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Purpose: Patient-induced inhomogeneities in the static magnetic field
cause distortions and blurring (off-resonance artifacts) during acquisi-
tions with long readouts such as in susceptibility-weighted imaging (SWI).
Conventional versatile correction methods based on extended Fourier
models are too slow for clinical practice in computationally demanding
cases such as 3D high-resolution non-Cartesian multi-coil acquisitions.
Theory: Most reconstruction methods can be accelerated when perform-
ing off-resonance correction, by reducing the number of iterations, com-
pressed coils and correction components. Recent state-of-the-art deep
learning architectures could help but are generally not adapted to cor-
rupted measurements as they rely on the standard Fourier operator in
the data consistency term. The combination of correction models and
neural networks is therefore necessary to reduce reconstruction times.
Methods: Hybrid pipelines using UNets were trained stack-by-stack
over 99 SWI 3D SPARKLING 20-fold accelerated acquisitions at 0.6mm
isotropic resolution using different off-resonance correction methods.
Target images were obtained using slow model-based corrections based
on self-estimated ∆B0 field maps. The proposed strategies, tested over
11 volumes, are compared to model-only and network-only pipelines.
Results: The proposed hybrid pipelines achieved scores competing with
2-3 times slower baseline methods, and neural networks were observed
to contribute both as pre-conditioner and through inter-iteration mem-
ory by allowing more degrees of freedom over the model design.
Conclusion: A combination of model-based and network-based off-
resonance correction was proposed to significantly accelerate conven-
tional methods. Different promising synergies were observed between
acceleration factors (iterations, coils, correction) andmodel/network that
could be expanded in the future.

K E YWORD S
off-resonance correction, non-Cartesian imaging, deep learning,
unrolled neural network, 3D SPARKLING
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1 | INTRODUCTION

Many parallel imaging and compressed-sensing (CS)
methods [1, 2, 3, 4, 5, 6, 7] have been proposed over
the last two decades to accelerate magnetic resonance
imaging (MRI) acquisitions. Non-Cartesian sampling pat-
terns [8, 9] have recently gained popularity through
their capability to better exploit longer but fewer read-
outs. In particular, the Spreading Projection Algorithm
for Rapid K-space sampLING (SPARKLING), proposed
for 2D [9] and 3D [10, 11] imaging, responds to all de-
grees of freedom offered by modern MR scanners [11]
to fully explore k-space andmatch optimized target sam-
pling densities. Susceptibility-weighted imaging (SWI)
[12], commonly used in high resolution brain venogra-
phy or traumatic brain injuries [13], has been recently
studied with SPARKLING [11, 14] to reach accelera-
tion factors (AF) superior to 15 in scan times com-
pared to fully sampled Cartesian imaging in high reso-
lution (0.6mm) isotropic brain imaging. However non-
Cartesian sampling patterns tend to be more sensitive
to off-resonance artifacts causing geometric distortions
and image blurring [15], notably with long readouts (e.g.
20ms), thereby inducing k-space inconsistencies over
the different gradient directions [16, 17]. These artifacts
emergemostly from patient-induced static B0 field inho-
mogeneities, notably pronounced near air-tissue inter-
faces, for instance in the vicinity of nasal cavity and ear
canals.

Diverse methods have been proposed in the litera-
ture to correct those artifacts during the acquisition or
image reconstruction. The spherical harmonic shimming
technique is the current standard for all systems [15, 18]
but is generally limited to second or third-order har-
monics, which already provide critical improvements.
More advanced shim coil designs have been proposed
recently [19, 20] but still face technical and theoreti-
cal limitations [21]. Post-processing methods can there-
fore be necessary as a complement for more demanding
cases, such as Cartesian EPI [22, 23] where alternating
gradient direction at every time frame can be used to de-
duce and revert off-resonance induced geometric distor-
tions. However this technique is not applicable to non-

Cartesian readouts (e.g. spirals [24, 25, 26], rosette [27],
SPARKLING [9, 10, 11]) due to the multiple spatially-
encoding gradients played simultaneously. Another less
constraining and well-established method [28, 29, 30,
31, 32] consists in compensating the undesired ∆B0

spatial variations by modifying the Fourier operator in-
volved in image reconstruction in order to integrate
prior knowledge on a ∆B0 field map. This technique
can be applied to any imaging setup but it considerably
slows down (e.g. 15-fold) the image reconstruction pro-
cess. The mandatory ∆B0 field map is directly available
formulti-echo acquisitions [15], but it necessitates to be
either externally collected by extending the scan time,
or estimated [33, 34, 35, 36, 37, 38, 14].

Non-Cartesian acquisition strategies enable shorter
scan times at the cost of increased image reconstruction
duration. However, taking into account off-resonance
correction within extended forward and adjoint opera-
tors has a multiplicative effect that makes the process-
ing excessively long. In the recent years, deep learn-
ing (DL) has emerged for MRI reconstruction as a means
to allow for improved image quality and faster process-
ing, by similarly pushing the computation cost to offline
training sessions. However, state-of-the-art network ar-
chitectures are mostly focused on undersampling arti-
facts [39, 40, 41, 42, 43] as they enforce data consis-
tency with Fourier operators, which is inaccurate when
dealing with off-resonance effects. More specific liter-
ature tends to invest most efforts into estimating the
∆B0 field map [44, 45], already available in the context
of SWI acquisitions (see [14] for details).

In this work, we study different approaches [29,
30, 31] to model compressed representations of the
non-Fourier operator involved in the data consistency
term, and compensate for them using neural net-
works. The proposed extended non-Cartesian Primal-
Dual network (NC-PDNet) architectures [43] are trained
to reproduce self-corrected [14] high resolution SWI
volumes based on highly accelerated multi-coil 3D
SPARKLING [11] trajectories (AF>17) at 3 Tesla and
each obtained through 8-hour long reconstructions.
This approximation allows us to reach a significant accel-
eration for model inversion with respect to three key el-
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ements, namely the number of unrolled iterations, com-
pressed coils and correction components (i.e. interpola-
tors involved in the non-Fourier operator), all contribut-
ing multiplicatively to the reconstruction time. The re-
sults are then compared to both model-only (CS re-
construction with non-Fourier operator) and network-
only (original NC-PDNet) pipelines over 11 dedicated
volumes and further decomposed to analyze the contri-
butions of both neural networks and partially correcting
models with respect to the three sources of approxima-
tion using tailored off-resonance metrics. The various
benefits of hybrid architectures are demonstrated, with
observed synergies paving the way to more improve-
ments on image quality.

2 | THEORY

2.1 | Image reconstruction

For convenience we define M = Nc × Ns the total num-
ber of samples (with Nc the number of spokes and Ns
the number of samples per spoke) measured over the
k-space Ω and N = Nx × Ny × Nz the total number of
voxels (with Nx , Ny and Nz the image dimension in vox-
els).

In the absence of B0 inhomogeneities, the recon-
structed image x̂ can be obtained from the multi-
channel k-space measurements y = (yq )Qq=1 by solving:

x̂ = argmin
x∈ÃN

Q∑
q

1

2
‖yq − FΩSq x ‖

2
2 + R(x ) (1)

where Q is the number of channels, Sq is the sensitivity
map of the q th channel, and R a regularization function.
The operator FΩ is the non-uniform fast Fourier trans-
form (NUFFT) defined through the ideal signal equation:

f (r ) =

∫
Tobs

s(t ) e i k (t )·r dt (2)

with Tobs the observation window in seconds, s(t ) the
measured k-space sample at time t , f (r ) the object
magnetization at position r , k (t ) the k-space position
at time t . The sensitivity maps Sq can be externally

acquired or estimated from the central θ% of the k-
space [46], with the low frequency FΩθ% operator:

Sq =
F HΩθ%

yq√∑Q
p=1 ‖F

H
Ωθ%

yp ‖
2
2

(3)

An efficient way to solve Eq. (1) is through proximal
gradient descent:

wk+1 = xk − αk

Q∑
q=1

SHq F
H
Ω D

(
FΩSq xk − yq

)
(4)

xk+1 = proxR (wk+1) (5)

where αk is the step size at iteration k , and proxR is
a proximal operator associated with R. The step de-
scribed in Eq. (4) is often called data consistency. This
basic approach can be extended to both CS and DL
methods, using different algorithms [47, 48] and archi-
tectures [40, 42, 43] to reach improved image quality
in fewer iterations. Hereafter, we replace proxR with a
neural network similarly to [43] and set αk = 1

β where
β is the Lipschitz constant of the data consistency term,
following [47].

2.2 | Signal correction

In order to apply ∆B0 corrections, we need to extend
the basic Fourier model from Eq. (2) to include the off-
resonance effects [49]:

f (r ) =

∫
Tobs

s(t ) e i (k (t )·r +∆ω0(r )t ) dt (6)

with ∆ω0(r ) = γ∆B0(r ) the off-resonance frequency in
radian at position r , γ the hydrogen gyromagnetic ratio
and ∆B0 the actual magnetic field deviation. This new
signal formula is discretized as follows:

f (rn ) =
M∑
m=1

s(tm ) e
i∆ω0(rn ) tm e i k (tm )·rn . (7)

The term ∆ω0(rn ) tm is dependent on both the k-space
and image domain, which is not compatible with a regu-
lar Fourier transform. The approach initially proposed
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by Noll et al. [28] and later extended in [29, 30, 31]
amounts to splitting this exponential term into a sum of
variables that are each dependent on a single domain:

e i∆ω0(rn ) tm =
L∑
`=1

bm,` c` ,n . (8)

This way, by combining Eqs. (7)– (8) we can factorize out
the term dependent on the image domain and obtain
a weighted sum of L regular Fourier transforms, with
L � M ,N :

f (rn ) =
L∑
`=1

c` ,n

M∑
m=1

s(tm ) bm,` e
i k (tm )·rn . (9)

The coefficients B = (bm,` ) ∈ Ã
M ,L and C = (c` ,n ) ∈

ÃL,N can be optimally estimated using the method pro-
posed by Fessler et al. [31] considering the followingma-
trix factorization problem:

B̂ , Ĉ = argmin
B∈Ã(M ,L),C∈Ã(L,N )

‖E − BC ‖2F r o (10)

with E the M × N matrix defined by Em,n = e i∆ω0(rn ) tm .
The optimal solution is obtained by decomposing E

through Singular Value Decomposition (SVD) along ei-
ther axis to obtain B or C , and then finding the other
one as the least squares solution. We refer hereafter to
this solution as Singular Vector Interpolation (SVI) coef-
ficients.

Prior to this formalism, different solutions have been
explored [49, 28, 50, 29, 1, 30] notably two that were
respectively introduced by Man et al. [29] and Sut-
ton et al. [30], and still currently used [51, 52]. Both
methods were also tested in this work as optimality in
regards to Eq. (10) does not imply optimality in regards
to Eq. (1). Similarly, the solutions are given through least
squares after fixing either B or C as follows:

e i∆ω0(rn ) tm =
L∑
`=1

e i∆ω0,` tm c` ,n (11)

e i∆ω0(rn ) tm =
L∑
`=1

bm,` e
i∆ω0(rn ) t` (12)

with ∆ω0,` and t` obtained by segmenting the off-
resonance frequency range and the time window into
L values, respectively. In what follows, the solution ob-
tained from Eq. (11) named Multi-Frequency Interpola-
tion [29] is referred to as MFI, and by analogy the solu-
tion from Eq. (12) with the method from [30] is referred
to as MTI for Multi-Temporal Interpolation.

For all coefficients, the computational load can be
considerably reduced by taking advantage of the spoke
redundancy (i.e. using the same decomposition over the
Nc spokes) and using histograms of the ∆B0 field map to
solve a weighted version of Eq. (10), typically decreas-
ing the image dimensions N = 384 × 384 × 208 voxels to
Nb = 1000 bins (see details in [31]). This way, the ma-
trix E is reduced from M × N to Ns × Nb and therefore
correction coefficients can be obtained in a few seconds
for high resolution 3D volumes.

We obtain from Eq. (9) a pseudo-Fourier operator
FΩ,Σ (with Σ representing the interpolation processing)
that can be implemented as a wrapper for any regular
Fourier operator FΩ and directly integrated into Eq. (1)
and Eq. (3). The same remark also holds for the adjoint
Fourier operator F HΩ .

2.3 | Accelerated reconstruction and
correction

The above mentioned correction technique is conve-
nient but still increases the computation cost by multi-
plying factors of an already time-consuming reconstruc-
tion in the case of 3D high-resolution non-Cartesian
imaging. Starting from the algorithm presented in
Eqs. (4)–(5) combined with the correction operator in
Eq. (9), different ways to reduce the computational bur-
den can be explored by decreasing: the number of prox-
imal gradient iterations I, the number of channels Q , or
the number of correction components L. All possibilities
were considered and the last two are further explained
in this subsection.

Different coil compressionmethods exist to decrease
Q [53, 54, 55], but the most efficient ones, such as ge-
ometric coil compression [55], often exploit constrain-
ing k-space trajectory properties. More recent learning-
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based techniques have not been explored but might
be considered in the future. Meanwhile, we used the
trajectory-independent method by Buehrer et al. [53]
also based on SVD as it allows us to efficiently reduceQ
while also ordering compressed channels by explained
variance, as represented in Figure 1a and detailed after-
wards. Some relations are observed between ∆B0 field
maps and compressed channels sensitivities in the sup-
plementary materials (Figure S6) but without strong de-
marcations, and therefore only the first Q components
are kept.

On the contrary, the SVI correction coefficients cover
specific regions of the off-resonance spectrum (Fig-
ure S5). Simply using the first L components, also stud-
ied hereafter, would mostly shift the data consistency
focus toward low off-resonance areas that cover a much
broader part of the brain images. A possibility to extend
the spectrum coverage is to change the components
used for data consistency over consecutive iterations.
The SVI coefficients are more convenient for this, as if
we decide to integrate L2 SVI components instead of L1
with L2 > L1, the first L1 are the same due to the orthog-
onality of the decomposition. This is not true for MFI
and MTI methods as observed in Figure S3-S4. It en-
sures that while the first L1 components carry the maxi-
mal amount of information, they are not redundant with
the other L2 − L1 components. Diverse strategies have
been considered, and the best performing one updates
data consistency between the first L components and
the L + 1 to 2L components over the iterations, called
SVI1/2 hereafter, to enforce fidelity toward either low or
high off-resonance areas alternatively.

The goal is to provide improved reconstruction and
correction while minimizing the processing time. I, Q
and L linearly multiply the time with exponentially de-
creasing quality contributions, as shown in Figure 1 and
in supplementarymaterials with Table S4. Our approach
therefore consists in decreasing time and allowing the
neural networks and recover image quality based on
largely complete information.

3 | METHODS

3.1 | Proposed pipelines

Following the recommendations from Ramzi et al. [42],
the end-to-end NC-PDNet architecture [43] has been
used as we consider 3D non-Cartesian SWI data. Par-
ticularly, we investigated the primal-only version where
only the image domain processing is learned with an
arbitrary neural network whereas data consistency is
applied in k-space. However, in the context of 3D
high resolution non-Cartesian and multi-coil imaging,
the amount of GPU memory required for a complete
training is excessive. All or part of that memory can be
moved to CPU, but would result in a considerably longer
training duration.

To address this issue, a solution is to break down the
learning process into stacks to avoid any restriction on
the number of iterations or network size. An ideal case
would be to have stacks consisting of at least one net-
work pass followed by a data consistency block to still
learn complementary features, however the memory
requirement explodes at the transition between single
channel image domain and multi-coil k-space data. The
simplest proposition therefore, is to exclude the data
consistency from the gradient computation by training
the dataset image-to-image as represented in Figure 2
and then only updating the dataset in k-space at each
stack. This modification requires adapting the feature
originally named “memory” [40] and later “buffer” [42]
as the multiple network output channels are not all in-
cluded in the backpropagation graph anymore.‘ Instead,
the network output is a single complex-valued volume
but that will still be stacked into a buffer of size NB to be
used as input for the next stack. That way, the overall
pipeline keeps the expressiveness required to learn CS-
like acceleration schemes as originally suggested [40].
The main drawback compared to end-to-end training is
enforcing that each stack should yield the target results
rather than letting the consecutive networks store in-
termediate states. However, this modification allows us
to train architectures with an arbitrarily high number of
coils and iterations.
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The different partial correction strategies based on
FΩ,Σ discussed in Section 2.3 are studied within an un-
rolled architecture in combination with UNets in the im-
age domain. Indeed, conventional data consistency
would either enforce the off-resonance artifacts in spite
of the networks, or at best would not contribute to their
correction. For the main studies, the variables I = 5,
Q = 5 and L = 5 have been retained to allow for 3D
0.6mm isotropic corrections within 7 to 8 minutes of
computing time at inference. The MFI, MTI and SVI
coefficients are compared, along with the SVI1/2 strat-
egy, with NB = 3 buffers and pre-computed density
compensations [56] for the NUFFT operator from the
gpuNUFFT1 [57] and pysap-mri2 [58] packages. The
residual UNets are composed of three scales, eachmade
of convolutional blocks of three layers with kernel size
of 3 × 3 × 3 and each followed by a ReLU activation (ex-
cept for the final layer). The number of filters is doubled
at each 3D 2 × 2 × 2 downscale, with 16 filters at the
first scale, and vice-versa for upscales. The complex na-
ture of the input and output volumes is handled by con-
sidering real and imaginary parts as two separate real-
valued channels. Each UNet is composed of 390,066
parameters with buffers and 388,338 without. They are
trained for 300 epochs, resulting in 100-hour long train-
ings overall, with RAdam optimizer and learning rate of
5 × 10−4. The minimized cost function is the sum of an
L1 loss applied to complex-valued images andmultiscale
SSIM to the magnitude images. All training experiments
were run on the Jean-Zay supercomputer over a single
NVIDIA Tesla V100 GPU with 32GB of VRAM.

3.2 | Dataset

A total of 123 SWI volumes were acquired on patients
with non-Cartesian 3D GRE sequences at 3T (Magne-
tom Prisma, Siemens Healthcare, Erlangen, Germany)
with a 64-channel head/neck coil array. The proto-
col was approved by local and national ethical commit-
tees (IRB: CRM-2111-207). Patient demographics and
a study flow diagram are provided in the supplemen-

1https://github.com/andyschwarzl/gpuNUFFT
2https://github.com/CEA-COSMIC/pysap-mri

tary materials (Section S1). The dataset covers a wide
range of pathologies (aneurysm, sickle cell anemia, mul-
tiple sclerosis) and off-resonance related artifact levels.

Four different variations of the recently proposed full
3D SPARKLING [11] sampling pattern were used, but
the vast majority (n=102) was acquired using the follow-
ing parameters: a 0.6mm isotropic resolution, a field-of-
view of 24 cm in-plane (N=384) over 12.5 cm (Nz=208),
a readout of Tobs = 20.48 ms centered around an echo
timeT E = 20ms, a repetition timeT R = 37ms. A dwell
time of δt = 2 µs was used to balance the small number
of spokes Nc=4900, resulting in Ns=10,240 samples per
spoke. The other closely related acquisition variations
are similarly described in the supplementary materials
(Section S1). An acquisition time of 3 min corresponds
to an acceleration factor (AF) of 17, defined as follows:

AF =
N × Nz
Nc

. (13)

The ∆B0 field maps were not acquired in order to
avoid prolonging the exams. Instead self-estimated field
maps were computed a posteriori using a recently pub-
lished technique [14]. To generate the ground truths,
the field maps were used for model-based correction
using the method described in [31] with the SVI coef-
ficients, resulting in approximately 8 hours long recon-
structions/corrections with I = 20, Q = 20 and L = 20
over a single NVIDIA Tesla V100 GPU.

The dataset was then split into training (n=99), val-
idation (n=11) and testing (n=11) sets according to
balanced age, gender, weight, off-resonance pre and
post-correction visibility, and pathology type and visibil-
ity distributions. Two acquisitions were excluded due
to strong motion (n=1) and insufficient off-resonance
correction (n=1) caused by braces. In both cases, the
self-estimated off-resonance correction still consider-
ably improved the images. Minor quality concerns were
raised regarding skin fat artifacts (n=6) and partially de-
activated readout coils (n=2) without causing exclusion.

Although the trainings were carried out from
complex-valued to complex-valued volumes, the SWI
specific processing was applied afterwards for visual-
ization and scoring as described in [12]. The low fre-
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quencies were extracted by applying a Hanning win-
dow over the central third of k-space, before being re-
moved from the phase image to obtain a high frequency
map, subsequently normalized to produce a continuous
mask.The magnitude image was multiplied five times by
the mask, and a minimum-intensity projection (mIP) was
computed using a thickness of 8mm. All post-processing
steps were again run on the Jean-Zay supercomputer.

3.3 | Baselines

Diverse baseline models are proposed to assess the
contributions of the different features involved in our
pipeline. A first baseline detailed in the supplemen-
tary materials (Section S3) is given by replacing the
neural networks by conventional CS reconstruction us-
ing sparsity promoting regularization in the wavelet do-
main (Symlet 8 basis decomposed over three scales).
The L1-norm was used for R function with λ = 10−7 for
thresholding the wavelet coefficients. To compensate
the absence of buffers to learn acceleration schemes
over iterations, the FISTA [47] algorithm available in the
pysap-mri package was used. The data consistency is
implemented with FΩ,Σ with SVI coefficients reduced to
L = 5. This baseline noted BASER is used to determine
to what extent the contribution of neural networks is
critical for improved image quality.

The second baseline BASEC similarly replaces the cor-
recting operator FΩ,Σ with the regular NUFFT FΩ while
applying the same network-based regularization as the
proposed pipeline.

Finally, the SVI and SVI1/2 pipelines were tested with-
out buffers, along with the BASEC baseline. The goal
was to assess that the buffer feature, modified to fit the
stacked-training setup, was still relevant even without
end-to-end training.

3.4 | Evaluation

The results are assessed according to several criteria: Im-
age quality, off-resonance correction and speed. The
first one is commonly assessed [59] using the struc-
tural similarity index (SSIM) and the peak signal-to-noise

ratio (PSNR) measures. These metrics also cover off-
resonance related image artifacts, and therefore to fa-
cilitate the interpretation of the results we also pro-
vided∆B0-weighted versions of SSIM and PSNR. In both
cases, the voxel-wise score at position r was weighted
by:

w∆B0 (r ) =
|∆B0(r ) |

|∆B0 |
(14)

with |∆B0 | the average value of the absolute ∆B0 field
map. In the case of PSNR, it corresponds to using a
weighted mean-squared error (MSE) in the expression.
Among those four metrics, the ∆B0-weighted SSIM was
chosen as the primary score for this study as it relates
more to the visual impact of off-resonance artifacts, fol-
lowed by classic SSIM for image quality in general. Since
these criteria are not defined for complex-valued data,
all metrics are applied after SWI processing to also ac-
count for magnetic susceptibility information. The in-
dividual scores were then compared between pipelines
for both SSIM and ∆B0-weighted SSIM in order to ob-
tain p-values through two-sided Wilcoxon signed-rank
tests, before applying a Benjamini-Hochberg correction
to adjust the false discovery rate at a p-value of p = 0.05.

The final aspect we focus on in this study is the com-
putation speed of the different pipelines. The main bot-
tleneck is the NUFFT, and has therefore been the fo-
cus for more code optimizations3,4. Some other ele-
ments, such as the wavelet transform used for sparsity-
promoting regularization or the computation of correct-
ing coefficients (B̂ , Ĉ ), that are already fast in compar-
ison but not negligible, did not benefit from similar at-
tention. Consequently, these computations might irrel-
evantly change the duration. Additionally, as the pro-
posed pipeline optimizations are solely related to the
amount of individual calls to the NUFFT operator, we
decided to track them as NF to account for the numer-
ical complexity rather than using misleading time mea-

3https://github.com/andyschwarzl/gpuNUFFT
4https://github.com/chaithyagr/gpuNUFFT
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surements:

NF = NF ,S + NF ,R (15)

NF ,S = LS × Q (16)

NF ,R = L × Q × (2 × I − 1) (17)

with NF ,S the number of calls related to the sensitivity
map computation, and NF ,R the number of calls related
to image reconstruction. The sensitivity maps are sys-
tematically corrected with LS = 10 components when
FΩ,Σ is used in Eq. (3), but not corrected at all when us-
ing FΩ which is equivalent to LS = 1. The reconstruction
consists of one iteration for initialization and I −1 itera-
tions using data consistency. Note that the forward and
adjoint calls are similarly considered for simplicity rea-
sons, although they differ over non-Cartesian grids.

4 | RESULTS

The different pipelines are confronted one another here-
after, alongwith an ablation study of themodified buffer
feature. Additional resources are provided in the sup-
plementary materials, and notably more exhaustive CS
baselines to quantify and understand the specific contri-
butions of varying parameters I, Q and L (Section S3).
The number of coilsQ in particular is shown to have little
influence on off-resonance correction, and the coil sen-
sitivity profiles normalized in Eq. (3) seem to have more
impact on all metrics than information carried by addi-
tional coils. In contrast, increasing L contributes solely
to off-resonance artifacts correction while augmenting
I positively impacts both off-resonance and high fre-
quency content.

4.1 | Correction pipelines

The different scores are reported in Table 1 and Figure 3,
with corresponding pairwise p-values in Table 2, and
illustrated on two acquisitions in Figures 4–5, respec-
tively. Firstly, the baselines BASEC and BASER in Ta-
ble 1 demonstrate the expected positive contribution of
a partially corrected Fourier operator FΩ,Σ against a ba-

sic model (BASEC ), and that of stacked UNets against
wavelet-based regularization (BASER ). The only sta-
tistically significant difference holds for ∆B0-weighted
SSIM, with a large improvement over BASER . Therefore,
the proposed UNet architecture, when combined with
conventional operator FΩ , is not capable of correcting
off-resonance effects as much as a partially correcting
operator FΩ,Σ does.

Secondly, the different correction approaches (MFI,
MTI, SVI) are combined with UNets through data con-
sistency terms. All of them show significantly higher
scores than both baselines. Their ∆B0-weighted SSIM
score follow the same ranking as those previously ob-
served in Figure 1b prior to image reconstruction when
solving Eq. (10): the SVI coefficients reach a better score
as compared toMFI (second) andMTI (third) coefficients.
This suggests that none of the diverse correction ap-
proaches carried by the different coefficients are better
suited than another to help UNets compensate for the
missing correction.

Finally, the SVI1/2 pipeline improves the SVI approach
with regard to ∆B0-weighted SSIM, while not signif-
icantly deviating from it for classic SSIM. Exploring
more components appears to guide the correction that
networks alone could not achieve. This can be ob-
served in Figure 4 near the bucco-nasal region visible
with the sagittal views, where only SVI1/2 recovers high-
frequency details consistent with the target. The ad-
ditional baselines from supplementary materials (Sec-
tion S3) show that the SVI1/2 pipeline competes with re-
construction 2-3 times slower depending on the evalu-
ation criteria.

4.2 | Network and model contributions

The reconstruction steps are further decomposed be-
tween data consistency and regularization in Figure 6
and illustrated in Figure 7. For both metrics, the two
baselines shown in Figure 6 with brown (BASER ) and
gray (BASEC ) curves are again significantly different.
The BASER curves show a slow start with oscillations
between improving data consistency and degrading reg-
ularization but with a regular progression afterwards.
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The oscillations are explained by the constant wavelet
threshold, too large during early iterations when the
overall magnitude was still too low. In contrast, the
networks used in BASEC considerably improve the ini-
tialization, then followed by oscillations caused by the
data consistency. Those oscillations can be explained by
the off-resonance artifacts enforced through the wrong
Fourier model FΩ but also by the sensitivity profiles al-
tered by the normalization from Eq. (3) when reducing
the number of channels Q . Both are illustrated in Fig-
ure 7 with green and blue arrows respectively.

The proposed pipelines SVI and SVI1/2 are observed
to combine a steeper initialization and better progres-
sion over iterations, but still with sensibility-related os-
cillations. The SVI1/2 is however more robust to those as
it alternates between large regions with heterogeneous
sensitivities and smaller ∆B0-specific regions. Overall,
the UNets appear to contribute to all three studied fac-
tors, but the striking difference between BASEC , SVI
and SVI1/2 pipelines suggests that networks only recover
low image frequencies when correcting off-resonance.
The partial correction model is therefore required any-
way in those regions, but networks serve as an effective
image pre-conditioner.

4.3 | Buffer feature ablation

The main pipelines have been evaluated with and with-
out the proposed buffer feature modified to account
for stacked training, namely SVI and SVI1/2 along with
BASEC . The different results are shown in Table 3.

The baseline BASEC that combines UNets with con-
ventional Fourier data consistency shows ∆B0 scores
significantly worse when using the buffer feature. An
interpretation would be that as consistency with cor-
rupted brings back artifacts, as observed in Figure 7,
adding memory of previous iterations only leads to a
noisier learning process without additional information.

On the other hand, the SVI1/2 approach shows signif-
icant and large improvements with buffers, more than
for the SVI pipeline. However, it should be noted that
SVI1/2 classic scores without buffers aremuch lower than
any other proposed pipeline, but still better than the

baselines. This suggests that the exploratory correction
strategy inherently degrades the overall reconstruction
to advantage the off-resonance areas, but that buffer
feature allows for a compensatory effect within neural
networks.

5 | DISCUSSION

The diverse contributions of this article are discussed
hereafter. Firstly, we compared conventional meth-
ods [29, 30, 31] to perform, to the best of our knowl-
edge, the first partial off-resonance correction study.
Secondly, we analyzed the deep learning contributions
in a multi-parametric acceleration pipeline. Finally, we
conducted a deep learning study over a fairly large in
vivo dataset consisting of model-based self-estimated
off-resonance corrected volumes [14].

5.1 | Network and model improvements

The network and model contributions when facing re-
duced number of iterations, compressed coils, and cor-
rection components have been studied in Section 4.

Overall, the number of coils Q was observed to im-
pact metrics by changing the sensitivity distribution su-
perficially rather than improving the signal. Other nor-
malization [60] or coil compression methods [61] could
be explored in the future to at least balance this scoring
issue. The proposed UNets appeared to mostly improve
the initialization overall and help progression through
the buffer feature when applying the SVI1/2 strategy oth-
erwise less efficient. The latter shows how deep learn-
ing allows for more flexibility when designing hybrid al-
gorithms. However, high-frequency details are still only
recovered through model-based correction.

More elaborated strategies could be developed to
distribute efficiently the correction components over it-
erations. Particularly, for in-out SPARKLING trajecto-
ries the MTI coefficients were shown to correlate with
high/low image frequencies. A better balance between
low frequencies covered by neural networks and high
frequencies enforced by specifically selected correction
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components might produce more reliable results.

5.2 | Dataset generation

The∆B0 map estimation technique developed in a previ-
ous publication [14] assumes the relationship between
B0 inhomogeneities and image phase to be dominant
over other phase sources for large echo times (e.g. 20ms
and higher) at 3T. It allows us to simply estimate the
∆B0 field map retrospectively with minimal error and
no motion-related mismatch for SWI acquisitions and
alike. It also avoids any assumptions on the trajectory,
and can therefore be used on any dataset matching the
above mentioned acquisition setup and providing either
the raw k-space data or complex-valued MR images.

The self-estimation method has been carefully as-
sessed during the early stages of the study, and reached
our expectations. However, two other competing meth-
ods were also considered, the first by Lee et al. [38]
through simulation from a binary mask, and the sec-
ond by Patzig et al. [35] through non-convex optimiza-
tion. The simulation method in particular has been im-
plemented in Python but the required mask obtained
from the artifacted images was suboptimal. The main
advantage of those three self-estimation methods for
the purpose of our proposed acceleration pipeline is
to require strictly the same data. This implies that the
pipeline could be efficiently applied within the clinical
context and additionally improve over sessions using the
same acquisitions processed through longer and dedi-
cated procedures.

6 | CONCLUSION

MR acquisitions based on non-Cartesian acquisitions
tend to exploit longer but fewer complex readouts to
reduce overall scan times, but suffer more from B0 in-
homogeneities. Diverse methods exist to compensate
those artifacts, but the few non-constraining ones slow
down reconstructions by an unacceptably large factor
(10-20 at 3T). Deep learning techniques have been de-
veloped in the recent years, but mostly to estimate the

∆B0 field map which can already be self-estimated us-
ing efficient models for SWI, or to compensate for un-
dersampling artifacts in the CS setting. The proposed
approach combines partial models and deep learning to
ensure data fidelity at a low computation cost when ad-
dressing off-resonance artifacts and gain in image qual-
ity. It outlines both their individual and joint contri-
butions. The MR volumes reconstructed in only 7-8
minutes are competing with baselines obtained in 30
minutes to approximate 8-hour long computations, and
could be further accelerated by developing new hybrid
strategies. Future work might also explore the paral-
lel aspects of the correcting models to better fit mem-
ory constraints of the GPUs, or simply include under-
sampling compensation through self-supervised learn-
ing methods.
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(a) Compressed channels total variance proportions.

(b) Correction matrix factorization NRMSE.

F IGURE 1 Expected model-based contributions
from coil compression and partial correction.
The contributions from coil compression and partial
correction are each considered prior to reconstruction
on reversed logarithmic scales. For coil compression,
the total explained variance known using SVD is given
for varying Q . For off-resonance correction, the
normalized root-mean-square error from Eq. (10) is
given for MFI, MTI and SVI coefficients with varying L.
In both cases, the values are obtained from the 99
training acquisitions.

Figures and Tables
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F IGURE 2 Illustration of the proposed cross-domain pipeline with stacked-training.
The proposed pipeline is shown for Q compressed coils yq , the corresponding sensitivity maps Sq , and L correction
coefficients B` and C` used in the partially-correcting operator FΩ,Σ , over I unrolled iterations. Each stack is trained
independently from the first to last iteration, by checkpointing the entire dataset when reaching single-channel
image domain.

TABLE 1 Scores for different correction coefficients and pipelines over the test dataset.
Various pipelines with I = 5, Q = 5 and L = 5 are summarized with their data consistency and regularization terms
and evaluated using classic and ∆B0-weighted SSIM and PSNR scores.

Pipeline Data consistency Regularization
Classic ∆B0-weighted

SSIM PSNR SSIM PSNR

BASEC FΩ UNet 0.9421 33.32 0.8947 23.50
BASER FΩ,Σ (SVI) Wavelet 0.9392 31.32 0.9249 23.33
MFI FΩ,Σ (MFI) UNet 0.9596 34.96 0.9475 26.42
MTI FΩ,Σ (MTI) UNet 0.9601 35.13 0.9452 26.11
SVI FΩ,Σ (SVI) UNet 0.9613 35.24 0.9498 26.57
SVI1/2 FΩ,Σ (SVI) UNet 0.9616 35.19 0.9541 27.31
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TABLE 2 Pairwise comparison p-values for all coefficients using two-sided Wilcoxon signed-rank tests on
classic and ∆B0-weighted SSIM scores with Benjamini-Hochberg correction.
The pipeline SSIM and ∆B0-weighted SSIM scores averaged in Table 1 are tested for statistical significance. A
Friedman test was applied over each metric results and obtained p < 10−7, before applying pairwise two-sided
Wilcoxon signed-rank tests with a global Benjamini-Hochberg correction to adjust the false discovery rate.

(a) Classic SSIM

BA
SE
C

BA
SE
R

M
FI

M
TI

SV
I

SV
I1 /

2

BASEC - ** ** ** **
BASER - ** ** ** **
MFI ** ** - ** **
MTI ** ** - ** **
SVI ** ** ** ** -
SVI1/2 ** ** ** ** -

(b) ∆B0-weighted SSIM

BA
SE
C

BA
SE
R

M
FI

M
TI

SV
I

SV
I1 /

2

BASEC ** ** ** ** **
BASER ** ** ** ** **
MFI ** ** * ** **
MTI ** ** * ** **
SVI ** ** ** ** **
SVI1/2 ** ** ** ** **

p > 0.05 -
p < 0.05 *
p < 0.005 **

TABLE 3 Ablation study of the buffer feature over different architectures on testing dataset.
The best performing pipelines (SVI and SVI1/2) are evaluated with and without buffers, along with the baseline BASEC
based on the non-correcting Fourier operator FΩ . The classic and ∆B0-weighted scores are averaged over the
testing dataset, with statistical significance assessed through pairwise two-sided Wilcoxon signed-rank tests over
the SSIM scores with a global Benjamini-Hochberg correction.

Pipeline Buffers
Classic ∆B0-weighted

p SSIM PSNR p SSIM PSNR

- 0.9427 33.40 0.8979 23.69
BASEC 3

-
0.9421 33.32

**
0.8947 23.50

- 0.9603 35.11 0.9490 26.57
SVI

3
*

0.9613 35.24
*

0.9498 26.57

- 0.9575 34.71 0.9493 26.98
SVI1/2 3

**
0.9616 35.19

**
0.9541 27.31

p > 0.05 -
p < 0.05 *
p < 0.005 **
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F IGURE 3 Detailed SSIM scores distributions for
different correction coefficients and pipelines over
testing dataset.
The SSIM and ∆B0-weighted SSIM distributions
averaged over testing dataset in Table 1 are detailed
for all pipelines over reversed logarithmic scales. The
first quartile Q1, median and third quartile Q3 are
shown as notched boxes. Maximum and minimum
scores are delimited by the whiskers, except for
outliers defined as values farther from nearest quartile
than 1.5 × (Q3 − Q1) and shown as points.
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F IGURE 4 Reconstructed SWI images over all pipelines (first example).
The reconstructed SWI images with three 4 mm in-plane (axial, sagittal, coronal) minimum intensity projections are
provided for all color-coded pipelines (following the convention adopted in Figure 3 in regard to the color coding) for
acquisition #68 from testing dataset. Various details are pointed out with blue arrows.
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F IGURE 5 Reconstructed SWI images over all pipelines (second example).
The reconstructed SWI images with three 4 mm in-plane (axial, sagittal, coronal) minimum intensity projections are
provided for all color-coded pipelines (following the convention adopted in Figure 3 in regard to the color coding) for
acquisition #106 from testing dataset. Various details are pointed out with blue arrows.
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F IGURE 6 Testing scores evolution over
reconstruction.
The main pipelines are decomposed between data
consistency (Ci ) and regularization (Ri ) steps to
provide the classic and ∆B0-weighted SSIM scores over
the testing dataset over reversed logarithmic scales.
The MFI and MTI pipelines are omitted for readability
as both are redundant with SVI pipeline.
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F IGURE 7 SWI images evolution over reconstruction.
The intermediate SWI images with 4 mm minimum intensity projection are provided over reconstruction
decomposed into data consistency (Ci ) and regularization (Ri ) steps for acquisition #106 from testing dataset.
Various details are pointed out with arrows: coil sensitivity degraded by data consistency (green), off-resonance
degraded by data consistency (blue) and off-resonance degraded by regularization (red).


