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Abstract
We propose kinetic models to describe dust particles in a rarefied at-

mosphere in order to model the beginning of a Loss Of Vacuum Accident
(LOVA) in the framework of safety studies in the International Ther-
monuclear Experimental Reactor (ITER). After having studied character-
istic time and length scales at the beginning of a LOVA in ITER and
underlined that these characteristic scales justify a kinetic approach, we
firstly propose a kinetic model by supposing that the collisions between
dust particles and gas molecules are inelastic and are given by a diffuse
reflexion mechanism on the surface of dust particles. This collision mech-
anism allows us to take into account the macroscopic character of dust
particles compared to gas molecules. This leads to establish new Boltz-
mann type kinetic operators that are non classical. Then, by noting that
the mass of a dust particle is huge compared to the mass of a gas molecule,
we perform an asymptotic expansion to one of the dust-molecule kinetic
operators with respect to the ratio of mass between a gas molecule and a
dust particle. This allows us to obtain a dust-molecule kinetic operator of
Vlasov type whose any numerical discretization is less expensive than any
numerical discretization of the original Boltzmann type operator. At last,
we perform numerical simulations with Monte-Carlo and Particle-In-Cell
(PIC) methods which validate and justify the derivation of the Vlasov
operator. Moreover, examples of 3D numerical simulations of a LOVA in
ITER using these kinetic models are presented.
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1 Introduction
In the future International Thermonuclear Experimental Reactor (ITER), the
abrasion of the facing surface of the tokamak by the deuterium-tritium plasma
will lead to a production of a large amount of dust particles, essentially made
up with the wall materials. These dust particles will lie on the inner surfaces of
the tokamak after the functionning. In the case of a Loss Of Vacuum Accident
(LOVA), the vessel filling may result in a mobilization of the dust particles,
which may lead to several safety hazards, including possible release of activated
dust particles or to a classical dust explosion. For these reasons, one of the
aims of safety studies applied to the future ITER tokamak is to describe the
evolution of dust particles in such a situation. In this context, diagnostics using
optical, sampling or gravimetric systems[29, 30] are performed to study the
extent of dust particle mobilization for a given set of flow conditions. At the
same time, mathematical models are investigated in order to compare numerical
simulations with experimental diagnostics, and to predict the onset of dust
particle mobilization.

Several models for the description of a spray constitued by solid or liquid
particles in suspension in a surrounding gas are used in this framework. One can
distinguish different approaches, depending on the type of the partial differential
equations used to describe the gas and the (solid or liquid) particles. A first
approach consists in describing the gas-particles mixture like a multiphase fluid
using hydrodynamic equations, like in the Gidaspow model[27] or in the Baer
& Nunziato model[2] (which is used for situation of detonation - deflagration of
dusty gas). These approaches have been extended in Ref. [26] for the situation
of dust particles mobilization in ITER. A major drawback of this method is that
it can not deal with situations when the particles are not enough dense to be
modeled as a continuous fluid.

A second approach consists in coupling an eulerian and a lagrangian ap-
proach. More precisely, the evolution of the gas is described by classical hy-
drodynamic equations, whereas the evolution of (solid or liquid) particles is
described by a kinetic equation or by a system of ordinary differential equa-
tions. The interaction between the gas and the particles is taken into account
by mean of a Stokes type drag force

F(v, r) = Dp

mp(r)
(ug − v) (1)

where Dp is an empirical coefficient depending on the surrounding gas and
particles, ug(t, x) is the macroscopic velocity of the gas and mp(r) is the mass
of a particle of radius r. We refer to Ref. [31, 22, 23] for examples for such
kinetic-fluid models in the case of thin polydispersed sprays and to Ref. [33] in
the case of thick sprays (which are used for example in the code KIVA II.[34])
This approach is used in the accidental situation of a LOVA in ITER in Ref. [41],
Ref. [42] and Ref. [35], where it is shown by numerical simulations that dust
particles may be mobilized. Moreover, Takase[41] shows also that the crucial
phenomenoms take place during the beginning of the LOVA that is to say during
the first milliseconds. However, the atmosphere inside the vessel is initially
rarefied, and hydrodynamic models are consequently not suitable to describe
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the flow of the gas just after the air ingress in the vessel. Indeed, it is possible
to compute some Knudsen numbers associated to this situation such as

Kn21 := λ21

δdust
and Kn22 := λ22

d
(2)

where λ21 and λ22 are the mean free pathes of gas molecules respectively for
the dust-molecule collisions and for the molecule-molecule collisions. In (2),
δdust := 1

n◦
1

1/3 may be seen as an average distance between dust particles at the
macroscopic level[6] – n◦1 being an order of magnitude of the number density
of dust particles – and d is a characteristic length scale of the emissive source
that is responsible for the LOVA in ITER. Then, by supposing for the sake of
simplicity that the dust particles and the gas molecules are respectively only
tungsten and N2 (nitrogen), by taking n◦1 = 1014 m−3 (this order of magnitude
will be justified in § 2.1) and d = 10−2 m, by supposing that the initial order
of magnitude of the number density in gas molecules and the initial tempera-
ture in ITER are respectively equal to n◦2 = 1020 m−3 and to T ◦ = 300 K and
by supposing that the radius of a dust particle is smaller than 10−5 m,[29] we
obtain Kn21 ≥ 1 and Kn22 ≥ 1. As a consequence, the initial atmosphere in
ITER is rarefied which justifies to model the beginning of a LOVA in ITER
with a kinetic approach where, in particular, the gas molecules should not be
at thermodynamical equilibrium. In other words, we have to propose a kinetic
model for a spray in a rarefied gas. In Ref. [24], a kinetic model for the trans-
port of solid particles in a gas is proposed. Nevertheless, in this approach,
the gas is supposed to be at thermodynamical equilibrium and is described by
a maxwelian distribution. As a consequence, the density in number of solid
particles is solution of a linear kinetic equation. Another approach to model
dust particles in a rarefied atmosphere is proposed in Ref. [25] for the steady
evaporation from a spherical condensed phase contening solid particles. In this
model, the evolution of the gas molecules is described by a BGK-Boltzmann
type equation and the evolution of dust particles is described by a fluid model
without pressure. A similar model has been applied later in Ref. [12] in the 3D
modelling of cometary flows by Monte-Carlo simulations. Let us note that it is
shown in Ref. [12] that some physical phenomena which are characteristic of a
dust-molecule flow in the coma of a comet can only be obtained with a kinetic
description of the gas molecules. In Ref. [45], a dust-molecule kinetic model
is proposed to model the interaction between dust particles coming from an
intensive volcanic plume and a rarefied atmosphere as in the case of volcanoes
on Jupiter’s moon Io. In this kinetic model, the dust-molecule collisions are
treated with classical (elastic) multispecies Boltzmann operators for nano-sized
dust particles and with a drag model of type (1) for the micron-sized dust par-
ticles – this drag model being deduced from the classical (elastic) multispecies
Boltzmann operators –, and the feedback of dust particles on the gas molecules
is not taken into account.

We propose in this work purely kinetic models of Boltzmann and/or Vlasov
type to describe the dust-molecule mixture. These models are devoted to com-
plete previous models, especially in the context of the beginning of a LOVA in
ITER for which any fluid model cannot be valid since the atmosphere is ini-
tially rarefied. In particular, to take into account the fact that dust particles
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are macroscopic compared to molecules, we suppose that the dust-molecule col-
lision mechanism is analogous to a diffuse reflexion boundary condition[11] and,
thus, is inelastic, which implies that we have to introduce a random process in
the multispecies kinematic relations of the dust-molecule collision. As a conse-
quence, the proposed dust-molecule (inelastic) kinetic operators are not classical
(elastic) multispecies Boltzmann operators. Let us note that the proposed dust-
molecule kinetic model takes into account the feedback of the dust particles on
the gas molecules, which is not the case in previous works except in Ref. [25, 45].
Moreover, we derive a Vlasov-Boltzmann type model by performing an asymp-
totic expansion of one of the dust-molecule kinetic operators with respect to
the ratio of mass between a gas molecule and a dust particle. This allows us to
obtain a dust-molecule kinetic operator whose any numerical discretization is
less expensive than any numerical discretization of the original Boltzmann type
model. Let us note that the obtained Vlasov operator allows us to generalize the
dust-molecule drag model (1) to a rarefied atmosphere where the dust-molecule
interaction is inelastic. At last, let us underline that the proposed dust-molecule
kinetic models could also describe the interaction between dust particles coming
from an intensive volcanic plume and a rarefied atmosphere as, for example, in
the case of volcanoes on Jupiter’s moon Io.[44, 45]

The outline of this paper is the following: In Section 2, we introduce basic
modelling hypothesis and we estimate characteristic time and length scales in
the context of a LOVA in ITER. This allows us, firstly, to justify the fact that
dust-dust collisions may not be taken into account in this context, secondly, to
justify the use of a kinetic model to describe the beginning of a LOVA in ITER,
and, thirdly, to justify the fact that the dust-molecule kinetic model cannot be
a classical (elastic) multispecies Boltzmann model because of the macroscopic
character of dust particles compared to gas molecules. Then, we introduce the
general formulation of the proposed dust-molecule kinetic model. In Section 3,
we derive the Boltzmann type operators which model the dust-molecule colli-
sions. In Section 4, we derive a Vlasov-Boltzmann type model by performing an
asymptotic expansion. In Section 5, we study the dust-molecule kinetic model
of Vlasov-Boltzmann type at different time and length scales. This study al-
lows us to estimate the appropriate characteristic time and length scales of the
proposed kinetic modelling in the context of a LOVA in ITER, which is in par-
ticular important for numerical simulations. In Section 6, we propose numerical
simulations with Monte-Carlo and Particle-In-Cell (PIC) methods. These nu-
merical results validate and justify the derivation of the dust-molecule kinetic
operator of Vlasov type. Moreover, examples of 3D numerical simulations of a
LOVA scenario using the proposed dust-molecule kinetic models are presented.
At last, we conclude in Section 7.

2 Formulation of the dust-molecule kinetic model
To propose a dust-molecule kinetic model of Boltzmann and/or Vlasov type,
we have to clearly introduce modelling hypothesis and to estimate time scales,
length scales and Knudsen numbers in the physical context of a LOVA. This
analysis, firstly, justifies the fact that dust-dust collisions may not be taken
into account in the model, secondly, justifies the use of a kinetic model to
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describe the beginning of a LOVA, and, thirdly, justifies the fact that the dust-
molecule kinetic model cannot be a classical (elastic) multispecies Boltzmann
model because of the macroscopic character of dust particles compared to gas
molecules. In particular, we briefly discuss the impact of the magnitude of the
dust particle radius on the diluted gas hypothesis and on the molecular chaos
hypothesis.

2.1 Basic modelling hypothesis
We introduce basic modelling hypothesis which will be used, in particular, to
justify in § 2.2.3 the fact that the beginning of a LOVA has to be modelled with
a kinetic modelling.

2.1.1 Hypothesis on the physical properties of dust particles and gas
molecules

The first hypothesis concerns the incompressibility and the shape of dust par-
ticles and gas molecules:

Hypothesis 2.1. Dust particles and molecules are supposed to be hard spheres
of respective radius r and r2. Moreover, we suppose that

r ∈ [rmin, rmax] with 0 < rmin < rmax < +∞.

In the context of ITER, a large size distribution range is expected for dust
particles, with radius included between 10−8 m and 10−5 m.[39] However, we
focus here our attention on the biggest of those dust particles, and we take
rmin ' 10−6 m and rmax ' 10−5 m.

The tricky point of our modelling is the large difference in size between dust
particles and gas molecules. Thus, considering for the sake of simplicity that the
gas is constituted of only one type of molecule, we make this second hypothesis:

Hypothesis 2.2. Dust particules are supposed to be macroscopic compared to
gas molecules which means that

r2

rmin
� 1. (3)

By supposing that gas molecules are nitrogen N2 in the rarefied atmosphere,
we have r2 ' 2 · 10−10 m which implies that r2/rmin ' 2 · 10−4.

A consequence of Hypothesis 2.2 concerns the magnitude of the mass of a
dust particle compared to the magnitude of the mass of a gas molecule:

Hypothesis 2.3. The mass m2 of a molecule is very low compared to the mass
m1(r) of a dust particle of radius r. In other words, we assume that

εm � 1 (4)

with
ε(r) := m2

m1(r) and εm := ε(rmin). (5)
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Of course, (4) implies that

∀r ∈ [rmin, rmax] : ε(r)� 1 (6)

since m1(r) = 4
3πρr

3 where ρ is the volumic mass of the chemical component of
dust particles. Hypothesis 2.2 and 2.3 are not equivalent but are linked. Indeed,
by defining the dimensionless constant

η := 3m2

4πρr3
2
, (7)

we have
ε(r) =

(r2

r

)3
η. (8)

Thus, Hypothesis 2.2 only implies that(
εm
η

)1/3
� 1. (9)

Relation (8) shows that Hypothesis 2.3 is satisfied under Hypothesis 2.2 when
η is not too high. In the context of ITER, by only considering dust particles
of tungsten (which is the heaviest material that should be considered) and by
only considering nitrogen N2 in the rarefied atmosphere, we have ρ = 19, 3 ·
103 kg·m−3, r2 ' 2 · 10−10 m and m2 = 4, 6 · 10−26 kg. Thus, we obtain η '
7, 2 · 10−2 which implies that Hypothesis 2.3 is satisfied.

2.1.2 Hypothesis on the initial thermodynamic state

The kinetic modelling of the dust-molecule mixture consists in introducing two
density functions f1 := f1(t, x, v, r) and f2 := f2(t, x, v) which respectively
represent the number density in dust particules and in gas molecules at the
time t ∈ [0, T ], at the position x ∈ Ω ⊂ R3 and at the velocity v ∈ R3. In our
context, the subset Ω defines the interior of the ITER tokamak, and the LOVA
is produced by a small opening on the frontier ∂Ω. We make two hypothesis on
these number densities f1 and f2 which are especially adapted at the beginning
of a LOVA and which will allow us to introduce characteristic time and length
scales in § 2.2.1 and 2.2.2.

The first one of these two hypothesis is the following:

Hypothesis 2.4. The order of magnitude of the dust particle number density
n1 is very low compared to the order of magnitude of the gas molecule number
density n2 knowing that

n1(t, x) :=
ˆ
R3

ˆ rmax

rmin

f1(t, x, v, r)dvdr,

n2(t, x) :=
ˆ
R3
f2(t, x, v)dv.

More precisely, we assume that

α◦ := n◦1
n◦2
� 1 (10)
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with the two orders of magnitude
n◦1 := sup

[0,T ]×Ω
n1(t, x) < +∞,

n◦2 := inf
[0,T ]×Ω

n2(t, x) > 0.

Moreover, in the context of a LOVA, we suppose that
sup

Ω
n1(t = 0, x) ' n◦1,

inf
Ω
n2(t = 0, x) ' n◦2.

(11)

Let us underline that by defining n◦1 and n◦2 respectively with the supremum
of n1(·, ·) and with the infimum of n2(·, ·) on [0, T ]× Ω, under (10), we assume
that the number density of dust particles is always negligible compared to the
number density of molecules during a LOVA. Let us estimate n◦1 in the context
of ITER. We considere the situation where the abrasion of the walls leads to
the formation of M = 102 kg of tungsten mobilizable dust particles (this value
corresponds to the safety limit which has been set inside the vacuum vessel,
and could be reached after approximately 500 plasma pulses.[30]) Then, with
the estimate that the total surface of vessel is S = 5 · 102 m2, this quantity of
dust particles corresponds to a width h = M/(ρS) = 10−5 m of eroded tungsten.
Moreover, we assume that at the initial time t = 0 (just after the beginning of
the air ingress in the vacuum vessel), dust particles are hanging uniformly in a
layer of l = 10−2 m width on the surface of the vessel. Then, the density n1 of
dust particles in this layer verifies for dust particles of radius r

4
3πr

3n1lS = Sh.

Thus, when r ∈ [rmin, rmax], we have

3h
4πr3

maxl
≤ n1 ≤

3h
4πr3

minl
, (12)

that is to say
2, 5 · 1011 m−3 ≤ n1 ≤ 2, 5 · 1014 m−3. (13)

Consequently, we can choose in our context the order of magnitude n◦1 = 1014

m−3. Moreover, when there will be thermonuclear reactions in ITER, the pres-
sure and the temperature inside the ITER tokamak will be respectively of the
order of 1 atm and of 1, 5 · 108 K. As a consequence, by using the perfect gas
law, we find that the number density inside the ITER tokamak has to be of the
order of 1020 m−3. As a consequence, we choose n◦2 = 1020 m−3. Consequently,
we have α◦ = 10−6.

The second one of these two hypothesis concerns the order of magnitude of
the kinetic temperature of each species:
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Hypothesis 2.5. The kinetic temperatures involved in the mixture are of the
same order of magnitude. Thus, we assume that

Tf1(t, x, r) := m1(r)
3kBn1(t, x, r)

[ˆ
R3
f1(t, x, v, r) (v − uf1(t, x, r))2

dv

]
, (a)

Tf2(t, x) := m2

3kBn2(t, x)

[ˆ
R3
f2(t, x, v) (v − uf2(t, x))2

dv

]
(b)

(14)
where 

uf1(t, x, r) := 1
n1(t, x, r)

ˆ
R3
f1(t, x, v, r)vdv

uf2(t, x) := 1
n2(t, x)

ˆ
R3
f2(t, x, v)vdv

(15)

verify
Tf2 ' T ◦,

and, as soon as particles are mobilized,

Tf1 ' T ◦.

In (14), kB ' 1, 38 ·10−23 m2· kg· s−2· K−1 is the Boltzmann’s constant. Hy-
pothesis 2.5 means that we suppose that there is a LOVA when the temperature
in ITER is not too high that is to say when ITER is stopped. In this context,
we can choose T ◦ ' 300 K. Let us underline that when n◦2 ' 1020 m−3 and
T ◦ ' 300 K, the perfect gas law P ◦2 = n◦2kBT

◦ gives a pressure of P ◦2 ' 4 · 10−6

atm, which justifies to model, when ITER is stopped, the beginning of a LOVA
with a kinetic model: we detail this question in § 2.2.3.

2.1.3 A last basic modelling hypothesis

The last basic modelling hypothesis is essentially introduced for the sake of
simplicity:

Hypothesis 2.6. We neglect any external force field as magnetic field.

However, although gravity field is not written in the model for a sake of sim-
plicity, it is taken into account in the spatially inhomogeneous 3D-simulations
of § 6.2.3 and § 6.2.4. In the context of a LOVA, it is obvious that Hypothesis
2.1-2.4 cannot be affected by any external force field. Nevertheless, we may
think that Hypothesis 2.5 could be affected by the high external magnetic field
since, in that case, the dust particles of tungsten are heated by the hot hydrogen
plasma or directly by the magnetic field (tungsten is a metal). Of course, when
ITER is stopped, this potential problem does not exist.

2.1.4 Summary of the order of magnitudes

We now summarize the order of magnitude introduced in the previous subsec-
tions in Table 2.1.4. We recall that these orders of magnitude are characteristic
of those at the beginning of a LOVA.

8



Orders of magnitude of the physical parameters.
r2 rmin rmax m2 ρ T ◦ α◦ n◦1 n◦2
(m) (m) (m) (kg) kg·m−3 (K) m−3 m−3

2 · 10−10 10−6 10−5 4, 6 · 10−26 19, 3 · 103 300 10−6 1014 1020

2.2 Characteristic time and length scales, and Knudsen
numbers

Let us now make a brief analysis of the orders of magnitude of time scales,
length scales and Knudsen numbers.

2.2.1 Characteristic time scales

In order to point out the various characteristic time scales involved in the sys-
tem, we make a brief analysis of the orders of magnitude of the mean collision
time of each collision type in the dust-molecule mixture. We distinguish four
types of collision which, thus, define four different mean collision times tij :
• collisions between dust particles whose mean collision time is noted t11;
• collisions between molecules whose mean collision time is noted t22;
• collisions between dust particles and molecules – from the point of view of dust
particles – whose mean collision time is noted t12;
• collisions between molecules and dust particles – from the point of view of
molecules – whose mean collision time is noted t21.

These four mean collision times tij define four characteristic time scales. Under
Hypothesis 2.1 and 2.5 and by supposing that all dust particles have the same
radius r ∈ [rmin, rmax], the characteristic time scales tij are given by Ref. [6]

t11 =
(
4πr2n1〈V rel11 〉

)−1
, (a)

t22 =
(
4πr2

2n2〈V rel22 〉
)−1

, (b)

t12 =
(
π(r + r2)2n2〈V rel12 〉

)−1
, (c)

t21 =
(
π(r + r2)2n1〈V rel21 〉

)−1 (d)

(16)

with, as soon as particles are mobilized,

〈V rel11 〉 = 4
√

kBT◦

πm1(r) ,

〈V rel22 〉 = 4
√

kBT◦

πm2
,

〈V rel12 〉 = 〈V rel21 〉 =
√

8kBT◦

π

(
1

m1(r) + 1
m2

) (17)

knowing that 〈V relij 〉 is the thermal relative velocity between particles of type i
and particles of type j supposed to be hard spheres.[6] Then, under Hypothesis
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2.2-2.4, we have 

t21

t11
' 4
√

2ε(r)� 1, (a)

t12

t22
' 4
√

2
(r2

r

)2
� 1, (b)

t12

t21
= n1

n2
≤ α◦ � 1. (c)

(18)

Moreover, we have also under Hypothesis 2.2 and 2.3

t22

t21
' 1

4
√

2
n1

n2

(
r

r2

)2
(19)

and consequently

∀(t, r) ∈ 0×[rmin, rmax] : 1
4
√

2
α◦
(
rmin
r2

)2
≤ t22

t21
≤ 1

4
√

2
α◦
(
rmax
r2

)2
. (20)

In the same way, we have under Hypothesis 2.4

∀(t, r) ∈ R+×[rmin, rmax] : t22

t11
= n1

n2

(
r

r2

)2√
ε(r) = n1

n2

√
η
r

r2
≤ α◦

√
η
rmax
r2
(21)

where η is defined by (7). By using (7) and Table 2.1.4, we obtain

1
4
√

2
α◦
(
rmin
r2

)2
' 4, 4, (a)

1
4
√

2
α◦
(
rmax
r2

)2
' 4, 4 · 102, (b)

α◦
√
η
rmax
r2
' 6 · 10−5. (c)

(22)

Thus, we deduce from (20), (21) and (22) that
∀(t, r) ∈ 0× [rmin, rmax] : t22

t21
≥ 1.

∀(t, r) ∈ R+ × [rmin, rmax] : t22

t11
� 1.

Finally, in our context, the characteristic time scales tij are such that

∀(t, r) ∈ 0× [rmin, rmax] : t12 � t21 ≤ t22 � t11. (23)

We deduce from (23) that the dust-dust mean collision time t11 is the largest
characteristic time scale involved in the collisionsat the beginning of the LOVA.
More precisely, hypothesis summarized in Table 2.1.4 implies that{

r = rmin : 〈V rel11 〉 ' 5, 1 · 10−4 m · s−1,

r = rmax : 〈V rel11 〉 ' 1, 6 · 10−5 m · s−1.

Then, we deduce that at the beginning of the LOVA, we have

0, 5 s ≤ t11 ≤ 1, 5 s.
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On the other hand, the time scale tLOV A in the context of the beginning of a
LOVA is lower than 10−3 s [41]. Thus, we have

tLOV A � t11.

Therefore, we can neglect dust-dust collisions in any modelling of the beginning
of a LOVA . Let us note that we have

〈V rel22 〉 ' 673 m · s−1

which implies that at t = 0

t22 ' 3 · 10−5 s that is to say t22 . tLOV A.

As a consequence, t22 seems to be a good time scale to study the beginning
of a LOVA: we study in detail this question in Section 5 when t22 ' t21 (see
Hypothesis 4.1 and 5.1).

2.2.2 Characteristic length scales

The mean free path λij of the collision of a particle of type i with a particle of
type j from the point of view of the particle of type i is given by λij = 〈Vi〉tij
where 〈Vi〉 = 〈V relii 〉/

√
2 is the thermal velocity of the particle of type i. By

using (16) and (17) (once again, we suppose that all dust particles have the same
radius r ∈ [rmin, rmax]), we obtain

λ11 = 1
4
√

2πr2n1
, (a)

λ22 = 1
4
√

2πr2
2n2

, (b)

λ12 =
√

m2

m1(r) +m2
· 1
π(r + r2)2n2

, (c)

λ21 =

√
m1(r)

m1(r) +m2
· 1
π(r + r2)2n1

. (d)

(24)

Then, under Hypothesis 2.2-2.4, we obtain

λ21

λ11
' 4
√

2, (a)

λ12

λ22
' 4
√

2ε(r) ·
(r2

r

)2
� 1, (b)

λ12

λ21
'
√
ε(r) · n1

n2
≤
√
ε(r) α◦ � 1, (c)

(25)

which implies

∀(t, r) ∈ R+ × [rmin, rmax] :
{

λ12 � λ11 . λ21,

λ12 � λ22.
(26)

Moreover, we have also under Hypothesis 2.2 and 2.3

λ22

λ21
' 1

4
√

2
· n1

n2
·
(
r

r2

)2
(27)
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which is exactly estimate (19). Thus, in our context, by using (22)(a,b) we have{ (t, r) = (0, rmin) : λ21 . λ22,

(t, r) = (0, rmax) : λ21 � λ22.

Moreover, at t = 0 and by using Table 2.1.4 and (25), we have λ22 ' 1, 4·10−2 m
and 

5, 6 · 10−6 m ≤ λ11 ≤ 5, 6 · 10−4 m, (a)

7, 6 · 10−19 m ≤ λ12 ≤ 2, 4 · 10−15 m, (b)

3, 2 · 10−5 m ≤ λ21 ≤ 3, 2 · 10−3 m. (c)

(28)

Estimate (28)-(b) shows that λ12 is not an appropriate characteristic length
scale from a physical point of view. At the opposite, λ21 and λ11 – which is of
the same order as λ21 because of (25)(a) – and λ22 seem to be appropriate length
scales from a physical point of view in our context. In Section 5, we justify the
fact that λ12 is not an appropriate length scale for the proposed dust-particle
kinetic model. As a consequence, we only use the characteristic length scales
λ11, λ21 and λ22 in the sequel of this Section 2.

2.2.3 Knudsen numbers

By defining the dust-molecule and molecule-molecule Knudsen numbers with

Kn21 := λ21 · n1/3
1 and Kn22 := λ22/d

where n−1/3
1 ' 2, 15 · 10−5 m and d ' 10−2 m are macroscopic characteristic

length scales respectively related to the dust particles and to the emissive source
that is responsible for the LOVA,[41] we deduce from (24) that at t = 0

Kn21 ≥ 1, 4 (29)

for r ≤ rmax and
Kn22 ' 1, 4. (30)

Let us note thatKn11 ' Kn21/(4
√

2) whereKn11 := λ11·n1/3
1 since λ11 ' λ21/(4

√
2)

(see (25)(a)). Estimates (29) and (30) justify the modelling of the beginning of
a LOVA with dust-molecule and molecule-molecule kinetic models.

2.3 Diluted gas hypothesis and molecular chaos hypothe-
sis

In a binary gas mixture constituted of hard spheres, the classical multispiecies
Boltzmann operators are valid when the mixture is diluted and when the molec-
ular chaos hypothesis is satisfied. The dilution of the mixture is caracterised
by the dilution parameter ηij := 4

3πr
3
i nj , which has to verify ηij � 1 (see Ref.

[6]): it means that collisions can be considered as binary. The molecular chaos
hypothesis is that ζij := λ3

ijnj has to verify ζij � 1:[6] it means that there are
enough particles of each specie in the volume λij to define a particle density in
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the elementary volume. In our context, we have the following estimates:
• Diluted gas hypothesis: We have

∀t ∈ R+ :


r = rmin : η11 � 1, (a)

r = rmax : η11 ' 4 · 10−1, (b)

η21 � 1 (c)

(31)

and

t = 0 :


r = rmin : η12 ' 4 · 102, (a)

r = rmax : η12 � 1, (b)

η22 � 1. (c)

(32)

•Molecular chaos hypothesis: We have

∀t ∈ R+ :
{

r = rmin : ζ11 � 1 and ζ21 � 1, (a)

r = rmax : ζ11 ' 10−2 and ζ21 ' 3, 2 (b)
(33)

and
t = 0 : ζ22 � 1 (34)

(we do not estimate ζ12 since λ12 is not an appropriate characteristic length
scale from a physical point of view: see § 2.2.2).

Estimates (31)(b), (32)(b) and (33)(b) show that the dust-molecule mixture
may not be a diluted gas and/or may not satisfied the molecular chaos hypothe-
sis at least for dust particles whose radius is of the order of rmax = 10−5 m: this
is a direct consequence of the macroscopic character of dust particles compared
to molecules (cf. Hypothesis 2.2). As a consequence, the dust-molecule kinetic
operators cannot be classical (elastic) multispecies Boltzmann operators at least
for dust particles whose radius is of the order of rmax = 10−5 m: we propose
to take into account this important characteristic in our modelling through Hy-
pothesis 3.1 (see below) that introduces a random process in the dust-molecule
binary collision.

2.4 Kinetic modelling of dust-molecule collisions
Under Hypothesis 2.1-2.5 and in the context of the beginning of a LOVA, we
can neglect the dust-dust collisions (see § 2.2.1). As a consequence, under
Hypothesis 2.6, the dust-molecule kinetic model is given by

∂f1

∂t
+ v · ∇xf1 = R1(f1, f2), (a)

∂f2

∂t
+ v · ∇xf2 = R2(f1, f2) +Q(f2, f2), (b)

(t, x, v, r) ∈ R+ × Ω× R3 × [rmin, rmax] (c)

(35)

where Ω is an open subset of R3 (which defines the interior of the ITER tokamak)
and where 0 < rmin < rmax. The kinetic operator Q(f2, f2) models collisions
between gas molecules and is a classical Boltzmann operator. As these collisions
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are not the important point of our modelling, we consider a hard sphere model.
Then, Q(f2, f2) is given by

Q(f2, f2)(t, x, v) =
ˆ
§2

ˆ
R3

[f2(t, x, v′)f2(t, x, v′∗)− f2(t, x, v)f2(t, x, v∗)]

× r2
2|v − v∗|dσdv∗ (36)

with 
v′ = v + v∗

2 − |v − v∗|2 σ,

v′∗ = v + v∗
2 + |v − v∗|2 σ

(37)

and σ ∈ S2. The main point of our modelling is the derivation of the kinetic
operatorsR1(f1, f2) andR2(f1, f2) which model collisions between dust particles
and gas molecules under Hypothesis 2.1 and 2.2, and which cannot be classical
(elastic) multispecies Boltzmann operators at least when the radius of a dust
particle is of the order of rmax = 10−5 m (see § 2.3).

2.5 Discussion about the basic modelling hypothesis
We make the following coments to summarize the physical justification of kinetic
model (35) in our context:
• Hypothesis 2.1-2.5 are used in § 2.2 to estimate in our context the characteristic
time and length scales and the Knudsen numbers involved in the dust-molecule
mixture. In particular, we show that we have to model the beginning of a LOVA
with a kinetic model and that we can neglect dust-dust collisions. In other
words, under Hypothesis 2.6, the beginning of a LOVA has to be modelled with
a kinetic model whose general formulation is given by (35).
• Hypothesis 2.2 is central to justify the derivation in Section 3 of the dust-
molecule operators R1(f1, f2) and R2(f1, f2) in a non-classical way (see also §
2.3).
• Hypothesis 2.3 is central to perform in Section 4 an asymptotic analysis to
approach R1(f1, f2) with a Vlasov type operator and, then, to simplify kinetic
model (35) in Section 5.
• Hypothesis 2.6 allows us to neglect any external force field in (35). Of course,
it would be simple to add a posteriori any external force field in (35) (as soon
as Hypothesis 2.5 remains valid when Hypothesis 2.6 is not satisfied).

3 Derivation of dust-molecule kinetic operators
of Boltzmann type

We now propose to derive the dust-molecule operators R1(f1, f2) and R2(f1, f2)
used in the kinetic model (35) in the spirit of the derivation of the classical
Boltzmann operator (36).[7] The new point is the way we take into account in
our modelling Hypothesis 2.1 and 2.2.
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3.1 Random kinematic relations for the dust-molecule col-
lision

Dust particles and gas molecules are supposed to be hard spheres: see Hypothe-
sis 2.1. Moreover, dust particles are also supposed to be macroscopic compared
to molecules: see Hypothesis 2.2. From a physical point of view, we have to
take into account this important modelling hypothesis, which means in partic-
ular that kinetic operators R1(f1, f2) and R2(f1, f2) cannot be the multispecies
versions of classical Boltzmann operator (36) (see section 2.3). In the case of the
classical multispecies Boltzmann operator, kinematic relations (37) are given by
Ref. [6] 

v1 = vB −
ε(r)

1 + ε(r) |v
◦
2 − v◦1 |σ, (a)

v2 = vB + 1
1 + ε(r) |v

◦
2 − v◦1 |σ (b)

(38)

with σ ∈ S2 where ε(r) is the ratio of masses defined by (5) and where

vB := 1
1 + ε(r)v

◦
1 + ε(r)

1 + ε(r)v
◦
2 (39)

is the barycentric velocity of the dust-molecule binary system. In (38), v◦1 and
v◦2 are the pre-collisional velocities, v1 and v2 are the post-collisional velocities.
In our modelling, we take into account Hypothesis 2.1 and 2.2 in the derivation
of R1(f1, f2) and R2(f1, f2) by supposing that a molecule arriving on a dust
particle thermalizes with molecules constituting the surface of the dust particle
within a negligible time with respect to the other characteristic time scales, and
leaves the dust particle following a half maxwellian at its surface temperature
Tsurf . In other words, we take into account Hypothesis 2.1 and 2.2 by supposing
that the dust-molecule collision mechanism is analogous to a diffuse reflexion
boundary condition (see Ref. [11] p. 104) and, thus, by introducing a random
process in the multispecies kinematic relations (38):

Hypothesis 3.1. The kinematic relations of the dust-molecule binary collision
– which transform the pre-collisional velocities v◦1 and v◦2 into the post-collisional
velocities v1 and v2 – are given by

v1 = vB −
ε(r)

1 + ε(r)vr, (a)

v2 = vB + 1
1 + ε(r)vr (b)

(40)

where
vr := v2 − v1 (41)

is the post-relative velocity whose probability density hn is given by

hn(s) = 1
2π

(
m2

kBTsurf

)2
(n · s) exp

(
− m2|s|2

2kBTsurf

)
1{n·s≥0}, (42)

n being the normal vector at the tangent plan of the dust particle, oriented to
the exterior of the dust particle, and Tsurf ∈ R+

∗ being the surface temperature
of dust particles.
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We roughly represent in Figure 1 the collision between a dust particle and a
molecule. In this figure, n =

−−−→
C1C2

|
−−−→
C1C2|

where C1 and C2 are respectively the centers
of the dust particule and of the molecule. In (42), the surface temperature

Figure 1: Diffuse reflexion of a molecule on a dust particle

of dust particles Tsurf is not necessarily equal to the kinetic temperature Tf1

defined with (14)(a). For the sake of simplicity, we assume in the sequel that
all dust particles have the same surface temperature Tsurf and that Tsurf does
not depend on the time. Let us note that we can rewrite (42) with

hn(s) = 2β4

π
(n · s) exp

(
−β2|s|2

)
1{n·s≥0} (43)

where
β :=

√
m2

2kBTsurf
(44)

(1/β is a thermal velocity related to the surface temperature Tsurf of dust
particles). Of course, we can verify that

∀n ∈ S2 :
ˆ
R3
hn(s)ds = 1. (45)

Let us underline that kinematic relations (40) are such that the momentum
of the dust-molecule binary system is conserved. Nevertheless, since |vr| is
not equal to the pre-relative velocity |v◦r | with v◦r := v◦2 − v◦1 (see Figure 1)
because of the random process, collision mechanism (40) is not planar and is
not micro-reversible, and the kinetic energy is not conserved, which is not the
case for the classical collision mechanism (38). This implies that the kinetic
operators R1(f1, f2) and R2(f1, f2) proposed in the sequel will not verify all
the properties verified by a classical (elastic) multispecies Boltzmann operator
based on kinematic relations (38).

3.2 Derivation of dust-molecule operator R1(f1, f2)
Under Hypothesis 3.1, R1(f1, f2) cannot be a classical (elastic) multispecies
Boltzmann operator. To derive R1(f1, f2), we have to apply the heuristic Boltz-
mann’s construction[7, 11] in the particular context of Hypothesis 3.1. This
leads to the following proposition:
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Proposition 1. Under Hypothesis 3.1, the dust-molecule operator R1(f1, f2)
obtained with the heuristic Boltzmann’s construction is given by

R1(f1, f2)(t, x, v1, r) =

(r + r2)2
ˆ
R3

ˆ
R3
f1(t, x, v◦1 , r)f2(t, x, v◦2)Bp(v◦1 , v◦2 , v1)dv◦1dv◦2

− π (r + r2)2
ˆ
R3
f1(t, x, v1, r)f2(t, x, v2)|v1 − v2|dv2 (46)

with

Bp(v◦1 , v◦2 , v1) = 2
π
β4
(

1 + ε(r)
ε(r)

)4
exp

[
−β2

(
1 + ε(r)
ε(r)

)2
(vB − v1)2

]

×
ˆ
S2

[n · (vB − v1)][n · (v◦1 − v◦2)]1{n·(vB−v1)≥0}1{n·(v◦
1−v◦

2 )≥0}dn

(47)

where ε(r) is the ratio of masses defined by (5), where vB is the barycentric
velocity given by (39) and where 1/β is a thermal velocity given by (44).

Proof. In the elementary volume dxdv1, the variation of the number of dust
particles during the time dt is

df1

dt
dtdxdv1 =

(
∂f1

∂t
+ v1 · ∇xf1

)
dtdxdv1.

Let us introduce the number of dust particles R+
1 (f1, f2)dtdxdv1 whose position

and velocity enter respectively into the classes bx, x+ dxc and bv1, v1 + dv1c,
and let us also introduce the number of particles R−1 (f1, f2)dtdxdv1 whose po-
sition and velocity leave those classes. Then, the collisional balance writes

df1

dt
dtdxdv1 =

[
R+

1 (f1, f2)−R−1 (f1, f2)
]
dtdxdv1. (48)

Thus, the operator R1(f1, f2) can be expressed by

R1(f1, f2) = R+
1 (f1, f2)−R−1 (f1, f2). (49)

Due to Hypothesis 2.1, the loss part R−1 (f1, f2) is a classical multispiecies Boltz-
mann loss operator for a hard sphere cross-section. Its expression is given by
(see Ref. [11] or Ref. [9] for details)

R−1 (f1, f2)(t, x, v1, r) =
ˆ
R3
f1(t, x, v1, r)f2(t, x, v2)π (r + r2)2 |v1−v2|dv2. (50)

We now establish the expression of R+
1 (f1, f2) by noting that R+

1 (f1, f2)dt dx dv1
is the number of collisions in the elementary volum dx during the time dt whose
post-collisional velocity of dust particles is in the class bv1, v1 + dv1c. This
number can be expressed by

R+
1 (f1, f2)dtdxdv1 =

ˆ
n∈S2

ˆ
v◦

2∈R3

ˆ
v◦

1∈R3
l1(v1)dN0

1 dv1 (51)
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where dN0
1 is the elementary number of collisions during the time dt in the

elementary volum dx between dust particles and molecules whose pre-collisional
velocities are respectively in the classes bv◦1 , v◦1 + dv◦1c and bv◦2 , v◦2 + dv◦2c, and
where l1(v1)dv1 is the elementary probability that, after such a collision, the
post-collisional velocity of these dust particles is in the class bv1, v1 + dv1c. At
time t and at position x, the dust particles flux whose velocity is in the class
bv◦1 , v◦1 + dv◦1c and relative to a molecule whose velocity is equal to v◦2 is given
by f1(t, x, v◦1)|v◦1 − v◦2 |dv◦1 . Thus, the number of these dust particles that collide
this molecule during a time dt with an impact parameter p and an azimuthal
angle ε ∈ [0, 2π] (angle between a reference plan and the pre-collision plan) is
equal to

f1(t, x, v◦1 , r)|v◦1 − v◦2 | pdp dεdv◦1 dt.

Then, dN◦1 is given by

dN◦1 = f1(t, x, v◦1 , r)f2(t, x, v◦2)|v◦1 − v◦2 | pdpdε dv◦1 dv◦2 dt dx

since the number of molecules in the elementary volume dx whose velocity is in
the class bv◦2 , v◦2 + dv◦2c is equal to f2(t, x, v◦2)dv◦2 dx. Under the assumption that
dust particles and molecules are hard spheres, the impact parameter p between
molecules and dust particles is given by p = (r + r2) sin(θ) with θ ∈ [0, π/2].
Moreover, denoting n the vector n =

−−−→
C1C2

|
−−−→
C1C2|

, where C1 and C2 are respectively
the centers of the particule and of the molecule (see figure 1), we have

|v◦1 − v◦2 |pdpdε = |v◦1 − v◦2 |(r + r2)2 sin θ cos θdθdε (52)

with n ∈ S2 ∩ {n · (v◦1 − v◦2) ≥ 0}. Then, we can express dN◦1 by

dN◦1 = f1(t, x, v◦1 , r)f2(t, x, v◦2) (r + r2)2 [n · (v◦1 − v◦2)]1{n·(v◦
1−v◦

2)≥0}dndv
◦
1dv
◦
2dtdx.

Moreover, we can express the density of probability l1 according to the density
of probability hn of the post-collisional relative velocity vr := v2 − v1, hn being
defined with (43). Indeed, by using (40)(a) – which implies in particular that
vB given by (39) is not changed by the collision –, we have

l1(s) =
(

1 + ε(r)
ε(r)

)3
hn

[
−1 + ε(r)

ε(r) (s− vB)
]
.

And, by using (43), we finally get

R+
1 (f1, f2) =

ˆ
R3

ˆ
R3
f1(t, x, v◦1 , r)f2(t, x, v◦2)(r+ r2)2Bp(v◦1 , v◦2 , v1)dv◦1dv◦2 (53)

where Bp(v◦1 , v◦2 , v1) is given by (47).

3.3 Derivation of dust-molecule operator R2(f1, f2)
Following the same approach as in section 3.2, we obtain for the operator
R2(f1, f2):
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Proposition 2. Under Hypothesis 3.1, the dust-molecule operator R2(f1, f2)
obtained with the heuristic Boltzmann’s construction is given by

R2(f1, f2)(t, x, v2) =ˆ rmax

rmin

ˆ
R3

ˆ
R3

(r + r2)2
f1(t, x, v◦1 , r)f2(t, x, v◦2)Bm(v◦1 , v◦2 , v2)drdv◦1dv◦2

−
ˆ rmax

rmin

ˆ
R3
π (r + r2)2

f1(t, x, v1, r)f2(t, x, v2)|v2 − v1|drdv1 (54)

with

Bm(v◦1 , v◦2 , v2) = 2
π
β4 (1 + ε(r))4 exp

[
−β2 (1 + ε(r))2 (vB − v2)2

]
(55)

×
ˆ
S2

[n · (vB − v2)] [n · (v◦2 − v◦1)]1{n·(vB−v2)≥0}1{n·(v◦
2−v◦

1 )≥0}dn

where ε(r), vB and β are respectively given by (5), (39) and (44).

Proof. To obtain operator (54)(55), we just have to permute the subscripts 1
and 2 in operator (46)(47) (which means in particular that we replace ε(r) by
1/ε(r)) and to take into account an integration in r.

3.4 Other formulations of dust-molecule operators R1(f1, f2)
and R2(f1, f2)

We now propose other formulations of the operators R1(f1, f2) and R2(f1, f2)
respectively given by (46) and (54). The first ones are weak formulations of (46)
and (54) ; the second ones are deduced from these weak formulations, and will
be adapted for the derivation of the Vlasov-Boltzmann model in section 4. In
this section, we omit the variables t and x for the sake of simplicity.

3.4.1 Weak formulation of R1(f1, f2) and R2(f1, f2)

The weak formulations of R1(f1, f2) and R2(f1, f2) are given in the following
proposition:

Proposition 3. Let ϕ be a test function (ϕ ∈ C0
c (R3) for example), let R1(f1, f2)

and R2(f1, f2) be the Boltzmann operators (46) and (54). Then, we have for-
mallyˆ

R3
ϕ(v)R1(f1, f2)(v, r)dv =

ˆ
S2

ˆ
R3

ˆ
R3

ˆ
R3

(r + r2)2 [ϕ(v′1)− ϕ(v1)] f1(v1, r)f2(v2)

×hn(w) [n · (v1 − v2)]1{n·(v1−v2)≥0}dndwdv1dv2
(56)

with
v′1 = 1

1 + ε(r) [v1 + ε(r)v2 − ε(r)w] , (57)

andˆ
R3
ϕ(v)R2(f1, f2)(v)dv =

ˆ rmax

rmin

ˆ
S2

ˆ
R3

ˆ
R3

ˆ
R3

(r + r2)2 [ϕ(v′2)− ϕ(v2)] f1(v1, r)

×f2(v2)hn(w) [n · (v1 − v2)]1{n·(v1−v2)≥0}drdndwdv1dv2
(58)
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with
v′2 = 1

1 + ε(r) [v1 + ε(r)v2 + w] (59)

where hn is given by (42).

Let us underline that under Hypothesis 2.3, the velocities v1 and v′1 of a dust
particle before and after a collision with a molecule are such that

v′1 − v1 = O(ε(r)) (60)

(see (57)). In other words, since the mass of a dust particle is huge compared
to the mass of a molecule (see Hypothesis 2.3), the velocity of a dust particle
is few modified after a collision with a molecule. As a consequence, the colli-
sions of dust particles on molecules are grazing collisions. This will allow us to
approximate in section 4 the Boltzmann type operator R1(f1, f2) with a Vlasov
type operator. Of course, the collisions of gas molecules on dust particles are
not grazing collisions since

v′2 − v′1 = w (61)

is not a O(ε(r)) term (see (57) and (59)). Thus, this will not be possible
to approximate the Boltzmann type operator R2(f1, f2) with a Vlasov type
operator.

Proof. Let ϕ be a test function and let R+
1 (f1, f2) be the gain term (53) of the

operator R1(f1, f2). We have
ˆ
R3
ϕ(v)R+

1 (f1, f2)(v, r)dv

= (r + r2)2
ˆ
R3

ˆ
R3

ˆ
R3
ϕ(v1)f1(v◦1 , r)f2(v◦2)Bp(v◦1 , v◦2 , v1)dv◦1dv◦2dv1 (62)

where Bp is expressed according to hn by

Bp(v◦1 , v◦2 , v1)

=
(

1 + ε(r)
ε(r)

)3 ˆ
S2
hn

(
(vB − v1)

(
1 + ε(r)
ε(r)

))
[n · (v◦1 − v◦2)]1{n·(v◦

1−v◦
2 )≥0}dn.

(63)

We set

w := (vB − v1)
(

1 + ε(r)
ε(r)

)
=
(

ε(r)
1 + ε(r)v

◦
2 + 1

1 + ε(r)v
◦
1 − v1

)(
1 + ε(r)
ε(r)

)
,

and we consider in the integral (62) the following change of variable

(v1, v
◦
1 , v
◦
2)→ (w, v◦1 , v◦2)

for which the jacobian is given by

|J | =
(

1 + ε(r)
ε(r)

)3
.
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Therefore, we get
ˆ
R3
ϕ(v)R+

1 (f1, f2)(v, r)dv = (r + r2)2
ˆ
S2

ˆ
R3

ˆ
R3

ˆ
R3
ϕ(v′1)f1(v1, r)f2(v2)

× hn(w) [n · (v1 − v2)]1{n·(v1−v2)≥0}dndwdv1dv2
(64)

with v′1 given by (57). Moreover, thanks to (45) and by noting that[9]

∀k ∈ R3 :
ˆ
S2

(n · k)1{n·k≥0}dn = π|k|, (65)

we get the weak formulation
ˆ
R3
ϕ(v)R−1 (f1, f2)(v, r)dv = (r + r2)2

ˆ
R3

ˆ
R3
ϕ(v1)f1(v1, r)f2(v2)π|v1 − v2|dv1dv2

= (r + r2)2
ˆ
S2

ˆ
R3

ˆ
R3

ˆ
R3
ϕ(v1)f1(v1, r)f2(v2)

× hn(w) [n · (v1 − v2)]1{n·(v1−v2)≥0}dndwdv1dv2
(66)

for the loss term R−1 (f1, f2). Expression (56) is a direct consequence of (64)
and (66). We obtain expression (58) with similar computations (see [9] for
details).

3.4.2 A second formulation of R1(f1, f2) and R2(f1, f2)

We deduce from Proposition 3 another expression of collisional operatorsR1(f1, f2)
and R2(f1, f2):

Proposition 4. The Boltzmann operators R1(f1, f2) and R2(f1, f2) given by
(46) and (54) are respectively equivalent to the operators

R1(f1, f2)(v1, r) =
ˆ
S2

ˆ
R3

ˆ
R3

2β4

π
(r + r2)2

[
f1(v′1, r)f2(v′2) exp

(
−β2(v1 − v2)2)

− f1(v1, r)f2(v2) exp
(
−β2(v′1 − v′2)2)] [n · (v1 − v2)]

× (n · w)1{n·w≥0}1{n·(v1−v2)≥0}dndwdv2 (67)

with
v′1 = 1

1 + ε(r) [v1 + ε(r)v2 − ε(r)w], (68)

and

R2(f1, f2)(v2) =
ˆ
S2

ˆ
R3

ˆ
R3

ˆ rmax

rmin

2β4

π
(r + r2)2

[
f1(v′1, r)f2(v′2) exp

(
−β2(v1 − v2)2)

− f1(v1, r)f2(v2) exp
(
−β2(v′1 − v′2)2)] [n · (v1 − v2)]

× (n · w)1{n·w≥0}1{n·(v1−v2)≥0}drdndwdv1 (69)
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with
v′2 = 1

1 + ε(r) [v1 + ε(r)v2 + w] (70)

where β is given by (44).

Compared to (46) and (54), formulations (67) and (69) are closer to the
classical (elastic) multispecies Boltzmann operator obtained by supposing that
the kinematic relations of the binary collision are given by (38) instead of
(40)(41)(42). The function exp(−β2|s|2) in (67) and (69) is a direct consequence
of Hypothese 3.1.

Proof. Let us start from the expression (64) in which we make the change of
variables

(v1, v2, w)→ (v′1, v′2, vr) (71)
with v′1 and v′2 given by (68)(70) and with vr := v2 − v1 (see also (41)). This
transformation is involutive, and the inverse transformation is expressed by

v1 = 1
1 + ε(r) [v′1 + ε(r)v′2 − ε(r)vr],

v2 = 1
1 + ε(r) [v′1 + ε(r)v′2 + vr],

w = v′2 − v′1.

(72)

Then, according to (64), we get
ˆ
R3
ϕ(v)R+

1 (f1, f2)(v, r)dv (73)

=
ˆ
S2

ˆ
R3

ˆ
R3

ˆ
R3

(r + r2)2ϕ(v′1)f1

(
v′1 + εv′2 − εvr

1 + ε(r) , r

)
f2

(
v′1 + εv′2 + vr

1 + ε(r)

)
×hn(v′2 − v′1) [−n · vr]1{−n·vr≥0}dndudv

′
1dv
′
2.

And, by using the involutive character of the transformation (71) and by re-
naming (v′1, v′2, vr) with (v1, v2, w), we deduce from (73) that
ˆ
R3
ϕ(v)R+

1 (f1, f2)(v, r)dv =
ˆ
S2

ˆ
R3

ˆ
R3

ˆ
R3

(r + r2)2ϕ(v1)f1 (v′1, r) f2 (v′2)

× hn(v2 − v1) (−n · w)1{−n·w≥0}dndwdv1dv2.

Using the change of variable n → −n and the fact that h−n(s) = hn(−s), we
finally obtain thatˆ

R3
ϕ(v)R+

1 (f1, f2)(v, r)dv =
ˆ
S2

ˆ
R3

ˆ
R3

ˆ
R3

(r + r2)2ϕ(v1)f1 (v′1, r) f2 (v′2)

×hn(v1 − v2) (n · w)1{n·w≥0}dndwdv1dv2.
(74)

Thus, by using (66) and (74), we obtain

R1(f1, f2)(v, r) =
ˆ
S2

ˆ
R3

ˆ
R3

(r + r2)2
[
f1 (v′1, r) f2 (v′2)hn(v1 − v2) (n · w)1{n·w≥0}

− f1 (v1, r) f2 (v2)hn(w) [n · (v1 − v2)]1{n·(v1−v2)≥0}

]
× dndwdv2. (75)
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We finally deduce (67) by using (43). By permuting the subscripts 1 and 2 in
(75) and by taking into account an integration in r, we obtain

R2(f1, f2)(v) =
ˆ
S2

ˆ
R3

ˆ
R3

ˆ rmax

rmin

[
f1 (v′1, r) f2 (v′2)hn(v2 − v1) (−n · w)1{−n·w≥0}

− f1 (v1, r) f2 (v2)hn(−w) [n · (v2 − v1)]1{n·(v2−v1)≥0}

]
× (r + r2)2drdndwdv1. (76)

Using again the change of variable n→ −n and the fact that h−n(s) = hn(−s),
we deduce from (76) that

R2(f1, f2)(v) =
ˆ
S2

ˆ
R3

ˆ
R3

ˆ rmax

rmin

[
f1 (v′1, r) f2 (v′2)hn(v1 − v2) (n · w)1{n·w≥0}

− f1 (v1, r) f2 (v2)hn(w) [n · (v1 − v2)]1{n·(v1−v2)≥0}

]
× (r + r2)2drdndwdv1. (77)

Expression (69) is deduced from (77) by using (43).

4 Derivation of a Vlasov-Boltzmann model
We now introduce another kinetic model which is devoted to approach Boltz-
mann type model (35) under Hypothesis 2.3 that is to say when the ratio of
mass between a molecule and a dust particle is close to zero. The idea is to use
the fact that the velocity of a dust particle after a collision with a molecule is
very close to its precollisional velocity (see (60)), like in grazing collisions[19].
In the context of grazing collisions, a Fokker-Plank operator is derived from the
classical Boltzmann operator, thanks to an asymptotic expansion with respect
to a small parameter[19, 1, 17] (related to the angle of collisions). Similarly,
we propose to perform an asymptotic expansion of the operator R1(f1, f2) with
respect to the mass ratio ε defined by (5). This asymptotic analysis will allow
us to simplify (in a sense which will be precised) the Boltzmann type operator
R1(f1, f2) with a Vlasov type operator. In order to do so, we perform a dimen-
sional analysis of Boltzmann type model (35) which leads to a dimensionless
formulation of (35). Let us underline that Hypothesis 2.4 and 2.5 allow us to
easily introduce this dimensionless formulation of (35).

4.1 Dimensionless formulation of the dust-molecule ki-
netic model

We now define the dimensionless variables which will be used to derive the
dimensionless formulation of the dust-molecule kinetic model (35).

4.1.1 Dimensionless variables

Let us introduce the dimensionless variables t̄ and x̄

t̄ = t

t◦
, x̄ = x

L◦
(78)
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where t◦ and L◦ are characteristic time and length scales which will be chosen
in section 5. In order to introduce a unique order of magnitude for the radius r
of dust particles, we make this hypothesis:

Hypothesis 4.1. We assume that the size of dust particles are of the same
order of magnitude. In other words, we have

rmin ' rmax.

In the sequel, we denote r◦ the order of magnitude for the radius of dust
particles. We define the dimensionless dust particle radius r̄ with

r̄ = r

r◦
. (79)

Hypothesis 4.1 allows us to also introduce a unique order of magnitude of the
mass of a dust particle – chosen equal to m1(r◦) – and a unique order of magni-
tude of the dust-molecule collision frequencies ν12 and ν21 defined by (16)(c,d).

Moreover, we introduce the dimensionless velocities v̂1 and v̌2 with

v̂1 = v1

V ◦1
, v̌2 = v2

V ◦2
(80)

where V ◦1 and V ◦2 are velocity scales. For the sake of simplicity, we use the
notation

δ := V ◦1
V ◦2

.

We propose two different velocity scalings:
• In the first scaling, we choose

V ◦1 = 〈V1〉 :=

√
8kT ◦

πm1(r◦) and V ◦2 = 〈V2〉 :=
√

8kT ◦
πm2

(81)

where T ◦ has been introduced in Hypothesis 2.5. Thus, we have

V ◦1 =
√
ε V ◦2 � V ◦2 , (82)

where
ε := ε(r◦), (83)

that is to say
δ =
√
ε� 1

because of Hypothesis 2.3 for this first scaling. Thanks to Hypothesis 2.5 and
4.1, 〈V1〉 and 〈V2〉 given by (81) are respectively characteristic thermal velocities
of dust particles and of gas molecules. Such velocity scales have been already
used for a disparate mass binary gas in Ref. [14, 15, 16] to study the epochal
relaxation phenomenon.[28] However, on the contrary to Ref. [14, 15, 16], neither
cross sections (because of Hypothesis 2.2) nor densities (because of Hypothesis
2.4) are in our context of the same order of magnitude.
• In the second scaling, we introduce a unique order of magnitude V ◦ for the
velocity scales V ◦1 and V ◦2 that is to say

V ◦1 := V ◦ and V ◦2 := V ◦. (84)
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Thus, we have
δ = 1.

We can choose for example V ◦ = 〈V2〉. In fact, the exact choice of V ◦ is not
really important to formally derive the Vlasov operator. Nevertheless, the fact
that δ = 1 instead of δ =

√
ε is important to estimate the error introduced by

the Vlasov operator.

At last, we introduce the dimensionless densities f̂1 and f̌2 in the phase space

f̂1(t̄, x̄, v̂1, r̄) = (V ◦1 )3
r◦

n◦1
f1(t, x, v, r) and f̌2(t̄, x̄, v̌2) = (V ◦2 )3

n◦2
f2(t, x, v2).

(85)
By using (79) and (80), we deduce from (85) that

n◦1f̂1dv̂1dr̄ = f1dv1dr and n◦2f̌2dv̌2 = f2dv2.

As a consequence, we have

sup
Ω̄

ˆ
R3

ˆ r̄max

r̄min

f̂1dv̂1dr̄ = O(1) and inf
Ω̄

ˆ
R3
f̌2dv̌2 = O(1)

at the beginning of a LOVA by using Hypothesis 2.4 (see (11)), where r̄min = rmin/r
◦,

r̄max = rmax/r
◦ and Ω̄ being deduced from Ω through scaling (78).

4.1.2 Dimensionless kinetic model

By using the dimensionless variables (t̄, x̄, r̄, v̂1, v̌2) defined with (78), (79) and
(80), and the dimensionless densities f̂1 and f̌2 defined with (85), the dimen-
sionless formulation of system (35) is given by

∂f̂1

∂t̄
+ V ◦1 t

◦

L◦
v̂1 · ∇x̄f̂1 = t◦n◦2(r◦)2V ◦2 R̄1(f̂1, f̌2)(t̄, x̄, v̂1, r̄),

∂f̌2

∂t̄
+ V ◦2 t

◦

L◦
v̌2 · ∇x̄f̌2 = t◦n◦1(r◦)2V ◦2 R̄2(f̂1, f̌2) + t◦n◦2V

◦
2 r

2
2 Q̄(f̌2, f̌2).

(86)
Here, Q̄(f̌2, f̌2) is defined by

Q̄(f̌2, f̌2)(t̄, x̄, v̌) =
ˆ
S2

ˆ
R3

[
f̌2(t̄, x̄, v̌′∗)f̌2(t̄, x̄, v̌′∗)− f̌2(t̄, x̄, v̌)f̌2(t̄, x̄, v̌∗)

]
× |v̌ − v̌∗|dσdv̌∗ (87)

where 
v̌′ = v̌ + v̌∗

2 + |v̌ − v̌∗|2 σ,

v̌′∗ = v̌ + v̌∗
2 − |v̌ − v̌∗|2 σ.
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The dimensionless operator R̄1(f̂1, f̌2) deduced from (67) is defined by

R̄1(f̂1, f̌2)(t̄, x̄, v̂1, r̄) (88)

=
ˆ
S2

ˆ
R3

ˆ
R3

2β̄4

π

[
r̄ +

(
ε

η

)1/3
]2

(n · w̌) [n · (δv̂1 − v̌2)]1{n·w̌≥0}1{n·(δv̂1−v̌2)≥0}

×
[
f̂1(t̄, x̄, v̂′1, r̄)f̌2(t̄, x̄, v̌′2) exp

(
−β̄2(δv̂1 − v̌2)2)

−f̂1(t̄, x̄, v̂1, r̄)f̌2(t̄, x̄, v̌2) exp
(
−β̄2w̌

)]
dndw̌dv̌2

where
v̂′1 = 1

1 + εr̄−3

(
v̂1 + ε

δ
r̄−3 v̌2 −

ε

δ
r̄−3 w̌

)
(89)

is the dimensionless formulation of (68), w̌ being the dimensionless velocity

w̌ = w

V ◦2

and β̄ being the dimensionless constant

β̄ := V ◦2 β =

√
4T ◦
πTsurf

· V
◦
2
〈V2〉

where the thermal velocity 1/β is given by (44). In the same way, the dimen-
sionless operator R̄2(f̂1, f̌2) deduced from (69) and (70) is defined by

R̄2(f̂1, f̌2)(t̄, x̄, v̌2) (90)

=
ˆ
S2

ˆ
R3

ˆ
R3

ˆ r̄max

r̄min

[
r̄ +

(
ε

η

)1/3
]2

(n · w̌) [n · (δv̂1 − v̌2)]1{n·w̌≥0}1{n·(δv̂1−v̌2)≥0}

×

[
f̂1(t̄, x̄, v̂′1, r̄)f̌2(t̄, x̄, v̌′2) exp

(
−β̄2(δv̂1 − v̌2)2)

−f̂1(t̄, x̄, v̂1, r̄)f̌2(t̄, x̄, v̌2) exp
(
−β̄2w̌2)]2β̄4

π
dr̄dndw̌dv̂1

with
v̌′2 = 1

1 + εr̄−3

(
δ v̂1 + εr̄−3 v̌2 + w̌

)
. (91)

Let us note that we have replaced r2
r◦ by

(
ε
η

)1/3
in (88) and (90) by using relation

(8), and that, under Hypothesis 4.1, we have r̄min = O(1) and r̄max = O(1) in
(90).

4.2 Asymptotic expansion of dust-molecule kinetic oper-
ator R1(f1, f2)

To approximate R1(f1, f2) with a Vlasov type operator, we perform an asymp-
totic expansion to the dimensionless weak operator R̄1(f̂1, f̌2) defined by (86)
with respect to the ratio of mass between a gas molecule and a dust particle:
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Proposition 5. Let ϕ be a test function (ϕ ∈ C0
c (R3) for example). Then, we

have formally
ˆ
R3
ϕ(v̂1)R̄1(f̂1, f̌2)(t̄, x̄, v̂1, r̄)dv̂1 =ε

δ

ˆ
R3

Ῡ(f̌2)(t̄, x̄, v̂1, r̄) · ∇ϕ(v̂1)f̂1(t̄, x̄, v̂1, r̄)dv̂1

+ o
(ε
δ

)
(92)

where Ῡ(f̌2)(t̄, x̄, r̄) is given by

Ῡa(f̌2)(t̄, x̄, r̄) = π

r̄

ˆ
R3
f̌2(t̄, x̄, v̌2)

[
|v̌2|+

√
π

3β̄

]
v̌2dv̌2 (93)

in the case of first scaling (81) (i.e. δ =
√
ε), and by

Ῡb(f̌2)(t̄, x̄, v̂1, r̄) = π

r̄

ˆ
R3
f̌2(t̄, x̄, v̌2)

[
|v̌2 − v̂1|+

√
π

3β̄

]
(v̌2 − v̂1)dv̌2 (94)

in the case of second scaling (84) (i.e. δ = 1).

We deduce from Proposition 5:

Proposition 6. We have formally

R̄1(f̂1, f̌2)(t̄, x̄, v̂1, r̄) = −
√
ε Ῡa(f̌2)(t̄, x̄, r̄) · ∇v̂1 [f̂1(t̄, x̄, v̂1, r̄)] + o

(√
ε
)

(95)

in the case of first scaling (81), and

R̄1(f̂1, f̌2)(t̄, x̄, v̂1, r̄) = −ε ∇v̂1 · [Ῡb(f̌2)(t̄, x̄, v̂1, r̄)f̂1(t̄, x̄, v̂1, r̄)] + o (ε) (96)

in the case of second scaling (84), Ῡa(f̌2) and Ῡb(f̌2) being respectively given by
(93) and by (94).

Proof. We easily deduce from the weak formulation (56) of R1(f1, f2) and from
the dimensionless formulation (88) of R1(f1, f2) that the dimensionless weak
formulation of R̄1(f̂1, f̌2) is given by
ˆ
R3
R̄1(f̂1, f̌2)(t̄, x̄, v̂1, r̄)ϕ(v̂1)dv̂1

= 2β̄4

π

(
r̄ +

(
ε

η

)1/3
)2 ˆ

S2

ˆ
R3

ˆ
R3

ˆ
R3

[ϕ(v̂′1)− ϕ(v̂1)] f̂1(t̄, x̄, v̂1, r̄)f̌2(t̄, x̄, v̌2)

× exp
(
−β̄2w̌2) (n · w̌) [n · (δv̂1 − v̌2)]1{n·w̌≥0}1{n·(δv̂1−v̌2)≥0}dndw̌dv̂1dv̌2

where v̂′1 given by (89) is the dimensionless formulation of (68). Since

v̂′1 − v̂1 = 1
1 + εr̄−3

(
−εr̄−3 v̂1 + ε

δ
r̄−3 v̌2 −

ε

δ
r̄−3 w̌

)
= O(

√
ε) if δ =

√
ε,

= O(ε) if δ = 1,
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we can make an asymptotic expansion of ϕ(v̂′1) − ϕ(v̂1) at the first order of εδ ,
that is to say

ϕ(v̂′1)− ϕ(v̂1) = (v̂′1 − v̂1) · ∇ϕ (v̂1) +O
(
|v̂′1 − v̂1|

2
)

= ε

δ
r̄−3 (v̌2 − w − δv̂1) · ∇ϕ (v̂1) +O

(
ε2

δ2

)
. (97)

Thus, we obtain at least formallyˆ
R3
R̄1(f̂1, f̌2)(t̄, x̄, v̂1, r̄)ϕ(v̂1)dv̂1 =

ε

δ
· 2β̄4

πr̄

ˆ
R3

ˆ
R3
f̂1(t̄, x̄, v̂1, r̄)f̌2(t̄, x̄, v̌2)∇ϕ (v̂1) · [I(v̂1, v̌2)− J(v̂1, v̌2)] dv̂1dv̌2 + o

(ε
δ

)
where

I(v̂1, v̌2) = (v̌2 − δv̂1)
ˆ
S2

[n · (δv̂1 − v̌2)]1{n·(δv̂1−v̌2)≥0}

×
[ˆ

R3
exp

(
−β̄2w̌2) (n · w̌)1{n·w̌≥0}dw̌

]
dn,

and

J(v̂1, v̌2) =
ˆ
S2

[n · (δv̂1 − v̌2)]1{n·(δv̂1−v̌2)≥0}

×
[ˆ

R3
exp

(
−β̄2w̌2) (n · w̌) w̌1{n·w̌≥0}dw̌

]
dn.

Moreover, by using (45), we obtain

∀n ∈ S2 :
ˆ
R3

exp
(
−β̄2w̌2) (n · w̌)1{n·w̌≥0}dw̌ = π

2β̄4
. (98)

We have also[9]:

∀n ∈ S2 :
ˆ
R3

exp
(
−β̄2w̌2) (n · w̌) w̌1{n·w̌≥0}dw̌ = π3/2

4β̄5
n (99)

and
∀k ∈ R3 :

ˆ
S2
n(n · k)1{n·k≥0}dn = 2π

3 k. (100)

Then, thanks to (65), (98), (99) and (100), we obtain

I(v̂1, v̌2) = π2

2β̄4
|v̌2 − δv̂1| (v̌2 − δv̂1)

and
J(v̂1, v̌2) = π5/2

6β̄5
(δv̂1 − v̌2) .

Finally, we obtain for δ =
√
εˆ

R3
R̄1(f̂1, f̌2)(t̄, x̄, v̂1, r̄)ϕ(v̂1)dv̂1

= π

r̄

√
ε

¨
R3×R3

f̂1(t̄, x̄, v̂1, r̄)f̌2(t̄, x̄, v̌2)∇ϕ (v̂1) · v̌2

[
|v̌2|+

√
π

3β̄

]
dv̌2dv̂1 + o(

√
ε),
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and for δ = 1ˆ
R3
R̄1(f̂1, f̌2)(t̄, x̄, v̂1, r̄)ϕ(v̂1)dv̂1

= π

r̄
ε

¨
R3×R3

f̂1(t̄, x̄, v̂1, r̄)f̌2(t̄, x̄, v̌2)∇ϕ (v̂1) · (v̌2 − v̂1)
[
|v̌2 − v̂1|+

√
π

3β̄

]
dv̌2dv̂1

+ o(ε),

which gives (92), (93) and (94).

4.3 The Vlasov-Boltzmann model
By using Proposition 6, we are able to approximate Boltzmann type system
(35) with a Vlasov-Boltzmann type system.

4.3.1 The dimensionless Vlasov-Boltzmann model

We deduce from Proposition 6 that dimensionless Boltzmann type model (86)
is such that

∂f̂1

∂t̄
+ V ◦1 t

◦

L◦
v̂1 · ∇x̄f̂1 + ε

δ
t◦n◦2(r◦)2V ◦2 ∇v̂1 · [Ῡ(f̌2)f̂1] = o

(ε
δ

)
,

∂f̌2

∂t̄
+ V ◦2 t

◦

L◦
v̌2 · ∇x̄f̌2 = t◦n◦1(r◦)2V ◦2 R̄2(f̂1, f̌2) + t◦n◦2V

◦
2 r

2
2 Q̄(f̌2, f̌2)

(101)
where R̄2(f̂1, f̌2) and Q̄(f̌2, f̌2) are respectively given by (87) and (90), where
δ ∈ {1,

√
ε}, and where Ῡ(f̌2) is given by (93) for the first scaling (81) (i.e.

δ =
√
ε) and by (94) for the second scaling (84) (i.e. δ = 1).

4.3.2 The Vlasov-Boltzmann model

We deduce from Proposition 6 that:

Corollary 1. Let R1(f1, f2) be the Boltzmann type operator (67). Then, we
have formally

R1(f1, f2)(t, x, v1, r) = −Υa(f2)(t, x, r) · ∇v1 [f1(t, x, v1, r)] + o
(√
ε
)

(102)

in the case of first scaling (81), and

R1(f1, f2)(t, x, v1, r) = −∇v1 · [Υb(f2)(t, x, v1, r)f1(t, x, v1, r)] + o (ε) (103)

in the case of second scaling (84), Υa(f2) and Υb(f2) being given by
Υa(f2)(t, x, r) = πε

(r◦)3

r

ˆ
R3
f2(t, x, v2)

[
|v2|+

√
π

3β

]
v2dv2, (a)

Υb(f2)(t, x, v1, r) = πε
(r◦)3

r

ˆ
R3
f2(t, x, v2)

[
|v2 − v1|+

√
π

3β

]
(v2 − v1)dv2. (b)

(104)
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Operators (102) and (103) are Vlasov type operators. As a consequence, the
Vlasov-Boltzmann model

∂f1

∂t
+ v · ∇xf1 + Υa(f2)(t, x, r) · ∇vf1(t, x, v, r) = 0, (a)

∂f2

∂t
+ v · ∇xf2 = R2(f1, f2) +Q(f2, f2), (b)

(t, x, v, r) ∈ R+ × Ω× R3 × [rmin, rmax]

(105)

where Υa(f2) is given by (104)(a) equals Boltzmann type model (35) to error
o (
√
ε). And, the Vlasov-Boltzmann model

∂f1

∂t
+ v · ∇xf1 +∇v · [Υb(f2)(t, x, v, r)f1(t, x, v, r)] = 0, (a)

∂f2

∂t
+ v · ∇xf2 = R2(f1, f2) +Q(f2, f2), (b)

(t, x, v, r) ∈ R+ × Ω× R3 × [rmin, rmax]

(106)

where Υb(f2) is given by (104)(b) equals Boltzmann type model (35) to er-
ror o (ε). System (106) is certainly a best approximation of (35) than system
(105). Nevertheless, it is more expensive to solve system (106) than system
(105) because Υb(f2) is a function of v1 which is not the case of Υa(f2). We
will justify these assertions in Section 6. At last, let us underline that m1Υa(f2)
and m1Υb(f2) define two drag force models for the dust particles which are also
valid when the gas molecules are not at thermodynamical equilibrium in the
sense that they depend on f2 through (104)(a) and (104)(b). Moreover, these
drag forces do not depend on empirical coefficients thanks to (104), which is not
the case for other drag forces especially adapted in a rarefied atmosphere as in
Ref. [3].

5 Study of the Vlasov-Boltzmann model at dif-
ferent time and length scales

To estimate the appropriate characteristic time scale t◦ and the appropriate
characteristic length scale L◦ in the case of the beginning of a LOVA, we pro-
pose in this section a brief qualitative analysis of system (105) obtained, under
Hypothesis 4.1, with first velocity scaling (81). The dimensionless formulation
of this Vlasov-Boltzmann system is given by (see (101) with δ =

√
ε)

∂f̂1

∂t̄
+ 〈V1〉t◦

L◦
v̂1 · ∇x̄f̂1 +

√
ε t◦n◦2(r◦)2〈V2〉 Ῡa(f̌2)(t̄, x̄, r̄) · ∇v̂1 f̂1 = 0,

∂f̌2

∂t̄
+ 〈V2〉t◦

L◦
v̌2 · ∇x̄f̌2 = t◦〈V2〉

[
n◦1(r◦)2 R̄2(f̂1, f̌2) + n◦2r

2
2 Q̄(f̌2, f̌2)

]
(107)

where Ῡa(f̌2)(t̄, x̄, r̄) is given by (93). Let us underline that we could also lead
this qualitative analysis with the second velocity scaling (84) which gives in par-
ticular, instead of Ῡa(f̌2)(t̄, x̄, r̄), the more precise Vlasov operator Ῡb(f̌2)(t̄, x̄, v̂1, r̄)
defined by (94). Nevertheless, this would not give more qualitative informations
about t◦ and L◦. To simplify the qualitative analysis, we suppose:
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Hypothesis 5.1. We assume that the parameters α◦, r◦ and r2 are such that

1
4
√

2
α◦
(
r◦

r2

)2
' 1. (108)

Hypothesis 5.2. We assume that the parameters ε, r◦ and r2 are such that
√
ε

4
√

2

(
r◦

r2

)2
' 1, (109)

that is to say
1

4
√

2

(
η
r◦

r2

)1/2
' 1, (110)

where η is given by (7).

Relations (108) and (109) are verified for the orders of magnitude introduced
in Table 2.1.4.

5.1 Definition of the characteristic time scale t◦

Under Hypothesis 2.1-4.1 (see also section 2.2.1), we can introduce the following
three characteristic time scales

t22 =
(
4
√

2π r2
2 n
◦
2 〈V2〉

)−1
, (a)

t12 =
(
π (r◦)2 n◦2 〈V2〉

)−1
, (b)

t21 =
(
π (r◦)2 n◦1 〈V2〉

)−1 (c)

(111)

relative to the dust-molecule mixture. By using (17) and by noting that 〈V2〉 = 〈V rel22 〉/
√

2
and that 〈V2〉 ' 〈V rel12 〉 = 〈V rel21 〉, we obtain that these three characteristic time
scales are approximately equal to the mean collision times introduced in (16)(b,c,d)
for the radius r = r◦. We can notice that we have

t12 = α◦ t21 � t21 (112)

(see also (18)(c) and (23)(a)). Moreover, under Hypothesis 4.1 and 5.1, we get
t21 ' t22, which implies that

t12 � t21 ' t22 (113)

by also using (112). This allows us to considere only two characteristic time
scales in our qualitative analysis: the characteristic time scale t22 relative to
collisions between molecules, and the characteristic time scale t12 relative to
collisions between dust particles and gas molecules (from the point of view of
dust particles) which is the smaller of these two time scales.

5.2 Definition of the characteristic length scale L◦

We define the characteristic length scale L◦ from the time scale t◦ ∈ {t12, t22} as
the mean distance covered by one of the two species during the time t◦. Then,
for each time scale t◦, we can considere two different length scales L1 and L2,
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which correspond to the mean distance covered by dust particles and molecules
respectively :

when we choose t◦ = t12 :


L1 := t12〈V1〉 =⇒ L1 = λ12, (a)

L2 := t12〈V2〉 =⇒ L2 = λ12√
ε

(b)
(114)

and

when we choose t◦ = t22 :
{

L1 := t22〈V1〉 =⇒ L1 =
√
ε λ22, (a)

L2 := t22〈V2〉 =⇒ L2 = λ22 (b)
(115)

where λij = 〈Vi〉tij is the mean free path of the collision of a particle of type i
with a particle of type j from the point of view of the particle of type i (see also
section 2.2.2). We recall that under Hypothesis 4.1 and 5.1, we have (see (27))

λ22 ' λ21 (116)

which allows us to only consider the two characteristic length scales λ12 and λ22.
Nevertheless, for the sake of completness, we also study the two characteristic
length scales λ12/

√
ε and

√
ε λ22 since these length scales are deduced from the

choice of the velocity scale V ◦ ∈ {〈V1〉, 〈V2〉} in (114)(b) and (115)(a). Moreover,
under Hypothesis 4.1–5.2, we deduce from (25)(b) that

λ12

λ22
'
√
ε α◦ and λ12/

√
ε

λ22
√
ε
' 4
√

2√
ε

( r2

r◦

)2
' 1.

As a consequence, the four characteristic length scales defined in (114) and (115)
are such that

λ12 �
λ12√
ε
'
√
ε λ22 � λ22 (117)

under Hypothesis 4.1–5.2.

5.3 The Vlasov-Boltzmann model when t◦ = t12 and L◦ =
λ12

We considere the time and space scales defined by (111)(b) and (114)(a). These
scales are the smallest ones that we can define in the dust-molecule mixture (see
(113) and (117)). In that case, system (107) is given by

∂f̂1

∂t̄
+ v̂1 · ∇x̄f̂1 +

√
ε

π
Ῡa(f̌2) · ∇v̂1 f̂1 = 0, (a)

∂f̌2

∂t̄
+ 1√

ε
v̌2 · ∇x̄f̌2 = α◦

π
R̄2(f̂1, f̌2) + 1

π

( r2

r◦

)2
Q̄(f̌2, f̌2). (b)

(118)

Thanks to Hypothesis 2.2-2.4, we notice that system (118) is close to
∂f̂1

∂t̄
+ v̂1 · ∇x̄f̂1 = 0, (a)

∂f̌2

∂t̄
+ 1√

ε
v̌2 · ∇x̄f̌2 = 0. (b)

(119)

As a consequence, the choice (t◦, L◦) = (t12, λ12) is unsuitable for the study of
the dust-molecule mixture.
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5.4 The Vlasov-Boltzmann model when t◦ = t12 and L◦ =
λ12/
√
ε

We considere the time and space scales defined by (111)(b) and (114)(b). In
that case, system (107) is given by

∂f̂1

∂t̄
+
√
ε v̂1 · ∇x̄f̂1 +

√
ε

π
Ῡa(f̌2) · ∇v̂1 f̂1 = 0, (a)

∂f̌2

∂t̄
+ v̌2 · ∇x̄f̌2 = α◦

π
R̄2(f̂1, f̌2) + 1

π

( r2

r◦

)2
Q̄(f̌2, f̌2). (b)

(120)

Thanks to Hypothesis 2.2-2.4, we notice that system (120) is close to
∂f̂1

∂t̄
= 0, (a)

∂f̌2

∂t̄
+ v̌2 · ∇x̄f̌2 = 0. (b)

(121)

Thus, the choice (t◦, L◦) = (t12, λ12/
√
ε) is also unsuitable for the study of the

dust-molecule mixture.

5.5 The Vlasov-Boltzmann model when t◦ = t22 and L◦ =√
ε λ22

We considere the time and space scales defined by (111)(a) and (115)(a). In
that case, system (107) is given by

∂f̂1

∂t̄
+ v̂1 · ∇x̄f̂1 +

√
ε

4π
√

2

(
r◦

r2

)2
Ῡa(f̌2) · ∇v̂1 f̂1 = 0, (a)

√
ε
∂f̌2

∂t̄
+ v̌2 · ∇x̄f̌2 =

√
ε

4π
√

2
α◦
(
r◦

r2

)2
R̄2(f̂1, f̌2) +

√
ε

4π
√

2
Q̄(f̌2, f̌2). (b)

(122)
Moreover, we have √

ε

4
√

2

(
r◦

r2

)2
' 1

under Hypothesis 5.2 (cf. (109)). Thus, we obtain that system (122) is close to
∂f̂1

∂t̄
+ v̂1 · ∇x̄f̂1 + c1

π
Ῡa(f̌2) · ∇v̂1 f̂1 = 0, (a)

√
ε
∂f̌2

∂t̄
+ v̌2 · ∇x̄f̌2 = 0 (b)

(123)

where c1 is a constant of order one. Thus, the choice (t◦, L◦) = (t22,
√
ε λ22) is

also unsuitable for the study of the dust-molecule mixture.
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5.6 The Vlasov-Boltzmann model when t◦ = t22 and L◦ =
λ22

We considere the time and space scales defined by (111)(a) and (115)(b). In
that case, system (107) is given by

∂f̂1

∂t̄
+
√
ε v̂1 · ∇x̄f̂1 +

√
ε

4π
√

2

(
r◦

r2

)2
Ῡa(f̌2) · ∇v̂1 f̂1 = 0, (a)

∂f̌2

∂t̄
+ v̌2 · ∇x̄f̌2 = 1

4π
√

2
α◦
(
r◦

r2

)2
R̄2(f̂1, f̌2) + 1

4π
√

2
Q̄(f̌2, f̌2). (b)

(124)
Thus, by taking into account (108) and (109), we can rewrite (124) with

∂f̂1

∂t̄
+
√
ε v̂1 · ∇x̄f̂1 + c1

π
Ῡa(f̌2) · ∇v̂1 f̂1 = 0, (a)

∂f̌2

∂t̄
+ v̌2 · ∇x̄f̌2 = c2

π
R̄2(f̂1, f̌2) + 1

4π
√

2
Q̄(f̌2, f̌2) (b)

(125)

where, under Hypothesis 5.1 and 5.2, c1 and c2 are two constants of order one (cf.
(108) and (109)). Thus, the choice (t◦, L◦) = (t22, λ22) seems to be appropriate
for the theoritical and numerical study of the dust-molecule mixture. Moreover,
the factor

√
ε in front of the term v̂ · ∇x̄f̂1, related to the spatial variation of

the transport of dust particles, suggests that the displacement of dust particles
is weak compared to the displacement of gas molecules. At last, we refer to
Ref. [10] for a theorical study of the derivation of the spatially homogeneous
Vlasov-Boltzmann model with operators R1(f1, f2) and R2(f1, f2) for which
collisions between dust particles and gas molecules are described by (38) (and,
thus, are elastic) rather than by Hypothesis 3.1. More precisely, it is proved that
the solution of the spatially homogeneous system (86) with t◦ = t22 converges
weakly to the solution of a spatially homogeneous system close to system (125)
when ε→ 0 for a fixed ratio

√
ε

4π
√

2

(
r◦

r2

)2
.

Remark 1. The constant c2 can be linked to λ22 and λ21 defined by (24)(b)
and (24)(d) respectively and under Hypothesis 4.1 :

c2 = λ22

λ21
. (126)

Thus, we recover the fact that C2 = O(1) under hypothesis 4.1-5.1 by using
(116).

6 Numerical results
We now present homogeneous and 3D inhomogeneous numerical simulations of
Boltzmann-Boltzmann system (35), of Vlasov-Boltzmann system (105) and of
the more accurate Vlasov-Boltzmann system (106). These numerical results
validate and justify (from a computational cost point of view) the derivation of
asymptotic models (105) and (106). For the sake of simplicity, we considere in
this section the situation of dust particles with an unique radius:
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Hypothesis 6.1. All particules have the same radius r1.

We still denote ε the ratio of mass ε(r1) given by (5).

Let us note that in order to assess the efficiency of the numerical models from
a computational cost point of view, or in order to simplify the visualization of
the numerical results, we do not always use exactly the orders of magnitude of
n◦1, n◦2 and rmin given by Table (2.1.4) (more precisely, there is sometimes a
factor 10 between the order of magnitudes used in section 2 and those used in
this section). Nevertheless, Hypothesis 2.2-2.4 are always satisfied.

6.1 The Boltzmann-Boltzmann model
We now describe the numerical method used to discretize Boltzmann-Boltzmann
system (35), and we propose a 3D numerical simulation of a LOVA scenario in
a cubic box. Then, we underline the limitation of Boltzmann-Bolzmann system
(35) because of the computational cost of simulations.

Under Hypothesis 6.1, we can remove the dependency in r of f1. Then, weak
formulations (56) and (58) of respective operators R1(f1, f2) and R2(f1, f2) are
now given by
ˆ
R3
ϕ(v)R1(f1, f2)(t, x, v)dv =

ˆ
S2

ˆ
R3

ˆ
R3

ˆ
R3

[ϕ(v′1)− ϕ(v1)] f1(t, x, v1)f2(t, x, v2)

×ς(v1 − v2, n)hn(w)dndwdv1dv2
(127)

andˆ
R3
ϕ(v)R2(f1, f2)(t, x, v)dv =

ˆ
S2

ˆ
R3

ˆ
R3

ˆ
R3

[ϕ(v′2)− ϕ(v2)] f1(t, x, v1)f2(t, x, v2)

×ς(v1 − v2, n)hn(w)dndwdv1dv2
(128)

where
ς(v, n) = (r1 + r2)2 [n · v]1{n·v≥0}. (129)

Several numerical methods are used for the simulation of the Boltzmann equa-
tion (we refer to Ref. [36] for a review of these methods). One of these methods
is the probabilistic Monte-Carlo method[37] whose advantage is the lower cost
of computation compared to the cost of computation of a deterministic method.
In the sequel, we adapt a classical Monte-Carlo method – namely, the Direct
Simulation Monte-Carlo method i.e. DSMC method which is also known as the
Bird’s method – for the simulation of Boltzmann-Boltzmann system (35).

6.1.1 Monte-Carlo method

The Monte-Carlo method that we will present is a particle method. Thus, this
numerical method is based on the principle which consists in approximating the
distribution fi(t, x, v) with

fi(t, x, v) '
Ni∑
k=1

ωki δ(x− xki (t))δ(v − vki (t)) (130)
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for i ∈ {1, 2}. From an heuristic point of view, (130) means that distribution
f1 (respectively f2) in dust particles (respectively gas molecules) is approxi-
mated by a number N1 (respectively N2) of macro-dust (respectively macro-
molecule) characterized by positions (xk1)k∈{1,...,N1}, velocities (vk1 )k∈{1,...,N1}
and weight factors (ωk1 )k∈{1,...,N1} (respectively (xk2)k∈{1,...,N2}, (vk2 )k∈{1,...,N2}
and (ωk2 )k∈{1,...,N2}). We take the same weight factor ωi (i ∈ {1, 2}) for every
macro-dust (i = 1) and for every macro-molecule (i = 2), that is to say ωki = ωi
for every (i, k) ∈ {1, 2} × {1 . . . Ni}. We solve (35) with a splitting technique
adapted to a Boltzmann type equation.[20, 21] This technique consists, firstly,
in solving the transport equation

∂f1

∂t
+ v · ∇xf1 = 0, (a)

∂f2

∂t
+ v · ∇xf2 = 0, (b)

(131)

secondly, in solving the spacially homogeneous equation

∂f2

∂t
= Q(f2, f2) (132)

and, thirdly, in solving the spacially homogeneous equations
∂f1

∂t
= R1(f1, f2), (a)

∂f2

∂t
= R2(f1, f2). (b)

(133)

Equations (131) are solved like in deterministic particle methods, that is to say
particles are transported along characteristic lines and positions xki are modified.
Equations (132) and (133) are solved locally in each spacial mesh since collision
operators have an effect only on velocities of particles and not on their positions.
In each mesh c of volume Vc, f1 and f2 are approched by

fi(t, v) ' ωi
Vc

Nic∑
k=1

δ(v − vki (t)) (134)

where N1c (respectively N2c) is the number of macro-dust (respectively macro-
molecule) in the mesh c. Moreover, we can define the local density of each specie
in the mesh c of volum Vc by

nic = Nic ωi
Vc

(135)

for i ∈ {1, 2}. The resolution of equations (132) and (133) during a time
step ∆t consists in determining the new velocities (vk1 (t + ∆t))k∈{1,··· ,N1} and
(vk2 (t+ ∆t))k∈{1,··· ,N2}. The numerical resolution of equation (132) is made
with the Bird’s method with no time-counter[5, 4] ((132) is a classical homoge-
neous Boltzmann equation). Nevertheless, we cannot use the Bird’s method to
solve equations (133) because α◦ := n◦1/n

◦
2 � 1 (see Hypothesis 2.4). Indeed,

if we considere a macro-dust of velocity v1 and a macro-molecule of velocity v2,
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the probability that the first one collides the second one during the time ∆t is
given by

p12(v1, v2) = ω2

Vc
∆t π(r1 + r2)2|v1 − v2|

whereas the probability that the second one collides the first one during the
time ∆t is given by

p21(v1, v2) = ω1

Vc
∆t π(r1 + r2)2|v1 − v2|.

Then, the use of the Bird’s method – which is characterized by the fact that
p12(v1, v2) = p21(v1, v2) (the Bird’s method is a symetrical method[32]) – im-
poses to take the same weight factor ω1 and ω2 which implies that

N1c

N2c
= n1c

n2c

by using (135). As a consequence, the estimate α◦ � 1 implies that N1c � N2c
and then we can either choose a reasonable number N2c of macro-molecules
with respect to the CPU time which implies a low number of macro-dust N1c
and then a poor accuracy, or choose a reasonable number of macro-dust N1c
with respect to accuracy and end up to a large number of macro-molecules N2c
which implies a huge CPU time.

Thus, if we want to have O(N1c) = O(N2c), we have to use a non-symetrical
method. Here, we adapt the Nanbu’s method for which equations (133)(a) and
(133)(b) are solved separatly.

The Nanbu’s algorithm for the simulation of R1(f1, f2) consists in two steps:

First step: Selection of pairs of collision. Instead of computing the
probability of collision p12(v1, v2) for every N1cN2c possible pairs composed of
a macro-dust of velocity v1 and of a macro-molecule of velocity v2, we use the
fictive particle method. It consists in selecting

N1cN2c
ω2

Vc
∆t π(r1 + r2)2 |vrel|max (136)

pairs composed of a macro-dust and of a macro-molecule with a uniform law
on {1, . . . , N1c} × {1, . . . , N2c}. In (136), |vrel|max is an upper bound of the
modulus of the relative velocity between macro-dusts and macro-molecules. For
each selected pair, we determine if the collision occurs with the probability

pf (v1, v2) = |v1 − v2|
|vrel|max

where v1 and v2 are respectively the velocity of the macro-dust and of the macro-
molecule. We select for that a real p ∈ [0, 1] with a uniform law ; if p ≤ pf then
the velocity v1 of the macro-dust is modified but the velocity v2 of the macro-
molecule remains the same ; if p > pf the velocities v1 and v2 remain the same.

Second step: Determination of the post-collisional velocity. The
post-collisional velocity v′1 of macro-dust is determined following the diffuse
reflexion mechanism described in section 3.1: see Hypothesis 3.1. More precisely,
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for each collision between a macro-dust of velocity v1 and a macro-molecule of
velocity v2, firstly, we have to compute n randomly in the half sphere delimited
by n · (v1 − v2) ≥ 0. Secondly, a vector w is selected with the law hn given by
(43). Finally, the post-collisional velocity v′1 is given by

v′1 = 1
1 + ε

(v1 + εv2 − εw). (137)

We refere to Ref. [9] for further details.

The algorithm for the simulation of the operator R2(f1, f2) is identical (we just
have to permut the subscripts 1 and 2, and to replace ε with 1/ε in (137)). The
rigorous justification of this Nanbu’s method for the resolution of system (133)
with operators (127) and (128) should be possible like in Ref. [38]; this could
be the subject of a forthcoming work. Moreover, the validity of this method
has been studied in Ref. [8] for function ς(v, n) in operators (127) and (128)
given by ς(v, n) = C (where C is a positive constant) instead of (129), knowing
that in this particular case, it is possible to establish explicit formulae for the
evolution of macroscopic velocities.

6.1.2 A 3D simulation in a cubic box

We present in this subsection an example of simulation of system (35) in a cubic
geometry in a situation of a LOVA during a time T . Initially, dust particles
are lying on a thin layer of width a in the bottom of the box with the uniform
density n1 and there are no gas molecules inside the box. Then, a flow of
molecules enters into the box through a square hole following a maxwellian
distribution with a density n2, a temperature T ◦ and a macroscopic velocity
Vm in the normal direction of the hole. The boundary conditions are diffuse
reflexion except on the hole (for which the boundary condition is an emissive
condition) and on the upper side of the box (where the boundary condition is
an absorption condition).

Remark 2. This last boundary condition enables to model a larger vacuum
vessel than the box itself : the simulation focus on the specific part of the vessel
where occurs a breach in the wall.

We refere to Ref. [40] for the management of the boundary conditions. Dust
particles are tungsten and the gas is composed of nitrogen molecules. Geomet-
rical parameters are given in Table 6.1.2, physical parameters are given in Table
6.1.2 and computation parameters are given in Table 6.1.2.

Geometrical parameters of the 3D simulation in a cubic box.
width of the box width of the hole

(m) (m)
10−2 5 · 10−4

Remark 3. These rather small dimensions compared to the real ITER dimen-
sions or to some representative work-up have been willfully chosen as so in order
to test the initial Boltzmann-Boltzmann model which is much more expensive
than the approximate Vlasov-Boltzmann model.
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Physical parameters of the 3D simulation in a cubic box.
r1 r2 n1 n2 T ◦ Tsurf Vm

(m) (m) (m−3) (m−3) (K) (K) (m·s−1)
5 · 10−8 10−10 1015 1021 300 300 300

Computation parameters of the 3D simulation in a cubic box.
number of meshes number of processors final time of simulation

(s)
8000 64 45 · 10−3

The final time T of the simulation has been obtained after a CPU time
of simulation of 24 × 3600 s. One can observe on Figure 2 that macro-dusts
(represented by green spheres) are moved by the air ingress (some of the macro-
molecules are represented by red spheres).

6.1.3 Limitation of the Boltzmann-Boltzmann model

The time of computation of Boltzmann-Boltzmann system (35) depends mainly
on the number of collisions computed for the simulation of collision operators
R1(f1, f2), R2(f1, f2) and Q(f2, f2) at each time step. The average number of
collisions computed for the simulation of R1(f1, f2), R2(f1, f2) and Q(f2, f2)
during a time τ in a mesh c is given by

NR1(τ) = N1cN2c
ω2

Vc
πr2

1〈V rel12 〉τ, (a)

NR2(τ) = N1cN2c
ω1

Vc
πr2

1〈V rel21 〉τ, (b)

NQ(τ) = 1
2N

2
2c
ω2

Vc
4πr2

2〈V rel22 〉τ. (c)

(138)

Since we have ωi = nicVc
Nic

(see (135)), 〈V2〉 = 〈V
rel
22 〉√
2

and 〈V2〉 ' 〈V rel12 〉 = 〈V rel21 〉

(see section 5.1), we get
NR1(τ)
NR2(τ)

= N1c

N2c
· n2c

n1c

and
NR1(τ)
NQ(τ)

' 1
2
√

2
· N1c

N2c
·
(
r1

r2

)2
.

If we choose N1c and N2c such that N1c ' N2c, thanks to Hypothesis 2.2 and
2.4, we obtain

NR1(τ)� NR2(τ)

and
NR1(τ)� NQ(τ).

This brings into light that the simulation of the operator R1(f1, f2) is much
costly than the other ones. Let us consider for example the simulation of equa-
tions (132) and (133) in an unique cell c with the physical parameters of Table
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t=1 ms t=24 ms

t=27 ms t=36 ms

t=45 ms

Figure 2: LOVA type scenario in an open cubic box modeled with Boltzmann-
Boltzmann system (35)
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Physical parameters of numerical example of §6.1.3.
r1 r2 n1 n2 T ◦ Tsurf

(m) (m) (m−3) (m−3) (K) (K)
10−6 2 · 10−10 1014 1021 300 300

6.1.3. Under these conditions and if we choose N1c ' N2c ' 103, the average
numbers of collision during, for example, the time τ = 10−3 s are

NR1(τ) ' 3 · 1012, NR2(τ) ' 3 · 105, NQ(τ) ' 4 · 105.

We estimate that the time of computation of this example on a single-chip
computer is of about 4, 5 · 106 s that is to say 52 days. We conclude that the
CPU time of the simulation of operator R1(f1, f2) could be extremely costly
when the radius r1 of dust particles becomes too large, even with massively
parallel computation.

The limitation of Boltzmann-Boltzmann system (35) can also be seen from
the point of view of the time step ∆t. Indeed, it is possible to establish (see
Ref. [9] for further details) that the Nanbu’s method requires the condition on
the time step

∆t ≤ min (t22, t12, t21) (139)

where t22, t12 and t21 are defined by (111). Morever, the resolution of transport
equations (131) requires the accuracy condition on the time step

∆t . min
(

∆x
〈V1〉

,
∆x
〈V2〉

)
(140)

where ∆x is the length of meshes and where 〈V1〉 and 〈V2〉 are defined by (81).
Finally, the condition on the time step is given by

∆t ≤ min
(
t22, t12, t21,

∆x
〈V1〉

,
∆x
〈V2〉

)
. (141)

Under physical conditions of Table 6.1.3, we get

t22 ' 2 · 10−6 s, t12 ' 6 · 10−13 s, t21 ' 6 · 10−6 s.

And, with the choice ∆x = 10−3 m which is, for physical parameters of Table
6.1.3, the order of magnitude of the mean free path λ22 given by (24)(b) (since
Hypothesis 5.1 is satisfied with the choice of parameters of Table 6.1.3, λ22 is
an appropriate characteristic length scale: see section 5.6), we get

∆x
〈V1〉

' 30 s and ∆x
〈V2〉

' 2 · 10−5 s.

Then, conditions (139) and (140) imply that

∆t ≤ t12 where t12 ' 6 · 10−13 s (142)

which is clearly too restrictive.
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6.2 The Vlasov-Boltzmann model
We are now interested in the numerical method used to discretize the Vlasov-
Boltzmann model (105) and the more accurate Vlasov-Boltzmann model (106)
which, under Hypothesis 6.1, are respectively given by

∂f1

∂t
+ v · ∇xf1 + Υa(f2) · ∇v (f1) = 0, (a)

∂f2

∂t
+ v · ∇xf2 = R2(f1, f2) +Q(f2, f2) (b)

(143)

with
Υa(f2)(t, x) = π ε r2

1

ˆ
R3
f2(t, x, v2)

[
|v2|+

√
π

3β

]
v2dv2 (144)

and by 
∂f1

∂t
+ v · ∇xf1 +∇v · [Υb(f2)f1] = 0, (a)

∂f2

∂t
+ v · ∇xf2 = R2(f1, f2) +Q(f2, f2) (b)

(145)

with

Υb(f2)(t, x, v1) = π ε r2
1

ˆ
R3
f2(t, x, v2)

[
|v2 − v1|+

√
π

3β

]
(v2 − v1)dv2 (146)

(we recall that β :=
√

m2

2kBTsurf
, see (44), Tsurf being the surface tempera-

ture of dust particles supposed to be constant for the sake of simplicity). We
propose in section 6.2.2 spatially homogeneous simulations to validate Vlasov-
Boltzmann models (143) and (145). And, we describe in section 6.2.3 a 3D
numerical simulation obtained with Vlasov-Boltzmann system (145). This 3D
simulation describes a LOVA type accident in a torus domain whose atmo-
sphere is initially rarefied. We underline that this 3D test-case would be very
expensive from a computational cost point of view if it was studied with the
Boltzmann-Boltzmann system (35) instead of Vlasov-Boltzmann system (143)
or (145).

6.2.1 PIC method coupled to Monte-Carlo method

Vlasov-Boltzmann system (143) (or (145)) is solved thanks to the coupling of a
Particle-In-Cell (PIC) method for (143)(a) (or (145)(a)) and the Monte-Carlo
method presented in section 6.1.1 for (143)(b) (or (145)(b)). Thus, the distri-
bution in dust particles f1 is still approximeted with

f1(t, x, v) ' ω1

N1∑
k=1

δ(x− xk1(t))δ(v − vk1 (t)).

Here, position xk1 and velocity vk1 of the macro-dusts are solutions of
dxk1
dt

= vk1 , (a)

dvk1
dt

= Υ(f2)(t, xk1 , vk1 ) (b)
(147)
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where Υ(f2) is given by (144) or (146). The term m1Υ(f2) models a drag force
applied to a dust particle induced by collisions with gas molecules. This drag
force – which is not deduced from experimental laws but from the asymptotic
expansion proposed in section 4 – is also valid when the gas molecules are not at
thermodynamical equilibrium. The term Υ(f2)(t, xk1 , vk1 ) is approched at each
time tn thanks to the local approximation of the density f2 in each mesh c

f2(t, x, v) ' ω2

Vc

N2c∑
j=1

δ(v − vj2(t))1{x∈c}. (148)

Then, system (147) is solved at each time step thanks to the following numerical
scheme:
For all k ∈ {1, . . . , N1c}:

Xk,n+1
1 −Xk,n

1
∆t = V k,n1 ,

V k,n+1
1 − V k,n1

∆t = Υc,n(V k,n1 )
(149)

where Υc,n(V k,n1 ) is a local approximation of Υ(f2)(tn, xk1 , vk1 ) given by

Υc,n
a = π ε r2

1
ω2

Vc

N2c∑
j=1

[∣∣∣V j,n2

∣∣∣+
√
π

3β

]
V j,n2 (150)

when Υ(f2) is defined with (144), and by

Υc,n
b (V k,n1 ) = π ε r2

1
ω2

Vc

N2c∑
j=1

[∣∣∣V j,n2 − V k,n1

∣∣∣+
√
π

3β

](
V j,n2 − V k,n1

)
(151)

when Υ(f2) is defined with (146). Let us remark that in the case of Υ = Υb, the
numerical resolution of (145)(a) requires the computation of the acceleration
term Υc,n

b (V k,n1 ) given by (151) for each macro-dust at each time step, whereas
in the case of Υ = Υa, the acceleration term Υc,n

a given by (150) is the same
for all macro-dust in a given mesh c. Then, in each mesh c, the computational
cost is in O(N2c) in the case of (150) and in O(N1cN2c) in the case of (151).

The validity of this PIC method has been studied in Ref. [8] for the Vlasov-
Boltzmann model obtained with the function ς(v, n) = C instead of (129) in
operators (127) and (128). Since we do not have to simulate the operator
R1(f1, f2) any more, the condition on the time step is here given by

∆t . min
(
t22, t21,

∆x
〈V1〉

,
∆x
〈V2〉

)
(152)

which is much easier to achieve than condition (142). Let us note that under
Hypothesis 4.1 and 5.1, we have t22 ' t21 and λ22 ' λ21 (see (113) and (116)),
and we can choose ∆x = O(λ22) (see section 5.6). As a consequence, we obtain
O
(

∆x
〈V1〉

)
= t22/

√
ε and O

(
∆x
〈V2〉

)
= t22 (by also using the fact that λij = 〈Vi〉tij

and that 〈V1〉/〈V2〉 '
√
ε). Thus, in our context, (152) is equivalent to

∆t . t22. (153)
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6.2.2 Comparison with the Boltzmann-Boltzmann model in an ho-
mogeneous context

We compare numerical simulations of Boltzmann-Boltzmann system (35) and of
Vlasov-Boltzmann system (143) or (145) through the time evolution of macro-
scopic velocities and kinetic temperatures. We also compare Vlasov-Boltzmann
systems obtained with Υ = Υa (see (144)) and with Υ = Υb (see (146)). At
last, CPU times are compared. Let us note that these numerical simulations
are obtained in an homogeneous context in order to get rid of the influence of
boundary conditions.

Macroscopic velocities. Figure 3 presents the evolution of macroscopic ve-
locities defined by (15) obtained, firstly, with the numerical resolution of the
spatially homogeneous system

∂f1

∂t
= R1(f1, f2), (a)

∂f2

∂t
= R2(f1, f2) +Q(f2, f2) (b)

(154)

and, secondly, with the numerical resolution of the spatially homogeneous sys-
tem 

∂f1

∂t
+∇v · [Υ(f2)f1] = 0, (a)

∂f2

∂t
= R2(f1, f2) +Q(f2, f2) (b)

(155)

where Υ(f2) = Υb(f2) is given by (146), the initial distributions being given by
f1,in(v) = n1

(
2πkBT1,in

m1(r1)

)− 3
2

exp
(
−m1(r1) |v − u1,in|2

2kBT1,in

)
,

f2,in(v) = n2

(
2πkBT2,in

m2

)− 3
2

exp
(
−m2 |v − u2,in|2

2kBT2,in

) (156)

where u1,in, u2,in, T1,in, T2,in, r1, n1 and n2 are given in Table 6.2.2. Moreover,

Physical parameters associated to (156).
u1,in u2,in T1,in T2,in r1 n1 n2

(m·s−1) (m·s−1) (K) (K) (m) (m−3) (m−3)
(0, 0, 0) (300, 300, 300) 100 400 5 · 10−9 1015 1020

we take Tsurf = 300 K for the surface temperature of dust particles. Physi-
cal parameters in Table 6.2.2 are chosen in order to allow to take a reasonable
time step ∆t for the resolution of system (154) with the numerical method pre-
sented in section 6.1.1: indeed, condition (139) gives ∆t . 2 · 10−7 s. Moreover,
condition (153) gives ∆t . 2 · 10−5 s for the resolution of system (155) with
the numerical method presented in section 6.2.1. Then, we chose respectively
∆t = 10−7 s for the resolution of system (154) and ∆t = 10−5 s for the reso-
lution of system (155). Moreover, we chose (N1, N2) = (5 · 102, 5 · 103) for the
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Figure 3: Evolution of the component on Ox of macroscopic velocities obtained
from the numerical resolution of systems (154) and (155) with Υ = Υb.

resolution of both systems (Nk is the number of macro-particles which approx-
imates fk through (134)). One can observe on Figure 3 a similar evolution of
components on Ox of macroscopic velocities – noted ux1 and ux2 – for the two
systems. Moreover, it is quite obvious that these velocities converge to the value
94, 5 m·s−1 which corresponds to

ux∞ =
n1u

x
1,in + εn2u

x
2,in

n1 + εn2
.

This behaviour of macroscopic velocities corresponds to what could be expected
for Boltzmann-Boltzmann system (35). Indeed, the following conservation of
global momentum

n1u1(t) + n2εu2(t) = n1u1,in + n2εu2,in

can be obtained formally from equations (40) by using weak formulations (127)
and (128).[9]

We now compare the evolution between macroscopic velocities obtained from
the numerical resolution of system (155) with Υ = Υa on one side and with
Υ = Υb on the other side, with initial conditions given by (156) but with the
physical parameters given by Table 6.2.2 instead of Table 6.2.2. We choose

Physical parameters associated to (156).
u1,in u2,in T1,in T2,in r1 n1 n2

(m·s−1) (m·s−1) (K) (K) (m) (m−3) (m−3)
(0, 0, 0) (300, 300, 300) 100 400 5 · 10−8 1014 1021
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again Tsurf = 300 K. Moreover, the numerical parameters are given in Table
6.2.2. One can observe on Figure 4 that the evolutions of these macroscopic

Numerical parameters used for the simulation on Figure 4.
∆t (s) N1 N2

10−6 5 · 102 5 · 103

velocities remain similar during a short time of about 5 ms but are different for
long times. This can be interpreted in the following way: Whereas the global
momentum n1u1 + n2εu2 is conserved for Boltzmann-Boltzmann system (35)
and approximately conserved for Vlasov-Boltzmann system (155) with Υ = Υb

given by (146), it is not the case for system (155) with Υ = Υa given by
(144). Since the expression of Υa(f2) is obtained according to the hypothesis
that the velocities of dust particles are of the order of magnitude of V ◦1 and
that the velocities of gas molecules are of the order of magnitude of V ◦2 with
V ◦1 /V

◦
2 =

√
ε (see (81) and (82)), we can consequently deduce that this velocity

scaling hypothesis is only true during a short time (more precisely during a time
of some ms in the present case).

Figure 4: Evolution of the component on Ox of macroscopic velocities obtained
from the numerical resolution of system (155) with Υ = Υb and with Υ = Υa.

Kinetic temperatures. We present the comparison between the kinetic tem-
peratures defined by (14) obtained from the numerical resolution of systems
(154) and (155) (with Υ = Υb) with inital conditions (156), and Table 6.2.2.
We choose again Tsurf = 300 K. One can observe on Figure 5 that the kinetic
temperatures Tf1 and Tf2 obtained from the numerical resolution of Boltzmann-
Boltzmann system (154) converge to the surface temperature Tsurf of dust
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Figure 5: Evolution of the kinetic temperatures obtained from numerical resolu-
tion of systems (154) and (155) with Υ = Υb.

particles. Moreover, the kinetic temperature Tf2 obtained from the numerical
resolution of Vlasov-Boltzmann system (155) with Υ = Υb has the same be-
haviour as the one of the kinetic temperature Tf2 obtained from the numerical
resolution of Boltzmann-Boltzmann system (154). However, one can observe
that Tf1 obtained from the numerical resolution of Vlasov-Boltzmann system
(155) with Υ = Υb converges to 0 and, thus, is wrong (we can make the same
observation with Υ = Υa). We discuss this important point in section 6.2.5.

CPU times. We now consider the initial distributions f1,in and f2,in given
by (156) and but with the physical parameters given in Table 6.2.2. instead of
Table 6.2.2. We choose again Tsurf = 300 K and we take (N1, N2) = (102, 104).

Physical parameters associated to (156).
u1,in u2,in T1,in T2,in r1 n1 n2

(m·s−1) (m·s−1) (K) (K) (m) (m−3) (m−3)
(0, 0, 0) (300, 300, 300) 100 400 2 · 10−8 5 · 1013 1020

Because of conditions (139) and (153), the time step ∆t is taken equal to ∆t =
10−8 s in the case of Boltzmann-Boltzmann system (154) and equal to ∆t =
2 · 10−5 s in the case of Vlasov-Boltzmann system (155). During the time τ =
10−1 s (which corresponds to the characteristic time of relaxation of velocities),
the average numbers (138) of collisions simulated for the resolution of the kinetic
operators are of the order of

NR1(τ) = 1, 4 · 109, NR2(τ) = 7 · 104, NQ(τ) = 4, 2 · 107.

47



We see on Table 6.2.2 that the CPU time on a single-chip computer of the
simulation of Boltzmann-Boltzmann system (154) during the time τ is of about
104 s, the one of system (155) with Υ = Υb during the time τ is of about 500 s
and the one of Vlasov-Boltzmann system (155) with Υ = Υa during the time τ
is of about 50 s.

CPU time of simulations of systems (154)
and (155) with parameters of Table 6.2.2.

Model CPU time
Boltzmann-Boltzmann model (154) 11410

Vlasov-Boltzmann model (155) with Υ = Υb 589
Vlasov-Boltzmann model (155) with Υ = Υa 45

6.2.3 A 3D simulation in a cubic box

We present on Figure 6 the LOVA type scenario already studied in section 6.1.2
with Boltzmann-Boltzmann system (35) (see Figure 2) but, now, obtained with
Vlasov-Boltzmann system (145) (Υ = Υb is given by (146)). The final time
of the simulation is equal to 247 ms. On Figure 6, the macro-molecules are
not represented and the number of macro-dusts represented is more important
than on Figure 2. Let us underline that we are able to simulate this LOVA
type scenario with a final time greater than the one of 45 ms simulated in sec-
tion 6.1.2 with Boltzmann-Boltzmann system (35) because Vlasov-Boltzmann
system (145) needs far less CPU time.

6.2.4 A 3D simulation in a torus domain

We present on Figure 7 a LOVA type scenario for which the domain is a cylindri-
cal torus whose geometry is similar to the one used in Ref. [41]. The boundary
conditions are diffuse reflexion and there is no absorption condition on any side,
which means that dust particles and gas molecules (which are not represented
in this visualization) cannot leave the domain. As a consequence, the density of
gas molecules inside the torus increases very quickly. Geometrical parameters
of the cylindrical torus are given in Table 6.2.4, physical parameters are given
in Table 6.1.2 and computation parameters are given in Table 6.2.4. Because

Geometrical parameters of the 3D simulation in a torus domain.
height interior radius outer radius volume
(m) (m) (m) (m3)
10−1 2, 5 · 10−2 5 · 10−2 5, 89 · 10−4

Numerical parameters of the 3D simulation in a torus domain.
number of meshes number of processors length of simulation (ms)

14400 480 1, 1

of the dimensions of the cylinder and the increasing density in gas molecules,
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t=1 ms t=27 ms

t=45 ms t=100 ms

t=150 ms t=247 ms

Figure 6: LOVA type scenario in an open cubic box modeled with Vlasov-
Boltzmann system (145) (Υ = Υb)
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the cost of computation is higher in this example, and the length of simula-
tion is lower than in the example of paragraph 6.2.3 for the same CPU time
(24× 3600 s).

6.2.5 Justification of the Vlasov-Boltzmann model

The previous studies lead to the following conclusions:
• The CPU cost of the numerical resolution of Vlasov-Boltzmann system (143)
or (145) is, in the context we consider, lower than the one of Boltzmann-
Boltzmann system (35). For example, on a spatially homogeneous context,
the examples presented on Table 6.2.2 show that the numerical resolution of
Vlasov-Boltzmann system with Υ = Υa and Υ = Υb are respectively about 200
and 20 time less costly (with the numerical methods presented in sections 6.1.1
and 6.2.1). This comes from the fact that the resolution of the Vlasov equations
(105)(a) or (106)(a) is in this situation lower than the resolution of the equation
(35)(a). Moreover, the cost of the resolution of systems (105) and (106) does
not depend very much of the radius of particles, whereas the cost the resolution
of equation (35)(a) increases quadratically with the radius of particles.
• The numerical resolution of Vlasov-Boltzmann system (143) is about 10 time
less costly than the one of Vlasov-Boltzmann system (145) (at least for the ho-
mogeneous test-case studied in section 6.2.2: see Table 6.2.2.).
• The macroscopic velocities u1 and u2 obtained with spatially homogeneous
Vlasov-Boltzmann system (155) with Υ = Υb given by (146) are close to those
obtained with spatially homogeneous Boltzmann-Boltzmann system (154) and,
thus, are correct. Nevertheless, these macroscopic velocities obtained with spa-
tially homogeneous Vlasov-Boltzmann system (155) with Υ = Υa given by (144)
instead of Υ = Υb are correct only for short times. Moreover, the kinetic temper-
ature Tf1 obtained with spatially homogeneous Vlasov-Boltzmann system (155)
with Υ = Υa or Υ = Υb is not equal to the one obtained with spatially homoge-
neous Boltzmann-Boltzmann system (154) and, thus, is not correct. This may
be explained by the fact that the asymptotic expansion made in the section 4 is
only at the first order in ε. Thus, we may think that Vlasov-Boltzmann system
(143) (Υ = Υa) or (145) (Υ = Υb) is not a good approximation of Boltzmann-
Boltzmann system (35), and that a asymptotic expansion of R1(f1, f2) at the
second order in ε could be necessary. Nevertheless, since we are only interested
in the mobilization of dust particles at the beginning of a LOVA type scenario
and since this mobilization is a direct function of the macroscopic velocity u1
of dust particles, it is legitimate to think that Vlasov-Boltzmann system (145)
(Υ = Υb) and even Vlasov-Boltzmann system (145) (Υ = Υa) are enough ac-
curate (at least for a first study) to evaluate if dust particles are or are not
mobilized for a given LOVA type scenario.

All these remarks justify the derivation of the Vlasov-Boltzmann system to
model the beginning of a LOVA type scenario.

7 Conclusion
A discussion about characteristic time and length scales shows that the inter-
action between dust particles and gas molecules at the beginning of a Loss Of
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t= 0 ms t= 0, 2 ms

t= 0, 4 ms t= 0, 6 ms

t= 0, 8 ms t= 1, 1 ms

Figure 7: LOVA type scenario in a torus modeled with Vlasov-Boltzmann system
(145) (Υ = Υb)
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Vacuum Accident (LOVA) in the thermonuclear reactor ITER has to be mod-
eled with a kinetic model. Thus, we have proposed a new Boltzmann type model
to describe the evolution of macroscopic particles, as dust particles, in a rarefied
atmosphere. This Boltzmann type model consists in a coupling of a Boltzmann
type operator R1(f1, f2) – which describes the dust-molecule collisions from
the point of view of dust particles – with another Boltzmann type operator
R2(f1, f2) – which describes the dust-molecule collisions from the point of view
of gas molecules –. This Boltzmann-Boltzmann model takes into account the
macroscopic character of dust particles compared to gas molecules through a
diffuse reflexion mechanism on the surface of dust particles in the kinematic
relations of dust-molecule collisions. As a consequence, the Boltzmann type
operators R1(f1, f2) and R2(f1, f2) are not classical Boltzmann operators.

However, the numerical simulation with a Monte-Carlo method of the oper-
ator R1(f1, f2) is too expensive from a computational cost point of view in the
context of a LOVA when the typical size of dust particles is too large. Thus,
we have proposed to replace R1(f1, f2) with a Vlasov operator obtained from
R1(f1, f2) through a formal asymptotic expansion according to the ratio of mass
between a gas molecule and a dust particle. As a consequence, the Boltzmann-
Boltzmann model is replaced by a Vlasov-Boltzmann model. Let us underline
that the Vlasov operator allows to define a drag force model applied to dust
particles and induced by collisions with gas molecules. This drag force model
– which is not deduced from experimental laws – is also valid when the gas
molecules are not at thermodynamical equilibrium.

Numerical methods are proposed for the resolution of the Boltzmann-Boltzmann
and Vlasov-Boltzmann models, and are applied for 3D numerical simulations of
LOVA type scenarii for which the domain is a cubic box or a cylindrical torus:
these 3D numerical simulations show the mobilization of dust particles induced
by the gas molecules ingress. Moreover, spatially homogeneous numerical results
are compared from the point of view of macroscopic velocities, kinetic temper-
atures and CPU time. These numerical studies validate and justify (from a
computational cost point of view) the use of the Vlasov-Boltzmann model in-
stead of the Boltzmann-Boltzmann model.

A validation of the Boltzmann-Boltzmann and Vlasov-Boltzmann models for
a LOVA type scenario could be obtained from an experimental point of view
thanks to experimental visualizations which should be lead. However, even if a
fluid-fluid or a fluid-kinetic modelling like in Ref. [41] seems to be inadapted at
the beginning of a LOVA, it should be necessary to use this type of modelling
after some times (depending on the size of the vessel). Indeed, the density of
the gas increases rapidly in a closed geometry. Then, the computational cost of
the simulation of the Vlasov-Boltzmann model becomes too important because
of the large amount of collisions between gas molecules. Thus, an interesting
prospect could be to couple the Vlasov-Boltzmann model with its fluid limit
by using an approach similar to those proposed, for example, in Ref. [18] or
Ref. [13]. Moreover, another interesting prospect is to model the interaction
between the dust particles and the wall of the vessel. We propose in Ref. [9]
a model of mobilization of dust particles which takes into account a dust-wall
interaction. This model could be investigated from a numerical point of view in
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a forthcoming work.

At last, we underline that the Boltzmann-Boltzmann and Vlasov-Boltzmann
models proposed in this work could also be used to model, as in Ref. [45], the
interaction between dust particles coming from an intensive volcanic plume and
a rarefied atmosphere as in the case of volcanoes on Jupiter’s moon Io. The
Boltzmann-Boltzmann and Vlasov-Boltzmann models could be more accurate
since, in Ref. [45], the macroscopic character of dust particles is not taken into
account in the kinematic relations of the kinetic model and since the feedback
of dust particles on the gas molecules is not taken into account.
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