive to collective
aspects such as the deformation of a nucleus, which can be derived by microscopic
calculations. Inelastic scattering experiments provide therefore a testing ground for

various theoretical models.
The dynamical theory of the collective motion of a liquid drop is developed in
terms of collective oscillations of the surface. The behavior of the surface may be

described by the expression:
R(6,4)= R{l + Z%Y:(e,mJ .1
A

where 6,4 are the polar angles with respect to an arbitrary space-fixed axis, and Y Visa
spherical harmonic of order A and projection . If the drop is incompressible, R, is the
radius of the undisturbed spherical surface. Collective motion is described by allowing
the coefficient o, to vary with time. A A=1 deformation corresponds simply to a shift
of the center of mass, while A=0 involves compression.

[n the rotational model it is assumed that the nucleus has a permanent

deformation so that, in the case of axial symmetry, the nuclear surface can be defined in

the body-fixed system by the expression

9
[ ]
~

R = Ro[l +Zﬂ‘-Yi(6’)J (

since for axial symmetry o, = B, and a o =0, where By is the usual deformation

parameter.
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The most frequently used method to analyze inelastic scattering data, is the
distorted wave Bomn approximation (DWBA). In this approximation the transition

matnx element for inelastic scattering from the initial state i to a definite final state f

can be written as [Ba77]:
Ty = [ 27 (K FXo (O|V(F. O @.(O)x (K, F)aF (23)

where x/,x, are the solutions for the optical potential with outgoing and incoming
boundary conditions respectively, @,, @, are the initial and final nuclear wave functions
and & represents all the relevant internal co-ordinates of the target nucleus.

It is convenient to make a multipole expansion of V(r,&) so that the nuclear

matrix element becomes
(e, Ve.)= ;UMLW/MH(GIVHL){"‘ RAE} (24)

The reduced matrix element is a function of r only and is usually written in the

form

(1) = 4R ) (2.5)

where the magnitude and the form of the factors depend on the nuclear model chosen.
The differential cross section for inelastic excitation is obtained by taking the sum

over final states M;and average over initial states M; and becomes

do U ]zk‘ QL+

ag _|_# | K T

a2 [2’”‘2 k§(21i+1)(2L+1)' wl (2.6)
where

T = 1" [ 5] (B FYF (Y (Fx; (k,Fdr 2.7)

The expression (2.6) for the transition matrix elements has a general and fairly
simple form. The characteristic features of the nuclear excitation enter through the

reduced matrix elements A F(r). The macroscopic approach for the description of
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these excitations is based on the assumption that the interaction potential (7, J)
follows the deformation of the nuclear surface. A Taylor-series expansion about R=R,,

gives

, d 1 d?
Vir- R(6,9)) = V(r—&)—&RIV(r—R0)+5(&?)2:1r—2V(r—R0}4—,,_

(2.8)

where 8,¢ are referred to the body fixed axes. The lowest order term of this expansion
can be associated with the usual optical potential, used to describe elastic scattering,
while the higher order terms are responsible for inelastic excitation and some
corrections to elastic scattering From equations (2.1),(2.2) and (2.8) and for an
excitation from the ground staté [=0 to a final state I~L and assuming axial symmetry,
the reduced matrix element in the case of the rotational model is given by the

expression

yt? Lid

A F,(r)= (1, = L/l = 0)=-i* B, R, (2L +1 . 2.9)
and in the case of the vibrational model by the expression
ho av
= - - ;L 2
AF(r)=(1, = L|V}, = 0) = -i (——26: )R, = (2.10)

where hay is the energy of the phonon and ¢, the restoring force parameter.

The form factor of the transition potential is determined from the potential which
fits elastic scattering, so that the only free parameters are BL or (ho/2¢;). There are no
other free parameters. Because of these features, the extended optical model has
become the standard method for the analysis of experimental data on inelastic scattering
and has been used with great success for a wide range of projectiles, targets and

incident energies.



2-2. THE DEFORMATION PARAMETERS

In this description of inelastic scattering, the form factor of the transition potential
has a nuclear and a Coulomb part. The nuclear part Fy (r) is given by the expression
(2.9)

F(r=5,, de') ‘ @.11)
and the Coulomb part
x =R .if r>R,
F(r)= —3%—321—'{ (2.12)

x=r"™ /R if r<R,
where &, , is the hadronic deformation length related to the nuclear deformation B. by
Sia=B.Ry (2.13)
and &y is the charge deformation length related to the charge deformation B. by
5,.=PB.R (2.14)

and are obtained from inelastic scattering measurements. In the sharp cut-off limit, the

charge deformation is related to the reduced electric transition probability ( A ELT) by

Ornp dV(r)
! With the notations of the code ECIS of J. Raynal [Ra81]: F, (r)= —2
- . F Feln) J4—1r_ dr
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BELT) = (%R—):ezfm” (2.15)

where R=124,°.
The transition probability B(ELT) can be obtained by many methods such as

Coulomb excitation measurements, lifetime measurements or electron scattering.
Coulomb excitation and (e,e’) measurements are sensitive to the properties of charge
deformation. On the contrary, light- and heavy-ion inelastic scattering is sensitive to
both the mass and charge deformation in a ratio which depends on the incident energy,
the charge product of the colliding nuclei and the multipolarity of the transition,

There is no straightforward way to relate the charge deformation length to the
hadronic deformation length and different prescriptions have been used in the past. In
some studies the charge deformation is fixed at values taken from Coulomb excitation
or (e,e’) measurements, while the nuclear deformation is allowed to vary to best
describe the data. Most often equality of deformation lengths is assumed, based on the

assumption that the neutron and proton distribution are similar and that the two nuclei
interact at their mutual edges [He73],

8,,=6,, (2.16)

Another source of uncertainty when the projectile is composite, especially a heavy
1on, arises from the finite size of the projectile. This ambiguity is also mitigated (but not
entirely removed) by assuming that the deformation length is the significant quantity.

2-3. EXAMPLES OF INELASTIC SCATTERING
Excitation of the 2" state in ***Pb by '"0+2**Pb inelastic scattering

In Fig 2.1 the experimental and calculated angular distribution for the excitation
of the 4.09 MeV 27 state in **Pb are presented. The experiment was carried out at
GANIL by bombarding a ***Pb target with an O beam at Ewy=1435 MeV [Li93]. The
scattered particles were detected with the high resolution spectrometer SPEG.
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Fig.2.1 Experimental and calculated angular distributions for the 4.09 MeV 2~
state in *®Pb. The solid line is the result of the coupled channel calculation The

dashed and dotted lines show, respectively, the nuclear and Coulomb contributions to

the cross section.

The adopted B(E2) value for this state is B(E2T)=029+003e’5* [Ra89],
which leads (2.15) to a Coulomb deformation of 0.054. The nuclear deformation was
calculated by applying equation (2.16). The calculated angular distribution is in good
agreement with the expenimental results. Calculations assuming only Coulomb
interaction (dotted lines) and only nuclear interaction (dashed lines) are also plotted.

The Coulomb excitation dominates in the angular region 2-4°. Hence this 27 inelastic

scattering is an almost model-independent measurement of the B(£27T).

Excitation of the 3 state in **Pb by "O+’®Pb inelastic scattering

In Fig.2.3 the experimental and calculated angular distribution for the excitation
of the 2.61 MeV 3 state in *®Pb are presented. These results were obtained
simultaneously with the 2° inelastic scattering data presented in Fig.2.1. The calculated
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angular distribution has a deep minimum between 2 and 3 degrees. The data lie above

the calculation due to the contribution of ''O elastically scattered events on '°C

contaminant in the target.
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Fig.2.3 Experimental and calculated angular distributions Jor the 2.61 Mel 3
state in "Pb. The solid line is the result of the coupled channel calculation. The
dashed and dotted lines show, respectively, the nuclear and Coulomb contributions to

the cross section. The B(E3) value resulting from the fit of the data is smaller than the

adopted value by 30%.

Calculations assuming only Coulomb (dotted line) and only nuclear interaction
(dashed line) are also plotted. Due essentially to the 1/r°' behavior (2.12) of the
electromagnetic interaction, the excitation of this state is dominated by the nuclear
interaction. The B(E3) value resulting from the fit of the data is smaller than the
adopted value by 30% (Table 3). It was concluded that « hindrance » in the excitation of
the first 3" states is observed when the targets *®Pb,'*°Sn ®Ni are studied.
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This apparent hindrance was explained recently by R. Satchler and collaborators
who have demonstrated that this is a consequence of using the deformed optical mode]

to analyze the hadronic scattering. It disappears when a folding model is used [Be93].
Excitation of the 2 state in *Mg by **Mg+*™Pb inelastic scattering

Assuming that we understand how to calculate inelastic scattering, then we can
deduce from inelastic scattering measurements useful spectroscopic information on
nuclei, as shown in the following example. The deformation of the very neutron-rich
nucleus *’Mg was obtained recently by measuring **Mg+*®Pb inelastic scattering. This
experiment was performed at RIKEN. A primary “’Ar beam of 94MeV/u bombarded a
production *Be target. The various products of projectile fragmentation reactions were
analyzed by the projectile separator RIPS to obtain a radioactive *’Mg beam.
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Fig.2.2 Energy spectrum of y rays emitted from "’Mg- pp inelustic scattering

at 49.2 MeV u. The Doppler shift is corrected for.

The scattered ° 2Mg nuclet were detected by a telescope of silicon detectors. The
particle identification was achieved by the AE-E method and was good enough for the
purpose of selecting 32Mg among other Mg isotopes. Sixty Nal(T1) scintillators
surrounded the target to detect the y-rays. Fig.2.2 shows the y-ray energy spectrum
associated with the Mg+ ®Pb inelastic scattering. The photo-peak at 0.89 MeV

corresponding to the 2° — 0" transition is clearly observed [Mo094].
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An experimental deformation parameter S, =0522+004 was extracted by
comparing the experimental cross-section with coupled channel calculations and
assuming Coulomb and nuclear deformation parameters equal, 8, = &8,. The measured
B(E2T) = 0454 £0.078¢%6? is in good agreement with theoretical calculations [Fu92]

suggesting a large deformation and vanishing of the N=20 shell gap in Mg,

2-4. THE FOLDING MODEL FOR DESCRIBING INELASTIC
SCATTERING

Usually, inelastic scattering measurements are analyzed using a deformed optical
model potential (DP), as described in §2.1. This model is often Justified by arguing that
the potential U follows the shape of the density distribution when the latter is deformed.
However a more direct and consistent approach is to obtain the transition potential
directly from the transition densities by folding them with an effective nucleon-nucleon
interaction and the ground state density of the nucleus which is not excited. This is an
obvious extension of the folding model for elastic scattering. For consistency the same
folding model should be used for both the diagonal (elastic) and the off-diagonal

(coupling) potentials.
Non spherical densities appear now in the folding integral, which can be

expanded into multipoles

Up(7,,%,) = DU ura s x DG 2.17)

whereas the same kind of expansion can be written for these deformed densities

pr0,0)= 3 p ('Y (6,8)] (2.18)
Im
and by inversion
Pia(r)=i'[ Ar.6.0)Y"(8,9)dF (2.19)

where
dr =sin wwg
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These multipoles play the role of transition densities for inelastic transitions. In
the expansion (2.17), the internal coordinates x, simply stands for the sets of
deformation variables a, .

To take a simple case, let us consider a spin-independent effective interaction and
only s =t = 0 excitations of the target A, with the projectile a remaining spherical. One
can consider that the integration over 7, has been done in the folding integral, resulting
in an effective interaction U(r,_) between the projectile and each target nucleon, with
fia =1 —T, (see Fig. 1.1). Then the folding integral (1.2) takes the single-folded form
(1.1). Now make a multipole expansion of U(r,, ) about the center of mass of the target

A
B(ng) = Y. 0,(r.r ™) 1™ (F) (2.20)
=

If we insert this in the folding integral (1.1) and compare with relation (2.19), we
obtain an expansion which can be identified with (2.17):

Uh(ra’x¢)=IpAJ-(rlrxa)El(rl:ra)’lzdﬁ (221)

This is not the simplest way to compute {/ m > but this expression clearly shows the
angular momentum structure, in particular that the 2! -pole transition selects the
corresponding 2! -pole moment of O(r,, ).

If the density multipole for A is taken to first order only, then
P im(r) = i’g.“(r)ah(A) (2.22)
and the resulting potential multipole has the form

Ul(nll)(ra ’xa) = iIGAJ(ra )ah(A) (223)
where

Gl = Ig.4.1(ﬁ )0, (r,, 7, )rldr, (2.24)
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[ntegral (2.24) is most simply expressed and evaluated in terms of Fourier

transform. (for details see [Sa83], Appendix C)
Ga(r) = 22") [ &2 1, (kY K)Z ()P, (K )dk (2.25)

where j,(x) is the spherical Bessel function. It remains to specify the transition

densities. The most commonly used are, for / > 2, the Bohr-Mottelson [Bo75] form

. - dp (r
gt (r)=a p:,r( ) (2.26)
and the Tassie form [Ta56]:
. d
gl () =-arr __p‘;rﬂ (2.27)

where p ,(r) is the ground state density of the nucleus being excited, and 87 is the
corresponding matter deformation length. We shall only use here the BM form, and we

shall assume that the matter and potential surface displacement are equal:
8, =67 (2.28)

From relation (2.24), it clearly appears that the radial form factor G(r) remains
dependent on | even if the radial shape of the density multipole is not, except in the
limit that U has zero range.

This is a fundamental difference with the standard deformed potential model
relation (2.11), which is illustrated on Fig.2.4. This Figure compares the I-independent
G/* (FLn in relation 2.11) and the explicitly folded transition potentials (relation 2.24)

obtained from the doubled folded optical potential with the complex effective nucleon-
nucleon interaction (1.32). All have units deformation lengths (& ; = 1fm) [Be95]). The
various transition potentials have similar shapes, but the magnitudes of the folded ones
decrease as the multipolarity increases. These differences illustrate the different results
obtained on the one hand by folding”over a spherical distribution and deforming the



result, and on the other hand by deforming the density and then folding. "Folding and

deforming do not commute” [Be96].
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Fig.2.4 Transition potentials for "0+"®Pb at E A=84MeV Jor deformation
lengths of & = | fm. i) Left part, curves from the folding model for 1=2-3; solid curve
(independent of ) from the deformed potential (DP) model. ii) Right part, logarithmic
plot of the potentials in the surface region to which the scattering is sensitive.

As the inelastic cross sections are proportional to the square of the transition
potentials in the region of the strong absorption radius which is about 11 fm for the
system "O+2®Pb, it is clear that the cross section predicted for a given deformation
length by the folding model are smaller than those predicted by the deformed potential
optical model and that this difference increases with the multipolarity. For instance, the
difference between the cross sections estimated within the deformed potential optical
model and the folding model ™ / o reaches the value 78 for I=8 in the case of the
90Zr target. This effect is already very important for octupole transitions. It had been
reported in several papers [Sp89], [Ho90], [Ho91},[Li93] where the data had been
analyzed within the deformed potential model that the octupole states excited
hadronically by light and heavy ions are frequently weaker than what would be

expected from electromagnetic measurements.
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Fi1g.2.5 Comparison of the theoretical differential cross sections with the
measured ones [Li93] for Y0-"®Pb and "0-*7r ar E A=84MeV. The B(EL) values

used to calculate these curves are compatible with the adopted ones.

Table 3, show the B(E3) values obtained from measurements of YO inelastic
scattering at 84MeV/u on “Ni, *Zr, '°Sp and ®Pb. The inelastic scattering angular
distributions were analyzed within the deformed potential model. The discrepancy
between the reduced transition probability, B(E3), deduced from these measurements
within a deformed potential model, B(E3)cq. and the adopted values, B(E3)a4op, reaches
a factor between 2 and 4.

However a reanalysis of these data within the folding model using again the
complex effective nucleon-nucleon mteractlon (relation 1 32) and Fig.2.5 showed that

the apparent hindrance was rcmoved when the folding was used [Be95]. The excitation
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of the 2* states for the same targets was not affected because it was dominated by the
Coulomb excitation and therefore did not depend on the treatment of the nuclear

excitation. On the opposite, the effect becomes dramatic as the multipolarity increases.

Target “Ni Zr '“Sn pp
B(E3)eg (¢") 0.010£0.002  0.027#0.005 0.075+0.008 0.42+004
B(E3),u0p(e’b") 0.0208 0.108 0.115 0.611

Table 3: Reduced transition probabilities for the excitation of the 3- low-lying states

The difference between the results obtained from the two models can be traced to
the finite range of the effective interaction used when folding. The deformed potential
model can be consistent with the folding model only in the limit of zero range [Be93].
This effect of finite range on the transition potential is strongly dependent on the
multipolarity 1, and can become very large for larger 1 values. It is therefore
recommended to use a folding model to extract deformation lengths and multipole

moments from inelastic scattering measurements.
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3. ELECTRIC GIANT RESONANCES

This chapter will be devoted to electric giant resonances. Most of the necessary
theoretical background information can be found in the books of Bohr and Mottelson
[Bo75] and R. Satchler (Sa83]. Several review papers have appeared which cover the
state of the field on giant resonance studies [Be81},[Sp81],[Wo087]. The most recent is
the review on electric and magnetic giant resonances in nuclei, edited by J. Speth
[Sp91], in which the reader can find an important amount of information. The recent
developments concerning multiphonon excitations can be found in the review article of
Ph. Chomaz and N. Frascaria [Ch95].

3-1. PHENOMENOLOGY

The occurrence of collective modes is a common feature of quantum many-body
systems. They have greatly contributed to our understanding of the bulk behavior of
such systems and their non equilibrium properties. Among the elementary modes of
nuclear collective motion various types of giant resonances are now well established.
Giant resonances are defined as resomance structures in the transition strength
distnbution of an external field which carry a large fraction of the total transition
strength (typically of the order of 50% or more). They occur in the whole periodic table
and their characteristic parameters, like energy, width, decay probabilities etc. are
smooth functions of the mass number A.

The first Giant Resonance which was observed in nuclei in 1947 is the Isovector
Giant Dipole Resonance (GDR). The study of this mode became possible afier the
invention of the Betatron which made available high energy y-ray beams. A photon
carries with it an oscillating electric field of a wavelength larger than the diameter of a
nucleus. As a result the electric field associated with a passing y-ray is nearly uniform
across the nucleus. The field exerts a force on the positively charged protons, moving
them away from neutrons. The neutrons themselves are electrically neutral, and so the
field has no direct influence on them. Because the center of mass of the nucleus remains
at rest, however, the neutrons move in the opposite direction. The proton and neutron
oscillations are opposite to each other and the mode is called isovector (AT=1). The
restoring force of the vibration is the attractive force between protons and neutrons,
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namely the strong nuclear force responsible for binding the particles together. The study

of the GDR provide information on the nuclear Symmetry energy, on the symmetry

potential, or the velocity dependence of the effective interaction. Two models of the

GDR are illustrated in Fig.3.1.

Fig.3.1. The two models of the GDR.

On the basis of few early experiments Goldhaber and Teller discussed three
possible macroscopic explanations for the A dependence of the resonance energy. The
first postulated an elastic binding of the neutrons to the protons that would result in a
resonance energy independent of A. The second proposal, later elaborated by
Steinwedel and Jensen (The SJ mode), was that the resonance might consist of density
vibrations of the neutron and proton fluids against each other with the surface fixed.
This kind of motion, would result in a resonance energy proportional to A Their
third suggestion, one that they chose to discuss in some detail (the GT mode), was that
the neutrons and protons might behave like two separate rigid but interpenetrating
density distributions. The resulting resonance, consisting of the harmonic displacement
of these distributions with respect to each other, would be expected to have an energy
dependence proportional to A The schematic drawings shown in Fig.3.1 serve to
illustrate the general features of the GT and SJ modes. For each case, one-half cycle of
the vibration is shown as a function of the time. In the GT mode a uniform proton
distribution (the smaller sphere whose motion is indicated by the solid arrow) vibrates
against the neutron distribution. in the SJ mode the neutrons tend to pile up first on one

side of the nucleus and then to the other (density excess is indicated by plus signs and
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density reduction by minus signs). The protons (not shown) move in the opposite
direction so the total density remains uniform [My77].

The next vibration to be reported in the early 1970’s was the Giant
Quadrupole Resonance (GQR). It was observed in expenments with inelastically
scattered electrons, protons, *He and alpha particles. The quadrupole, unlike the dipole,
is a shape vibration, in which the shape of the nucleus as well as the distribution of the
nucleons changes. A nucleus vibrating in the quadrupole mode is distorted from a
spherical shape to an ellipsoidal shape and moves back through a spherical shape to an
ellipsoidal shape of another orientation. Here protons and neutrons are vibrating in
phase and the corresponding resonance is denoted as an isoscalar one (AT=0). There are
several advantages to choosing nuclear projectiles to excite isoscalar giant modes. The
principal interaction in such events is mediated by strong nuclear force, which is charge
symmetric, that is the same for protons and neutrons. The charge symmetry makes it
easier to excite vibrations such as the quadrupole in which the protons and neutrons
move together. Vibrations in which protons move opposite to neutrons, such as the
dipole, are not excited at all by charge-symmetric forces. From the study of the giant
quadrupole resonance we learn about the effective masse of a nucleon in nuclear
matter.

The third nuclear vibrational mode to be observed, the giant monopole vibration
(GMR) is excited and detected in much the same way as the giant quadrupole. The
monopole vibration is a «breathing » mode: the nucleons move inward and outward
from the center of the nucleus in phase with one another (AT=0), so that the nucleus
expands and contracts. The frequency of this mode is directly related to the
compressibility of the nucleus, and determination of the energy of the GMR permits the
determination of the nuclear compressibility.

It is usual to classify the giant multipole resonances according to the basic
oscillations of the nucleus. The electric modes are characterized by oscillations without
any differentiation of spin (AS=0). Such an example of classification is shown in Fig.3.2
for the electric (AS=0) monopole and quadrupole resonance. The isoscalar (AT=0)
modes are characterized by oscillations of the nucleus as a whole in which protons and
neutrons move in phase. The isovector (AT=1) modes are characterized by oscillations
tn which protons and neutrons move out of phase without spin differentiation. The
magnetic modes are characterized by oscillations that differentiate spin or angular

momentum (AS=1) rather than charge. In the magnetic isoscalar vibrations protons and



neutrons with spin up oscillate against protons and neutrons with spin down, while in
the magnetic isovector modes, protons with spin up and neutrons with spin down

oscillate against neutrons with spin up and protons with spin down.

EO (’ AT:O ) )
Y,

E2(AT=0) E2 (4T=1)
Y/
Fig 3.2. The quadrupole (E2) and monopole (E0) modes are shown. If the

protons and neutrons are vibrating in phase, the corresponding resonance is denoted

as the isoscalar one (AT=0). If the proton neutron oscillations are opposite to each

other, like in the electric dipole case, the mode is called isovector (AT=]).

Until now we have presented a macroscopic picture of the giant resonances. It is
well known however that giant resonances can also be described microscopically on the
basis of the shell model. Fig.3.3 shows that the basic transitions take place between
oscillator shells and can be classified according to the number of oscillator quanta
involved in the transitions that describe the collective excitation. For example, the
electric quadrupole excitation can involve transitions of both the AN=0 and the AN=2
type. [n fact microscopically, giant resonances are described as a coherent superposition
of 1 particle 1 hole (1p-1h) excitations. In a schematic model, the residual particle hole
interaction gives rise to the formation of one strongly collective state which is a
superposition of all possible 1p-1h transitions. Since the residual interaction is attractive
for isoscalar and repulsive for isovector states, the corresponding collective states will
be shifted up and down with respect to their unperturbed energy which is a multiple of
the energy difference between two major shell, o =41A"" MeV ([R180], page 40). For
instance the energy of the giant quadrupole resonance is of 65A™” for the isoscalar

component and of 130A""*for the isovector component.
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Fig.3.3. Schematic representation of EI and E2 single particle transitions

between shell model states.

With the availability of high energy proton beams, giant resonances involving
spin-isospin degrees of freedom have become accessible. In 1980 Goodman et al. found
that the Gamow-Teller (GTR) resonance is the dominant part of the forward angle (p,n)
charge-exchange cross section [Go80]. In the meantime the spin-dipole resonance
(GSDR) which involves an angular momentum transfer AL and a spin transfer AS of
one unit have also been identified in (p,n) and (*He.t) reactions at slightly larger
scattering angles. All these collective spin-isospin modes are strongly excited in neutron
rich nuclei and allow selective probing of the spin-isospin restoring forces in nuclei. A
very complete discussion on this subject is given in the review articles of J. Rapaport
and E. Sugarbaker [Ra94] and T.D. Taddeucci et al. [T a87].

[n 1955 Brink proposed that giant resonances can be built on all nuclear states and
that their properties should not depend strongly on the details of the considered nuclear
state. These giant resonances will have the same characteristics as the giant resonances
built on the ground state but their energy will be shifted according to the energy of the
state on which they are built. This statement in known as the Brink-Axel hypothesis
[Brss).

The first observation of a giant resonance built on excited states is reported in the

proton capture (p,y) experiment on ''B performed in 1964 where the GDR built on the

first 2" state was observed. : .



Since this pioneering work, many experiments have shown that the GDR persists
as a collective motion under extreme conditions of excitation energy and angular
momentum. [n our days the experimental effort in the study of glant resonances built on
excited states is pursued actively towards two directions: i) study of the properties of
giant resonances built on the excited states of a hot nucleus produced in heavy ion
reactions, [Sn86],[Al91],[Ga92]. ii) study of the properties of giant resonances built on
top of a giant mode, [Ch95].

3-2. THE GIANT DIPOLE RESONANCE

The giant dipole resonance is certainly the best studied giant mode. It has been
observed in nuclei as light as ’He and as heavy as ’Th.
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Fig.3.4. Total photoabsorption cross section for '’ Au. The solid curve is

of Lorenz shape with the indicated parameters. (see Ref. [Bo75] page 475).

Fig.3.4 presents the photoabsorption cross section for '’Au. The main decay
mode of the photoexcited nucleus is by neutron emission, since the coulomb barrier

inhibits emission of charged particles; thus, the absorption cross section can be deduced
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from the measurement of the neutron yield. Above about 15 MeV, the (v,2n) process
contributes significantly; the magnitude of the cross section has been determined by
measuring the yield of two neutrons in coincidence. For spherical nuclei the energy
variation of the absorption cross section can be rather well described by a Lorentzian
distribution [Bo75].

GREyzréok
(E,z - Ecz;m ) "‘Eiréok

Ou(E,)= (3.1)

where og, E,, [gpr are respectively the peak cross section, the resonance energy, and
the full width at half maximum. For most of the studied nuclet the giant dipole
resonance exhausts an important fraction of the Thomas-Reiche-Kuhn sum rule (TRK).

27e*h NZ NZ
TRK = E = — = 60 —(MeV
Io-(E)d p— y (MeVmb) 3.2)
In fact sum rules play a very important role in giant resonance studies, since the
number of participating nucleons in a transition can be measured by the fraction of the
EWSR which is exhausted. The Thomas-Reiche-Kuhn sum rule is related to the

classical sum rule S(E1) by the relation:

1673
9fic

TRK = S(£1) (3.3)

where for a single resonance :

S(EV) = (E, - E,)B(EL;0 > a) ([Bo75] page 478) (3.4)

The classical sum rule is related to the more commonly used energy weighted

sum rule by the relation:

=l 4 on® NZ
=—S(El) =24 Sa83 .
; S(ED o ([Sa83] page 601) (3.5)

where the super seript indicates the nature of the transition T=] or T=0, whereas the

lower script is related to the multipolarity of the transition.
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[n nuclei with a large static deformation the GDR splits into two components
corresponding to oscillations along and perpendicular to the symmetry axis. In that case,

the GDR cross section is well reproduced by the sum of two Lorentzian components,

see Fig.3.5.

O,Lla'L.111L141.111
8 10 12 14 16 18 20 22
ET(MeV)

Fig.3.3. a) The photoabsorption cross section for even isotopes of Nd.

(see Ref. [Bo73] page 491).

The energies of the two components are related to the deformation parameter of a

prolate spheroidal nucleus by the equation:

12
/9=(34-’5) (Ez —1)/( £, +0.8665j
5 E, 2E,

For oblate nuclei the role of E, and E, is reversed {Ch87]. Both for spherical and

deformed nuclei, the Lorentzan parametnisation provides a good description of the
shape of the GDR in medium and heavy nuclei by treating the resonance energy, width

and strength as energy independent, empincally adjustable parameters.
Using this method, it has been shown that the A dependence of the excitation

energy of the dipole is intermediate between A" and A" and can be reproduced by a

two parameter expression: Egy, =3124™ +20647™"° MeV. However, as far as
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medium and heavy nuclei are concerned, the energy of the GDR can be fairly
reproduced by a simple law, Egpgr =79A°'"° MeV [AI91]. These properties of the GDR
were used to study the evolution of nuclear shapes as a function of angular momentum
and temperature of a hot nucleus. It is predicted [AI86], that a rise in nuclear
temperature and rotational angular momentum, by increasingly breaking down particle
correlations, will drive a prolate nucleus to a triaxial and eventually to an oblate shape.
Experimentally, the nuclear deformation at high spin and temperature may be obtained
from splitting of the giant dipole resonance built on excited states. Measurements,
performed the last decade, reported large deformation in highly excited nuclei for
different mass regions. For instance D. R. Chakrabarty et al. {Ch87] have observed that
highly excited Pb isotopes are deformed with B ~ 0.31. Since the Pb isotopes are nearly
spherical in their ground state (B ~ 0.05) this indicated the first observation in the heavy
mass region of a shape change from spherical to deformed at high excitation energies
and angular momenta. The properties of the GDR built on the ground state and on
excited states are shown in Fig.3.6.

Later on, the excitation of GR was studied by using strong interacting projectiles
such as p, a, or more recently heavy ions. The principal interaction of those particles is
mediated by the strong nuclear force, which is charge symmetric, that is the same for
protons and neutrons. The charge symmetry makes it easier to excite vibrations such as
the quadrupole or monopole excitation in which the protons and neutrons move
together. A special case among these probes is heavy ions which interact both with the
nuclear and electric field and can give rise to both isoscalar and 1Isovector excitations. A
typical example of heavy ion inelastic scattering, O on a ®pp target, is presented in
Fig.3.7. The 84 MeV/nucleon 'O beam was provided by the GANIL accelerator. The
scattered 'O ions were detected and identified in the energy-loss magnetic
spectrometer SPEG. The overall energy resolution was 800 KeV. The angular
acceptance of the spectrometer covered simultaneously 1.5°< 8¢y <50°. The angular
accuracy is 0.05°. The absolute normalization was obtained from the target thickness
and the integrated beam current measured in a Faraday cup. The error on the
normalization is 10%, [Ba88]. In these analysis the GDR was parametrized by a
Lorentzian with parameters obtained by photoabsorption data (Egpg=13.5 MeV and
FGor=4.0 MeV). Special attention is required in specifying the shape of the [VGDR. It
is known that above 9 MeV the GDR in **Pb can be well parametrized by a Lorentz
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Fig.3.6. Systematic comparison of available data on giant dipole
resonances in cold (left) and excited (right) nuclei as a Junction of mass mumber.
From top to bottom: Strength in units of classical sum rule, centroid energy (shown
are usual parametrizations of the ground state systematics and q proposed
parametrisation for finite-temperature GDRs,) total width, quadrupole deformation
parameter f, and strength ratio of the upper to lower components. From [Ga92]
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curve centered at 13.5 MeV with a width of 4.0 MeV. However, the cross section for
Coulomb Excitation of a dipole state decreases exponentially as a function of the
excitation energy of that state. Thus, to properly generate the shape of the GDR peak in
the inelastic spectra the strength function must be folded with this exponential

probability.

LBpy(70 o)

1000 g, =1428Mev

Gflﬂﬁdeg
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30 2010
EXCITATION ENERGY (MeY
Fig.3.7. Inelastic scattering spectra at @, = 1.86°, 2.56°, and 3.98° from

the "o'ng(' 70."0) inelastic scattering at 1428 Mel. The solid curves show a
decomposition of the spectra into resonance peaks including the GOR and the GDR

centered at 10.6 and 12.7 MeV respectively. Details on the decomposition are given in

[Ba88].

The exponential dependence results in an enhancement of the low-energy portion
of the GDR and shifts the position of its maximum from 13.5 MeV to 12.7 MeV. To
better describe the photonuclear data at low energy, a smooth cut-off centered at E=8.3
MeV (with an width of 0.8 MeV) was applied to the assumed Lorentz strength function.
The measured angular distributions for the GDR and the GQR are presented in Fig 3.8,
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Special note should be made of the dramatically large values of the differential cross

sections; of the order of few b/sr.
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Fig.3.8. Experimental and calculated angular distributions for the
isovector giant resonance (upper part) and the isoscalar giant quadrupole resonance
(lower part) in “®Pb. For the GQR, the calculated Coulomb and nuclear contributions
to the cross section are also shown. The error bars reflect the estimated uncertainty in

the fitting process and does not include the error on the absolute normali-ation.

The angular distributions also have distinctly different shapes; that for the GQR
being broader and flatter. The inelastic angular distributions were calculated in the
coupled channel formalism using standard collective form factors. The output of these
calculations is the value of the deformation length 5<(BR) which provides the best fit of
the data. The deformation length can also be related to the sum rules. The ratio
( (BR) exp

(BR) pecr
length obtained theoretically provides the percentage of the EWSR which is exhausted
bya transitipnl [n the case of the GDR the EWSR is,

2
) of the deformation length obtained experimentally versus the deformation
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1
4 .
Z:e—-bGDRB([:I)T = (3NZBR/ AV E 4 (3.6)
I

From equation (3.5) and (3.6) we obtain the deformation length for the excitation of a

state at excitation energy E and exhausting 100% of the EWSR.

n4h?

2mNZE 3.7)

(A R)fs =

In the calculation of the cross section for the excitation of the GDR only coulomb
interaction was assumed, since the nuclear interaction is negligible. The best fit of the
angular distribution corresponds to a B(E1)T value which is equivalent to 110 +22%
of the energy weighted sum rule in the energy interval 7-18.9 MeV. This agrees well
with the value of 103%EWSR obtained from photonuclear studies.

In a more refined analysis the calculation of the GDR was carried out as a
function of the excitation energy using a El strength distribution taken from
photonuclear data [Be90]. Following equations (3.3) ,(3.4) and (3.6) we obtain:

dB(EYT  9hc o(E) e’ fm?

dE 162 E MeV Q-8

Ba(E)=

where Pgi(E) 1s the distribution of El reduced matrix elements fixed by the
photonuclear cross section o(E).

Special care has to be taken when calculating E1 transitions with the standard
options, vibrational or rotational model, of inelastic scattering codes like ECIS [Ra81].
For these collective excitations the transition potential is given by (2.12). For the

Coulomb excitation of the isovector dipole resonance the form factor is [Li93],[Sa87],

2N Z,Z.e*
A r

EC(’) = 5!: (39)

To obtain in these calculations the correct transition potential we should multiply the

deformation parameter B obtained from (3.6 or 3.7) by a factor ZTN . Therefore:
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ECIS _ 2V
pgr = -;—/3 (3.10)

The giant resonance region in the inelastic spectra from the reaction *“Ne+%*7¢
and *’Ne+***Pb was also studied in a more model independent way by T. Suomijarvi et
al. [Su89]. The results of this analysis are in agreement with the results of previous

giant resonance decompositions.

Multiphonon states: One of the new and spectacular results in this field is the
experimental discovery of multiphonon excitations, i.c. a giant mode built on the top of

other giant states.

0.4
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Fig.3.9. Probability to excite N phonon states in “*U Jor the reaction
28U+380 at an impact parameter of 16 fm as a function of the laboratory energy per

nucleon.

[n the previous section we have shown that in heavy ion inelastic scattering at
incident energies around 100 MeV/nucleon the Coulomb interaction plays a major role
and that the inelastic spectrum is dominated by the dipole transition. Coulomb
excitation will be even more enhanced by using heaviest beams at higher incident
energies. In fact, very large probabilities are expected for the Coulomb excitation of
giant resonances at relativistic energies. Under such conditions, the experimental study

of the excitation of multiple phonon states built on top of the GDR becomes possible.



This is illustrated in Fig.3.9 where the excitation probabilities of a multiphonon state in
P projectile incident on a »*U target at an impact parameter of 16 fm and as a
function of the laboratory energy per nucleon is plotted. One observes that, at energies
above a few GeV per nucleon, the excitation probabilities become constant and that the
probability to excite a two phonon state in a grazing collision is only a factor 2-3
smaller than the probability to excite a one-phonon state. For larger impact parameters
this factor increases considerably [Va90]. For the observation of these states two
different methods have been proposed so far. The first is to study the photon decay of
these states while the second is the exclusive measurement of the electromagnetic
dissociation of a projectile or target nucleus in peripheral heavy ion collisions.

Photon decay measurements: The *’Bi+*®Pb reaction has been studied at SIS at
I GeV/nucleon. The photons from the decay of the GDR and the double GDR
(GDR® GDR) were detected by TAPS. TAPS consists of two towers of 128 BaF,
detectors. Each detector is equipped with an individual charged particle veto detector. A
forward wall which is a large area plastic detector records charged particles emitted in a
cone between 1° and 30° in the forward direction. Peripheral events can be selected by
requiring that the forward wall detects no charged particles. Since both the projectile
and the target can be excited by the Coulomb field, it is crucial to be able to separate
the GDR photons from both partners. For that, photons were detected at backward
angles where photons from projectile decay are Doppler shifted to much lower energies
than those emitted by the GDR excited by the target, which are not shifted. Therefore,
projectile y rays do not contribute significantly to the energy range of the target decay
[Ri93], [Ch95]. In Fig.3.10, the y energy spectrum from “®Pb for peripheral events as
defined previously, is displayed. In this spectrum, a structure at about 13 MeV, which is
independent of the observation angle, clearly shows up and can be assigned to the y
decay of the GDR in *®Pb. The giant resonance peak is extracted by subtracting a
background parametrized as the sum of two exponentials, on each side of the observed
peak, with slopes fixed by the data. The position and the width of the GDR excited in
*%Pb are, respectively, about 13 MeV and 4 MeV in agreement with the results of

photoabsorption measurements.
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Fig.3.10. Photon energy spectrum measured for peripheral events from the
9B+ 2%py, reaction. The structure around [3 MeV corresponds to the y decay of the
Coulomb excited GDR in the “®Pb target. The insert shows a Lorentz fit to the

difference between the data and the background (see Ref. [Ri93]).
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Fig.3.11. Measured double photon spectra. Sum energy of coincident
photon pairs with an energy difference less than 6 MeV Jor peripheral events. The

Structure around 26 MeV is assigned to the double y decay of the GDR® GDR (see
Ref [Ri93]).

A spectrum obtained by requiring coincidences of two-y rays with an energy
difference of less than 6 MeV is displayed in Fig3.11. A broad structure at a mean
energy of about 26 MeV is observed and can be attributed to the double y decay of the
GDR® GDR state. The position and the width of this structure fitted by a Lorentzian
shape are found to be respectively 25.6 MeV and 5.8 MeV. These values are in
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agreement with what is expected for a two phonon state. Under the assumption that the
Y ray branching ratio for each phonon is independent of the number of phonons, the

cross section is twice as large as the theoretical predictions.

Coulomb dissociation measurements: Experimental investigations of the
fragmentation of relativistic nuclei following electromagnetic excitation have been
carmied out recently in order to study multiple electromagnetic excitations. As
mentioned before, the aim of these experiments is to excite with a large probability high
lying collective modes in the projectile using peripheral heavy ion collisions, to
measure in coincidence the subsequent neutron and y decay of these states and to
construct the excitation energy of the projectile [Sc93].

The experiment was performed at the SIS facility using a '*Xe beam at
0.7 GeV/nucleon on a **Pb target. The resulting excitation spectrum from '**Xe
obtained with **Pb and '’C targets is displayed in Fig 3.12. The experimental results
are compared to theoretical calculations. In these calculations, the contribution of the
dipole and of both the isoscalar and isovector quadrupole resonances is taken into
account. The results obtained using a C target are used to estimate the nuclear cross
section. A very small contribution of such excitation for the *Pb target has been
deduced showing that the measured cross section is mainly due to electromagnetic
excitation. In the experimental spectrum, a structure which is assigned to the double-
GDR, is clearly observed at 28+1 MeV with a width of about 6+2 MeV, in
agreement with what is expected for a two phonon state. Its cross section however, is
approximately twice the value predicted by the theoretical calculations. In a new
experiment the double phonon excitation was studied for the “*Pb+°®*Pb reaction at
650 MeV/nucleon (lower right part of Fig.3.12). The cross section of excitation of the
double-GDR is in agreement with the value measured with the detector TAPS, and
twice the theoretical predictions. In fact the theoretical understanding of the cross
section of double giant dipole resonance excitatjons in heavy ion reactions, remains at
present a puzzle. One of the fundamental questions related to multi-phonon excitations
is that of the nuclear response to an induced collective motion of increasing amplitude.
One of the motivations is to explore to which extent standard theoretical methods,

developed for small amplitude motions are still appropriate in the case of multiphonon

excitations.
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Fig.3.12. (upper part) Spectrum of '*Xe (projectile) excitation on a **pPp
target and on a C target; the later one is scaled by a factor two. The resonance
energies for the one and two phonon GDR and for the isoscalar and the isovector
GOR are indicated. The solid curve reflects the results of theoretical calculations Jor
one phonon excitations in the Pb target.

(lower left part) Same as upper part, after subtracting the theoretical
calculation for one phonon excitations.

(lower right part) same as left part, for the excitation of “®Pb (650
MeV. nucleon) on a Pb target [Em94].

Concomitantly, multipohonon excitations can be used to produce exotic states of
nuclear matter. Fig.3.13 displays calculated proton and neutron densities for n=4
phonon state in *U and for an n=6 phonon state in **Ca at the turning point of the
dipole vibration (Em94). Because of the large instantaneous neutron excess, it was
speculated that exotic decays may occur, i.e. neutron cluster emission or two clusters of

proton and neutron matter.
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Fig.3.13. Proton and neutron densities at their distance of their largest
separation calculated in the nuclear droplet model. Upper panel is for a N=4 phonon
GDR state in “**U, lower panel for N=6 phonon GDR state in *’Cu [Em94 .

3-3. THE GIANT QUADRUPOLE RESONANCE

It was as late as 1972 that the giant quadrupole resonance (GQR) was observed
for the first time. Today, the properties of the isoscalar GQR are well understood from a
large number of different experiments using hadron and electron beams (see for
example [Be76,W091]). The various data reported in Fig.3.14 coming from proton, o or
electron scattering experiments show that the results obtained using different probes are
in good agreement.

The energy weighted sum rule for the excitation of a giant mode with
multipolanty /22 is:
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Fig.3.14. Properties of the GQR Systematics Jor the excitation energy,
width I and fraction of the energy weighted sum rule strength of the isoscalar giant

quadrupole resonance presented as a function of the nucleus mass [Wo9l].

where the average is taken over the ground state mass distribution p(r). For an uniform
distribution of radius Ro:  (r**)=3R¥?/(2/+1) and B,(E)?T is the usual EI
reduced transition probability ([Sa83],(14.70b)).

_[34Ri8T
B(ENT = [—Z-”—} (3.13)

From equations (3.12) and (3.13) we obtain the deformation length for a state of
an excitation energy E exhausting 100% of the El EWSR.
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For nuclei with A>40, 50-100% of the E2 EWSR has been localized in a peak at
about 65A"'> MeV. Its width varies from 6 to 2.5 MeV for nuclei from Ca to Pb. For
lighter nuclei, the isoscalar GQR is highly fragmented. Another important fraction of
the EWSR is exhausted by the low energy 2" state. In fact, it has been found
experimentally that the low-lying 2° state usually exhausts about 10-20% of the EWSR.

dB(E2)/dE (e® fm* MeV-!)

7 9 1 13
Excitation Energy (MeV)

Fig.3.15. Distribution of B(E2)T in the GQR region in "Pb obiained

from (e,e’n) and heavy ion inelastic scattering.

The energy of the giant quadrupole resonance obtained in theoretical calculations

for a value of the nucleon effective mass of m*=0.75m,

Eoor = ﬁnw‘f—’f.- = 6747 MeV
m

is in good agreement with the experimental result Egog= 65A""". It should be recalled
that calculations of nuclear matter which start from realistic nucleon-nucleon
interactions always give effective masses, for particles near the Fermi surface, of:
m*~(0.65-0.75)m [Br80].

An interesting new development is the observation that in inelastic scattering of

fast heavy ions at small angles, giant resonances are excited with large cross sections



YL

and favorable resonance to continuum ratio [Ba88]. The dominant excitation process in
this case is Coulomb-excitation, which implies that, as in electron scattering, isoscalar
and isovector resonances are equally well excited. This is illustrated in Fig.3.7 and
Fig.3.8. The quality of the data and the fact that the GQR s electromagnetically excited,

allow for a direct comparison of the distribution of B(E2) T, as shown in F 1g.3.15. The

data points are from the (e,e’n) data of Ref [Bo88] while the solid line is the B(EH)T
distribution obtained by Been et al. (Be90]. Are included the contribution of the 8.8 and
9.3 MeV E2 states for which the B(E2) T values were obtained experimentally. It is
clear from Fig.3.15 that not only the integrated B(E2) strength, but also the distribution
of B(E2) strength is in excellent agreement for the two data sets. These results provide
the energy, width and shape of the GQR in 2*Pb and are certainly the best available
results today concerning the GQR excitation. We would like to notice that sophisticated
Hartree-Fock calculations using the Gogny D1S interaction predict the GQR in *®pp at
12 MeV [De94], instead of 10.6 MeV.

Multiphonoa states: Aside from the double-GDR, evidence for two-phonon
states has been reported so far only for the isoscalar quadrupole resonance. In fact the
most convincing signature on the multiphonon excitation of the GQR was obtained
reéently at GANIL for the **Ca+*“Ca system at 50 MeV/nucleon [Sc93a). [nelastically
scattered Ca projectiles, analyzed with a magnetic spectrometer were detected in
coincidence with protons emitted at backward angles to favor the selection of target
excitations in the inelastic spectrum, since other mechanisms such as pickup, breakup,
and knockout give rise to forward peacked protons. Fig3.16 exhibits a prominent
structure centered around 34 MeV excitation energy. In the inclusive spectrum not
shown here, a peak at 17.5 MeV and a weaker component centered at 14. MeV are
observed, both being ascribed to an excitation of the single isoscalar GQR. As
appearing at about twice the GQR excitation energy, the peak at 34 MeV in the proton
coincident spectrum is assigned to the two-phonon state. The assignment is supported
by a detailed study of the proton decay characteristics. Like for the excitation of the
double-GDR theoretical calculations underestimate the double-GQR cross section by a
factor of about two. These measurements prove that heavy ion inelastic scattering in
combination with coincident decay measurements is a powerful tool to investigate

multiphonon states. °
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3-4. THE GIANT MONOPOLE RESONANCE

The existence of the electric isoscalar giant monopole resonance (GMR) in
medium and heavy nuclei was first established in 1977. The giant monopole resonance
GMR is the L=0 mode and is the only volume oscillation which has been isolated. The
frequency of this breathing mode is directly related to the compressibility of the nucleus
and the determination of its energy is the most direct way to access to the
compressibility of nuclear matter. A large amount of data has been obtained from (

and (’He,’He) inelastic scattering , which locate the GMR at nearly 80A"'?

17).

The nuclear matter compressibility is defined as,

d*El A

=9
Po dp;

where py is the saturation density.

(see Fig. 3.
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Fig.3.17. Systematics of the isoscalar GMR: a) The centroid energy as a
JSunction of the mass A and (b) the fraction of the energy weighted sum rule observed
to be exhausted. The curve indicated by (314™°+20.64""%) MeV valid for the GDR
(Fig.3.6), shows that for nearly all the nuclei the GMR and the GDR coincide in
excitation energy. The curve indicated by 654™'"° MeV valid for the GOR indicates
that for A~60 the GMR and the GOR happen to coincide (for details see Ref- [Wo91)).

The starting point for obtaining the nuclear matter compressibility is an expansion
of the compression modulus of a nucleus K, inspired from the liquid drop formula.

That is, one separates volume, surface, symmetry and Coulomb contributions by writing

N-Z :
K=K +K A"+ 1<,,,,,(—A;—)2 +K o AZT+ ...... (3.15)

where N and Z are respectively the numbers of neutrons and protons and A=N+Z. In
the scaling model the nuclear matter compression modulus K., is identified with the
volume term K., [B195]. In order to obtain from this expression Kg, one has to
perform a least-square fit using the values of K, derived from the excitation energy
Eo and the width [" of the GMR and which are related by the following expression.
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This expansion or more sophisticated versions of this expansion have been widely
used to obtain the saturation properties of nuclear matter [Na95],[My95],{Sh93]. This
procedure presents however conceptual and practical difficulties [BI95]. Indeed the A
dependance of K, is rather weak. Besides, in the range of the relevant nuclei, those in
which the breathing mode is well identified as a collective excitation, A varies only
slightly. The difficulty of obtaining reliable values for the various parameters by a
straigtforward fit of the data was illustrated by Pearson [Pe91], who showed that equally
good fits can be obtained with the volume term taking arbitrary values in a wide range,
100< K,4<400MeV. To overcome these difficulties Blaizot et al. [B195] have used a
microscopic approch to obtain the nuclear matter compressibility from the available
experimental data for *®*Pb. The microscopic determination of the nuclear matter
compressibility relies on the possibility of constructing sets of effective interactions
which differ mostly by their predictions of K, and which otherwise provide good fits
to other nuclear properties. Fig.3.18 summarize the results of these calculations. The
energy of the breathing mode is presented as a function of K,y . The circles indicate the
values of the GMR energy obtained from a constrained Hartree-Fock calculation. The
diamonds correspond to the average value of the energy of the RPA strength
distribution. The dashed line is a square root fit to the Hartree -Fock values
Experimental values and their error bars are indicated by small rectangles near the
vertical axis. These are, in MeV: E;=13.7010.40 (TAMU), [Yo81]; E;=13.90+0.30
(Groningen), [Br87]; E;=13.20+0.30 (Grenoble), [Bu80]. All available data point to a
value of K., smaller than 240 MeV. It is important to notice that the main uncertainty
of the final value of K, comes from the present uncertainties in the data. There 1s a
systematic difference between the three sets of data reported here. Since Eo~Kym, and
K varies linearly with Ky, 8Ka /Ka= 28 Ey /Ey = dKgp, Kam, SO that an error SE; ~ 1
MeV traslates into an uncertainty on K, of about 25 MeV. Groningen data lead to K,
~230 MeV, and Grenoble data to K, ~205 MeV. Following these calculations the main
source of uncertainty is the lack of compatible and precise data in heavy nuclei. Taking

into account all the experimental results, it is clear from the previous analysis that 207 <
Kam <225 MeV.
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Fig.3.18. The energy of the breathing mode as a function of K, Jfor details
see Ref. [BI95]

The giant monopole mode was extensively studied in light-ion inelastic-scattering
measurements and the observed strength seems to decrease almost linearly from about
100% of the E0 EWSR in A > 160 nuclei to about 10% in nuclei with A~60 (see
Fig.3.17). However this picture seems today questionable because recent charged-
particle decay studies of giant modes revealed the presence close to 100% of EO
strength in nuclei with A~24,28 [T090],[Lu86]. The heavy-ion inelastic scattering data
of [Li93] sow that an important fraction of the EO strength is also exhausted for
intermediate mass nuclei. The apparent disagreement may be attributed to the
difference between the reaction mechanism of the two probes. For instance heavy-ion
inelastic scattering provides spectra with much larger peak-to-continuum ratios, which
makes heavy ions suitable probes for these studies. Furthermore, light- and heavy
probes are sensitive to different radial parts of the EO transition potential. This situation
reminds the discussion on folding transition potentials for describing inelastic scattering
measurement §2-4. The same kind of comparison was made in the case of the targets
60N, %0Zr, 120Sn and 203Pb for the excitation of the giant quadrupole resonance and
giant monopole resonance by !70 ions at 84MeV/nucleon [Ho95]. The resulting

estimates of the sum-rule exhaustion by the giant quadrupole resonance increase by



Y

amounts ranging from about 20% for the lighter targets to no change for 208ph when
the folding model is used. Applying the same model to data for excitation of the giant
monopole resonance, it was found [Ho95] that these transitions overexhaust the
corresponding sum rule even more than was previously found within the deformed
potential optical model [Li93]. This situation may be due to deficiencies in the simple
Tassie model of the transition density that was used in the case of the giant resonances,
although several nuclear structure calculations lend support to this form. An alternative
suggestion is that the presence in the extracted cross sections of a background of
excitations with other multipolarities, especially =4, is responsible for the
discrepancies. An =4 excitation with a strength of only 10 to 15% of the hexadecapole
sum rule limit has cross sections comparable to the monopole with 100% strength. This
difficulty may be overcome by 0° heavy-ion inelastic scattering measurements, in which
a cleaner separation of different multipolarities is expected and which could also
provide a better determination of the emergy of the GMR and therefore a better

determination of the nuclear compressibility.
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OUTLOOK

[n this paper we have discussed some aspects of nuclear elastic and inelastic
scattering. The paper contains a short review of the field with special emphasis on more
recent results and problems concerning intermediate energy heavy ion elastic and
inelastic scattering. Nowadays the experimental effort in this field is pursued actively
towards the study of the properties of giant resonances built on top of a giant mode and
mainly on the study of the properties of exotic nuclei. Indeed, with the recent advent of
unstable nuclear beam facilities, these studies gained new interest, since it becomes
now possible to study elastic and inelastic scattering for nuclei lying far from stability.
The weak binding energy of these species is expected to lead to modifications of
standard optical potential models which were developed for stable nuclei. Inelastic
scattering experiments may allow to study in detail the halo structure of the nuclei and
to obtain their ground state deformation as this was shown for a pioneer experiment in
§2-3. A characteristic of some exotic nuclei is to exhibit density distributions different
from stable nuclei. In particular, the differences between neutron and proton density
distributions give rise in light nuclei to a neutron halo and in heavier ones to a neutron
skin Well known collective modes like the GDR are a useful tool to explore these
phenomena. For instance, the cross section for GDR excitation by an isoscalar probe
depends on the thickness of the neutron skin [Kr94]. This effect might be used to
determine the skin thickness in exotic nuclei in inverse reaction kinematics. The study
of the GMR in isobaric or isotopic chains of nuclei including unstable ones is of interest
since its peak energy is directly related to the nuclear compressibility and as such is a
stringent test of effective interactions used in microscopic models.

In conclusion, one can say that elastic and inelastic scattering is still a large and

fascinating field where new experimental results and theoretical debates are expected in

the near future.
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