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Abstract: This study aims to aid understanding of Model Predictive Control (MPC) al-
ternatives through comparing most interesting MPC implementations. This comparison will
be performed intrinsically and illustrated using the four-tank benchmark, widely studied by
academics taking care of industrial perspectives. Although MPC provides advanced control
solutions for a wide class of dynamical systems, challenges arise in managing the compromise
between accuracy, computational cost and resilience, depending on the type of model used. In
this study, linear, linear time-varying and non-linear MPCs are compared to MPC that uses a
neural network based predictive model identified from data. The tuning and implementation
methods considered are discussed, and accurate simulation results provided and analyzed.
Precisely, the performance of each method (linear, linear time-varying, non-linear MPC) are
compared to the neural MPC. Pros and cons of neural MPC are highlighted.
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1. INTRODUCTION

Among advanced control techniques, Model Predictive
Control (MPC) has been widely used Mayne et al. (2000)
and can control multi-inputs multi-outputs (MIMO) dy-
namical systems while handling state and input con-
straints. Expectations are specified by a quadratic cost
function over a receding horizon, which is to be optimized.
The main features are : it is a model based approach,
involving a quadratic cost function, to manage control
objectives and able to deal with hard constraints on key
process signals Mayne et al. (2000). In classical MPC,
the dynamical system is represented using a state-space
model which can be linear Muske and Rawlings (1993) or
non-linear Grüne and Pannek (2017). The cost function
is optimized online, and the first sample of the control
law computed over the receding horizon is applied to the
actuators. This online implementation of MPC leads to
tractability issues. Involving a linear model leads to a con-
vex optimization problem, while with a non-linear model
the optimization becomes non-convex requiring potentially
intensive computation with the risk to converge to a lo-
cal optimum Henrion and Lasserre (2004). Furthermore,
finding the most suitable state space model is not easy,
and may reveal challenging and time-consuming issues, as
argued for instance in Maddalena et al. (2020). A trade-off

⋆ This research was funded by Conseil Régional des Pays de la Loire.

must thus be found between model accuracy, time spent
on finding a model and optimization efficiency.

The use of process input and output data within MPC has
been investigated by practitioners to reduce modeling com-
plexity and engineering time spent while increasing model
accuracy. One example is to approach the process with a
linear model with an added time-varying function Aswani
et al. (2013) using past data to get a better fit. Finding
the nominal linear state space model may however require
engineering time. The alternative in Terzi et al. (2020) is
to consider black-box model identification. They compared
four black-box models, namely classical parametric mod-
els, with AutoRegressive eXogenous (ARX) and Output
Error (OE) methods, then neural network based models
with time-dependent Echo State Networks (ESN) and
gradient-based Long Short-Term Memory (LSTM). It was
found that using neural networks reduced modeling error
compared to parametric models.

Among time-dependent or gradient-based neural networks,
Radial Basis Function (RBF) based neural networks Li
et al. (2019), ESN Armenio et al. (2019), Feedforward
Neural Network (FNN) Kittisupakorn et al. (2009) and
Recurrent Neural Networks (RNN) Wong et al. (2018),
may be interesting for systems identification.

In Li et al. (2019), a non-linear chemical process is iden-
tified using RBF neural networks, then MPC controller
is based on this RBF model. In Armenio et al. (2019),
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non-linear Grüne and Pannek (2017). The cost function
is optimized online, and the first sample of the control
law computed over the receding horizon is applied to the
actuators. This online implementation of MPC leads to
tractability issues. Involving a linear model leads to a con-
vex optimization problem, while with a non-linear model
the optimization becomes non-convex requiring potentially
intensive computation with the risk to converge to a lo-
cal optimum Henrion and Lasserre (2004). Furthermore,
finding the most suitable state space model is not easy,
and may reveal challenging and time-consuming issues, as
argued for instance in Maddalena et al. (2020). A trade-off

⋆ This research was funded by Conseil Régional des Pays de la Loire.

must thus be found between model accuracy, time spent
on finding a model and optimization efficiency.

The use of process input and output data within MPC has
been investigated by practitioners to reduce modeling com-
plexity and engineering time spent while increasing model
accuracy. One example is to approach the process with a
linear model with an added time-varying function Aswani
et al. (2013) using past data to get a better fit. Finding
the nominal linear state space model may however require
engineering time. The alternative in Terzi et al. (2020) is
to consider black-box model identification. They compared
four black-box models, namely classical parametric mod-
els, with AutoRegressive eXogenous (ARX) and Output
Error (OE) methods, then neural network based models
with time-dependent Echo State Networks (ESN) and
gradient-based Long Short-Term Memory (LSTM). It was
found that using neural networks reduced modeling error
compared to parametric models.

Among time-dependent or gradient-based neural networks,
Radial Basis Function (RBF) based neural networks Li
et al. (2019), ESN Armenio et al. (2019), Feedforward
Neural Network (FNN) Kittisupakorn et al. (2009) and
Recurrent Neural Networks (RNN) Wong et al. (2018),
may be interesting for systems identification.

In Li et al. (2019), a non-linear chemical process is iden-
tified using RBF neural networks, then MPC controller
is based on this RBF model. In Armenio et al. (2019),

Four MPC implementations compared on
the Quadruple Tank Process Benchmark :

pros and cons of neural MPC ⋆

Pierre Clément Blaud ∗ Philippe Chevrel ∗ Fabien Claveau ∗

Pierrick Haurant ∗∗ Anthony Mouraud ∗∗∗

∗ IMT Atlantique, LS2N, UMR CNRS 6004, F-44307 Nantes, France
(e-mail: pierre-clement.blaud@imt-atlantique.fr,

philippe.chevrel@imt-atlantique.fr, fabien.claveau@imt-atlantique.fr).
∗∗ IMT Atlantique, GEPEA, UMR CNRS 6144, F-44307 Nantes,

France, (e-mail: pierrick.haurant@imt-atlantique.fr)
∗∗∗ CEA, CEA Tech Pays de la Loire, F-44340 Bouguenais, France,

(e-mail: anthony.mouraud@cea.fr)

Abstract: This study aims to aid understanding of Model Predictive Control (MPC) al-
ternatives through comparing most interesting MPC implementations. This comparison will
be performed intrinsically and illustrated using the four-tank benchmark, widely studied by
academics taking care of industrial perspectives. Although MPC provides advanced control
solutions for a wide class of dynamical systems, challenges arise in managing the compromise
between accuracy, computational cost and resilience, depending on the type of model used. In
this study, linear, linear time-varying and non-linear MPCs are compared to MPC that uses a
neural network based predictive model identified from data. The tuning and implementation
methods considered are discussed, and accurate simulation results provided and analyzed.
Precisely, the performance of each method (linear, linear time-varying, non-linear MPC) are
compared to the neural MPC. Pros and cons of neural MPC are highlighted.

Keywords: Model predictive control, artificial neural network, quadruple tank process

1. INTRODUCTION

Among advanced control techniques, Model Predictive
Control (MPC) has been widely used Mayne et al. (2000)
and can control multi-inputs multi-outputs (MIMO) dy-
namical systems while handling state and input con-
straints. Expectations are specified by a quadratic cost
function over a receding horizon, which is to be optimized.
The main features are : it is a model based approach,
involving a quadratic cost function, to manage control
objectives and able to deal with hard constraints on key
process signals Mayne et al. (2000). In classical MPC,
the dynamical system is represented using a state-space
model which can be linear Muske and Rawlings (1993) or
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Among advanced control techniques, Model Predictive
Control (MPC) has been widely used Mayne et al. (2000)
and can control multi-inputs multi-outputs (MIMO) dy-
namical systems while handling state and input con-
straints. Expectations are specified by a quadratic cost
function over a receding horizon, which is to be optimized.
The main features are : it is a model based approach,
involving a quadratic cost function, to manage control
objectives and able to deal with hard constraints on key
process signals Mayne et al. (2000). In classical MPC,
the dynamical system is represented using a state-space
model which can be linear Muske and Rawlings (1993) or
non-linear Grüne and Pannek (2017). The cost function
is optimized online, and the first sample of the control
law computed over the receding horizon is applied to the
actuators. This online implementation of MPC leads to
tractability issues. Involving a linear model leads to a con-
vex optimization problem, while with a non-linear model
the optimization becomes non-convex requiring potentially
intensive computation with the risk to converge to a lo-
cal optimum Henrion and Lasserre (2004). Furthermore,
finding the most suitable state space model is not easy,
and may reveal challenging and time-consuming issues, as
argued for instance in Maddalena et al. (2020). A trade-off

⋆ This research was funded by Conseil Régional des Pays de la Loire.

must thus be found between model accuracy, time spent
on finding a model and optimization efficiency.

The use of process input and output data within MPC has
been investigated by practitioners to reduce modeling com-
plexity and engineering time spent while increasing model
accuracy. One example is to approach the process with a
linear model with an added time-varying function Aswani
et al. (2013) using past data to get a better fit. Finding
the nominal linear state space model may however require
engineering time. The alternative in Terzi et al. (2020) is
to consider black-box model identification. They compared
four black-box models, namely classical parametric mod-
els, with AutoRegressive eXogenous (ARX) and Output
Error (OE) methods, then neural network based models
with time-dependent Echo State Networks (ESN) and
gradient-based Long Short-Term Memory (LSTM). It was
found that using neural networks reduced modeling error
compared to parametric models.

Among time-dependent or gradient-based neural networks,
Radial Basis Function (RBF) based neural networks Li
et al. (2019), ESN Armenio et al. (2019), Feedforward
Neural Network (FNN) Kittisupakorn et al. (2009) and
Recurrent Neural Networks (RNN) Wong et al. (2018),
may be interesting for systems identification.

In Li et al. (2019), a non-linear chemical process is iden-
tified using RBF neural networks, then MPC controller
is based on this RBF model. In Armenio et al. (2019),
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et al. (2013) using past data to get a better fit. Finding
the nominal linear state space model may however require
engineering time. The alternative in Terzi et al. (2020) is
to consider black-box model identification. They compared
four black-box models, namely classical parametric mod-
els, with AutoRegressive eXogenous (ARX) and Output
Error (OE) methods, then neural network based models
with time-dependent Echo State Networks (ESN) and
gradient-based Long Short-Term Memory (LSTM). It was
found that using neural networks reduced modeling error
compared to parametric models.

Among time-dependent or gradient-based neural networks,
Radial Basis Function (RBF) based neural networks Li
et al. (2019), ESN Armenio et al. (2019), Feedforward
Neural Network (FNN) Kittisupakorn et al. (2009) and
Recurrent Neural Networks (RNN) Wong et al. (2018),
may be interesting for systems identification.

In Li et al. (2019), a non-linear chemical process is iden-
tified using RBF neural networks, then MPC controller
is based on this RBF model. In Armenio et al. (2019),

a non-linear process is identified with ESN. First, the
authors analyze the stability properties of the obtained
ESN model, which is then used by the MPC controller. In
Kittisupakorn et al. (2009), a non-linear chemical process
is identified using FNN, which is then used as a model
within MPC. The authors compared the controller to a
classical Proportional Integral (PI) controller and found
that the approach outperformed the conventional PI con-
troller. Within reference Wong et al. (2018), an RNN is
used to identify a process from its non-linear state space
model. Four RNN networks were trained and used for
MPC design, and the best RNN-MPC control performance
obtained was compared with the classical non-linear MPC
based on a physical state space model, which showed close
average performances.

The studies reported in Li et al. (2019); Armenio et al.
(2019); Kittisupakorn et al. (2009); Wong et al. (2018)
use the same non-linear physical model (known and cal-
ibrated) for data generation and MPC controllers. They
thereby introduce a methodological bias ignoring the issue
of engineering time spent to develop and calibrate the
design model for control. Moreover, when an MPC con-
troller comparison is provided, the NNMPC cannot per-
form better than the NLMPC, because the data used for
NN-based model identification are generated from the non-
linear model based on simplified physical equations. Even
in the case for which more realistic data are considered
to train a NN (e.g., Terzi et al. (2020)), no comparison is
proposed between classical MPC and NNMPC.

The article revisits and illustrates for practitioners the
alternatives regarding the implementation of the MPC
principles. In particular, the alternatives in terms of choice
of the prediction model are considered. The impact of
the choice of one model or another on the quality of the
synthesized MPC is questioned on different aspects: per-
formance in terms of reference tracking versus computa-
tional complexity. To address this problem, four MPCs are
developed and compared while considering the Quadruple
tank process (QTP). The first controller is the linear
model-based MPC (LMPC). For the second, MPC relies on
a linear time-varying model (LTV-MPC), where for each
iteration, the model is linearized from a nonlinear model.
Third, a nonlinear model MPC (NLMPC) is considered as
a third controller, while a neural network MPC (NNMPC)
is considered fourth.

In summary, the main contributions of this work include:

• A fair and detailed comparison of four MPC-based
control laws, from classical (linear, LTV and non-
linear) ones to neural network MPC.

• The use of a detailed multi-physics model pro-
grammed with the Modelica language, to generate
realistic data and allow a realistic simulation for com-
parison purposes.

The paper is organized as follows: Section 2 presents
the considered MPC controllers. Section 3 details aspects
of neural networks, while section 4 presents the process
used to evaluate the considered MPC solutions. Section 5
compares the four MPC controllers law, before concluding
in Section 7.

2. MODEL PREDICTIVE CONTROL
FORMULATIONS

The purpose of MPC is to stabilize the system under con-
trol while optimally steering its states toward references.
The quadratic cost function used in classical MPC allows
compromising between the performance of the references
tracking and control inputs penalty to drive the system.
Moreover, the optimization problem includes constraints
on states and inputs and the system dynamics. The MPC
requires the following steps online: system state measure-
ment, resolution of the optimal control problem to get the
ad hoc control signal, and then application of the first
sample of the signal as control input to the process (next
sampling time) Grüne and Pannek (2017). Denoting by
xr
k and ur

k the reference trajectory associated to xk, uk

the controlled system states and inputs, it is possible to
define the deviation of states and inputs to the reference
trajectory as: x̃k = xk−xr

k and ũk = uk−ur
k. Moreover, the

”ideal” state-space representation of the system is given as:
xk+1 = f(xk, uk), where, xk and uk represent the sampling
of the state and input variables at current time k, and
this work considers different MPC implementations using
different approximations.

Implementation 1 (LMPC) uses a linear model approxi-
mation: x̂k+1 = fL(xk, uk) = Adxk +Bduk, where Ad and
Bd represent state and input matrices. Implementation 2
(LTV-MPC) uses the linear time-varying approximation :
x̂k+1 = fLTV (xk, uk) = ALTV

k xk + BLTV
k uk, where ALTV

k

and BLTV
k are the Jacobian matrices of the nonlinear sys-

tem linearized around the current state and input Murillo
et al. (2016):

ALTV
k =

∂fNL

∂x
|x(t),u(t) , BLTV

k =
∂fNL

∂u
|x(t),u(t) (1)

Implementation 3 (NL-MPC), f is approximated using
the non-linear function : x̂k+1 = fNL(xk, uk). Finally, in
implementation 4 (NN-MPC), f is approximated using a
neural network : x̂k+1 = fNN (xk, uk). As in Grüne and
Pannek (2017), the MPC is:

min
ũ,x̃

x̃T
NPx̃N +

N−1∑
k=0

x̃T
kQx̃k + ũT

kRũk (2)

s.c. xk+1 = f(xk, uk) (3)

x̃k = xk − xr
k (4)

ũk = uk − ur
k (5)

x0 = xm(t) (6)

xk ∈ X (7)

uk ∈ U (8)

where Eq.2 is the quadratic cost function used with N
time horizon and Q and R weighting matrices (semi-
positive definite) of appropriate dimensions, also upper T
denotes the matrix transpose. Eq.3 is the state equation
of the dynamical model, Eq.4 the state deviation with the
state reference, Eq.5 the input deviation with the input
reference, Eq.6 the state measure from real plant at time
t while Eq.7 and Eq.8 are the state and input constraints
respectively.
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ũ,x̃

x̃T
NPx̃N +

N−1∑
k=0

x̃T
kQx̃k + ũT
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Fig. 1. QTP illustrative example.

3. NEURAL NETWORKS MODELING FNN

Feedforward neural networks (FNNs) are the most com-
mon artificial neural network architecture. They were cho-
sen for this reason, in order to allow for later compar-
isons. They include an input layer, one or more hidden
layers (with several artificial neurons) and an output layer.
They can approximate a large class of static non-linear
functions. Even with only one hidden layer (with a finite
number of neurons) and sigmoid activation function, FNNs
are universal approximators Kim et al. (2018). In this
study, FNNs are used to model one ahead predictor. The
FNN inputs are the state and input of the dynamical
system at current time k and the output is the predicted
state at time k+1. The predicted output of the FNN with
one hidden layer is equal to:

x̂k+1 = σ2(W 2(σ1(W 1σ0(W 0vk + b0) + b1)) + b2) (9)

with x̂k+1 the predicted output, σi the activation function
and W i the weight matrix. The input of the FNN vk
is the concatenation of current input uk and state xk :
vTk = cat(uT

k , x
T
k ). b

i known as biases. Exponent 0 denotes
the input layer, exponent 1 the hidden layer and exponent
2 the output layer.

4. QUADRUPLE TANK PROCESS

4.1 Description

Without being an industrial process, Quadruple Tank Pro-
cess (QTP) is a system which enables highlighting many
difficulties encountered in controlling complex industrial
processes such as, nuclear steam generation (Fig.1). As a
result, it constitutes an excellent control benchmark for
methodological research. QTP is non-linear and exhibits
coupling between subsystems and its state variables and
inputs must respect constraints Alvarado et al. (2011).

QTP will be used in the following to illustrate pros and
cons of the four MPC implementations considered in this
paper. The QTP process includes four tanks, two pumps
and two three-way valves, where water flows from pump
qa to tanks 1 and 4 and from pump qb to tanks 2 and 3.
Each tank has an orifice which leaks liquid according to
the water pressure: from tank 3 to tank 1, from tank 4
to tank 2, from tank 1 and from tank 2 to a lower tank
outside the system. The control objective is to keep water
levels within the four tanks at given references, due to
appropriate pumps with flow necessarily greater than zero.

4.2 Physical model

A simplified non-linear equation involving instead of can
be derived using Torricelli’s law of water flow through an
orifice Alvarado et al. (2011) :

ḣ1(t) =
−a1
Sc

√
2gh1(t) +

a3
Sc

√
2gh3(t) +

γaqa(t)

3600Sc
(10)

ḣ2(t) =
−a2
Sc

√
2gh2(t) +

a4
Sc

√
2gh4(t) +

γbqb(t)

3600Sc
(11)

ḣ3(t) =
−a3
Sc

√
2gh3(t) +

(1− γb)qb(t)

3600Sc
(12)

ḣ4(t) =
−a4
Sc

√
2gh4(t) +

(1− γa)qa(t)

3600Sc
(13)

h1, h2, h3 and h4 represent the water levels within the
dedicated tanks, a1, a2, a3 and a4 the orifice areas of tanks
1 to 4 and Sc the cross section of the tanks. qa and qb are
the pumps flow while γa and γb are the ratios of the three-
way valve opening, Tab.1. The linearized models involving
and are also provided in Alvarado et al. (2011):

ḣ1(t) =
−a1h1(t)

Sc

√
2h0

1

g

+
a3h3(t)

Sc

√
2h0

3

g

+
γaqa(t)

3600Sc
(14)

ḣ2(t) =
−a2h2(t)

Sc

√
2h0

2

g

+
a4h4(t)

Sc

√
2h0

4

g

+
γbqb(t)

3600Sc
(15)

ḣ3(t) =
−a3h3(t)

Sc

√
2h0

3

g

+
(1− γb)qb(t)

3600Sc
(16)

ḣ4(t) =
−a4h4(t)

Sc

√
2h0

4

g

+
(1− γa)qa(t)

3600Sc
(17)

h0
i denotes the water level used for linearization. It is

important to note that these equations fail to efficiently
model water levels when they are lower than 0.2m due to
eddy effects Alvarado et al. (2011), and pumps dynamics
are also neglected.

Table 1. Paramters of QTP Alvarado et al.
(2011).

Parameters Value Unit Description

h1max , h2max 1.36 m Maximum water level
h3max , h4max 1.30 m Maximum water level

hmin 0.2 m Minimum water level
qamax 3.26 m3/h Maximum water flow
qbmax 4 m3/h Maximum water flow
qmin 0 m3/h Minimum water flow
Sc 0.06 m2 Tanks cross-section
a1 1.31−4 m2 Surface of the leakage orifice
a2 1.51−4 m2 Surface of the leakage orifice
a3 9.27−5 m2 Surface of the leakage orifice
a4 8.82−5 m2 Surface of the leakage orifice

γa, γb 0.3, 0.4 - Three way valve opening
g 9.81 m/s2 Gravitational acceleration

4.3 Fine-scale simulation

The QTP process is implemented for simulation using the
equation-based object-oriented modeling language Model-
ica. In this case, the process considers water properties,
pipes and pumps inertia are considering by using the
Modelica standard library and pumps using the Building

library, the components are graphically assembled to build
the QTP simulation model. An overflow outlet is added to
the four tanks to consider the maximal water level and
thereby avoid simulation breaking. The Modelica simula-
tion has 1,049 equations and unknown variables. These
equations could be used for the MPC controller; however,
the simulation has some if-then-else conditions which make
it challenging to use with the MPC controller, and thus a
hybrid MPC controller is mandatory and leads to compli-
cated analyses, design and optimization techniques Lazar
(2006). Furthermore, the 1,049 equations programmed in
the Modelica language need to be translated to specific
modeling languages for mathematical optimization, and
to the authors’ knowledge there is no automatic tool for
this purpose.

4.4 Data generation

Modelica was used to generate data using Dymola. The
inputs (both pumps) are excited with signals and water
levels which are displayed. The type of the input signals
is important for dynamical system identification. Pseudo-
random binary sequences (PRBS) was used to excite
system with a widespread frequency spectrum. In our case,
PRBS signals qa and qb are shown in Tab.2. The tanks’
water levels are then saved at each 5s time interval. During
data generation with PRBS, it appears that all water levels
are never in a steady state. To remedy this issue and allow
FNN to learn the plant steady state, a second kind of input
signals is used (see Tab.2) which consists of a random value
of pump command from minimum to maximum values.

Table 2. Parameters of input signals.

Parameters PRBS Constant Unit

Time period 500 1200 s
Start time 500 30 s
End time 30 450 Days
Amplitude qmin or qmax qmin to qmax m3/h

5. COMPARISON OF THE 4 MPC CONTROL LAWS

5.1 FNN implementation

The FNNs were implemented within the Julia program-
ming language. It is challenging to choose the correct
numbers of hidden layers and neurons, and thus a program
was implemented to train several FNNs. For instance, the
hidden layers from 1 to 3 and neurons from 5 to 15 with
5 step neurons were considered. The “Swish” activation
function was empirically chosen in this work, f(x) = x

1+ex ,

Ramachandran et al. (2018). All FNNs were trained, and
the one corresponding with the lowest loss function was se-
lected. Training computations were performed using GPUs
to quicken training with backpropagation algorithm. The
optimizer used during training is Rectified Adam Liu et al.
(2020), the batch size comprised 128 samples and 100
epochs were executed.

The simulated data fed the FNNs. Data are randomly
separated into two parts: 80% for training and 20% for
testing. The training data are further separated into two
parts, where 90% feeds the FNN and 10% validate the
data. This data division is executed at each 20 epochs, and

the performance validation of the output neural network
is evaluated using the fidelity measure, considered in this
study as the Mean Squared Error (MSE) Wang and Bovik

(2009): MSE = 1
Nb

∑Nb
i=1[ŷi − yi]

2, with Nb the number
of samples, ŷ the output of the neural network and y the
targeted data.

5.2 MPC implementation

LMPC uses the linear model defined by fL (state equation)
and Eq.14-17 to control the plant, and its linearizing at
the nominal operating point: h0

1 = 0.65m, h20 = 0.66m,
h0
3 = 0.65m and h0

4 = 0.66m. The LTV-MPC dynamical
model fLTV uses Eq.14-17, and the linearizing point is
modified during each MPC execution using the current
state and input. The discrete linear models used for LMPC
and LTV-MPC are derived via exact discretization using
a Zero-Order Hold (ZOH) at a sample period equal to
5s. In contrast, the NLMPC uses nonlinear model defined
by fNL and Eq.10-13 and using the Runge-Kutta method
for discretization. The terminal weight matrix P (see eq.
2) is derived from the Lyapunov discrete equation: P −
AT

d PAd = Q where Ad the state matrix of the discrete
model is linearized at the current state measure for LTV-
MPC, NNMPC and NLMPC. The state weighting matrix
Q is taken asQ = diag(1, 1, 1, 1) while the inputs weighting
matrix R = diag(0.01, 0.01). N is the horizon length with
5 samples and the sampling time is equal to 5s. The
considered set-points were taken from Alvarado et al.
(2011) and the water levels and corresponding pump flows
of tanks 3 and 4 are derived using the reference values for
tanks 1 and 2. Which is achieved using the static model
with zero derivative, and it leads to the tank references
shown in Tab.3.

Table 3. References at steady state.

Reference Set-points States Inputs Times (s)
computed computed

1 x1 = 0.650 x3 = 0.652 u1 = 1.637 0 to
x2 = 0.650 x4 = 0.664 u2 = 1.988 3000

2 x1 = 0.300 x3 = 0.301 u1 = 1.112 3000 to
x2 = 0.300 x4 = 0.306 u2 = 1.351 6000

3 x1 = 0.500 x3 = 0.305 u1 = 2.201 6000 to
x2 = 0.750 x4 = 1.200 u2 = 1.361 9000

4 x1 = 0.900 x3 = 1.062 u1 = 1.528 9000 to
x2 = 0.750 x4 = 0.579 u2 = 2.539 12000

5.3 Fine simulation of the instrumented plant

Fine-scale plant modeling was exported using the Func-
tional Mock-up Interface (FMI) from Dymola to be sim-
ulated using software. Moreover, the MPCs were imple-
mented using JuMP package within Julia and the Ipopt
optimization solver, which can solve quadratic program-
ming, linear and non-linear. During simulation, the Func-
tional Mock-up Unit (FMU) is simulated, and at each
MPC execution (5s), the simulation is paused, the states
are read by Julia program, the MPC is computed, the
inputs control are sent to the actuator within the FMU and
the simulation is run until the next execution. In addition,
the states and input variables from the FMU are saved in
a text file during the simulation, which allows evaluating
and comparing each MPC solution presented in this work
on the same basis.
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library, the components are graphically assembled to build
the QTP simulation model. An overflow outlet is added to
the four tanks to consider the maximal water level and
thereby avoid simulation breaking. The Modelica simula-
tion has 1,049 equations and unknown variables. These
equations could be used for the MPC controller; however,
the simulation has some if-then-else conditions which make
it challenging to use with the MPC controller, and thus a
hybrid MPC controller is mandatory and leads to compli-
cated analyses, design and optimization techniques Lazar
(2006). Furthermore, the 1,049 equations programmed in
the Modelica language need to be translated to specific
modeling languages for mathematical optimization, and
to the authors’ knowledge there is no automatic tool for
this purpose.

4.4 Data generation

Modelica was used to generate data using Dymola. The
inputs (both pumps) are excited with signals and water
levels which are displayed. The type of the input signals
is important for dynamical system identification. Pseudo-
random binary sequences (PRBS) was used to excite
system with a widespread frequency spectrum. In our case,
PRBS signals qa and qb are shown in Tab.2. The tanks’
water levels are then saved at each 5s time interval. During
data generation with PRBS, it appears that all water levels
are never in a steady state. To remedy this issue and allow
FNN to learn the plant steady state, a second kind of input
signals is used (see Tab.2) which consists of a random value
of pump command from minimum to maximum values.

Table 2. Parameters of input signals.

Parameters PRBS Constant Unit

Time period 500 1200 s
Start time 500 30 s
End time 30 450 Days
Amplitude qmin or qmax qmin to qmax m3/h

5. COMPARISON OF THE 4 MPC CONTROL LAWS

5.1 FNN implementation

The FNNs were implemented within the Julia program-
ming language. It is challenging to choose the correct
numbers of hidden layers and neurons, and thus a program
was implemented to train several FNNs. For instance, the
hidden layers from 1 to 3 and neurons from 5 to 15 with
5 step neurons were considered. The “Swish” activation
function was empirically chosen in this work, f(x) = x

1+ex ,

Ramachandran et al. (2018). All FNNs were trained, and
the one corresponding with the lowest loss function was se-
lected. Training computations were performed using GPUs
to quicken training with backpropagation algorithm. The
optimizer used during training is Rectified Adam Liu et al.
(2020), the batch size comprised 128 samples and 100
epochs were executed.

The simulated data fed the FNNs. Data are randomly
separated into two parts: 80% for training and 20% for
testing. The training data are further separated into two
parts, where 90% feeds the FNN and 10% validate the
data. This data division is executed at each 20 epochs, and

the performance validation of the output neural network
is evaluated using the fidelity measure, considered in this
study as the Mean Squared Error (MSE) Wang and Bovik

(2009): MSE = 1
Nb

∑Nb
i=1[ŷi − yi]

2, with Nb the number
of samples, ŷ the output of the neural network and y the
targeted data.

5.2 MPC implementation

LMPC uses the linear model defined by fL (state equation)
and Eq.14-17 to control the plant, and its linearizing at
the nominal operating point: h0

1 = 0.65m, h20 = 0.66m,
h0
3 = 0.65m and h0

4 = 0.66m. The LTV-MPC dynamical
model fLTV uses Eq.14-17, and the linearizing point is
modified during each MPC execution using the current
state and input. The discrete linear models used for LMPC
and LTV-MPC are derived via exact discretization using
a Zero-Order Hold (ZOH) at a sample period equal to
5s. In contrast, the NLMPC uses nonlinear model defined
by fNL and Eq.10-13 and using the Runge-Kutta method
for discretization. The terminal weight matrix P (see eq.
2) is derived from the Lyapunov discrete equation: P −
AT

d PAd = Q where Ad the state matrix of the discrete
model is linearized at the current state measure for LTV-
MPC, NNMPC and NLMPC. The state weighting matrix
Q is taken asQ = diag(1, 1, 1, 1) while the inputs weighting
matrix R = diag(0.01, 0.01). N is the horizon length with
5 samples and the sampling time is equal to 5s. The
considered set-points were taken from Alvarado et al.
(2011) and the water levels and corresponding pump flows
of tanks 3 and 4 are derived using the reference values for
tanks 1 and 2. Which is achieved using the static model
with zero derivative, and it leads to the tank references
shown in Tab.3.

Table 3. References at steady state.

Reference Set-points States Inputs Times (s)
computed computed

1 x1 = 0.650 x3 = 0.652 u1 = 1.637 0 to
x2 = 0.650 x4 = 0.664 u2 = 1.988 3000

2 x1 = 0.300 x3 = 0.301 u1 = 1.112 3000 to
x2 = 0.300 x4 = 0.306 u2 = 1.351 6000

3 x1 = 0.500 x3 = 0.305 u1 = 2.201 6000 to
x2 = 0.750 x4 = 1.200 u2 = 1.361 9000

4 x1 = 0.900 x3 = 1.062 u1 = 1.528 9000 to
x2 = 0.750 x4 = 0.579 u2 = 2.539 12000

5.3 Fine simulation of the instrumented plant

Fine-scale plant modeling was exported using the Func-
tional Mock-up Interface (FMI) from Dymola to be sim-
ulated using software. Moreover, the MPCs were imple-
mented using JuMP package within Julia and the Ipopt
optimization solver, which can solve quadratic program-
ming, linear and non-linear. During simulation, the Func-
tional Mock-up Unit (FMU) is simulated, and at each
MPC execution (5s), the simulation is paused, the states
are read by Julia program, the MPC is computed, the
inputs control are sent to the actuator within the FMU and
the simulation is run until the next execution. In addition,
the states and input variables from the FMU are saved in
a text file during the simulation, which allows evaluating
and comparing each MPC solution presented in this work
on the same basis.
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5.4 Numerical results

Tab.4 shows the results obtained for the trained FNN and
highlights that FNN 8 provides the lowest loss and it is
selected within the NNMPC tuning.

Table 4. List of FNN trained for system iden-
tification (selected in bold).

FNN Neurons Hidden MSEtrain MSEtest

per hidden layers
layers numbers

1 5 1 4.421× 10−5 4.420× 10−5

2 10 1 5.562× 10−6 5.572× 10−6

3 15 1 4.161× 10−6 4.186× 10−6

4 5 2 2.839× 10−5 2.829× 10−5

5 10 2 6.070× 10−6 6.082× 10−6

6 15 2 1.021× 10−5 1.022× 10−5

7 5 3 1.531× 10−5 1.529× 10−5

8 10 3 2.143× 10−6 2.174× 10−6

9 15 3 1.090× 10−5 1.091× 10−5

Fig.2 depicts the simulation results with h1 and h2 wa-
ter levels controlled by LMPC, LTV-MPC, NLMPC and
NNMPC. For all controllers, the regulated water levels
stay within the states constraints, and h1 and h2 remain
constant during steady state (see Fig.2.a and Fig.2.b).
In addition, when the set-point changes, the water level
overshoots are visible for all controllers (Fig.2.a at 6000s
with h1 and Fig.2.b at 9000s with h2). Moreover, the QTP
exhibits a non-minimum phase behavior (Fig.2.a see h1 at
9000s).

Fig. 2. Simulation results: water levels over time. (a) h1
water level. (b) h2 water level.

Fig.3 depicts the simulation results with h3 and h4 water
levels controlled by LMPC, LTV-MPC, NLMPC and NN-
MPC. Once again, water levels h3 and h4 stay within the
states constraints.

Fig.4 depicts the state trajectory with water levels h1

and h2 controlled by LMPC, LTV-MPC, NLMPC and
NNMPC. Fig.4 highlights whether h1 and h2 reached their
references and their trajectory. The h1 and h2 controlled
by LMPC and LTV-MPC did not reach their references,
unlike NLMPC and NNMPC. Furthermore, the h1 and h2

trajectory obtained with NLMPC and NNMPC are similar
and feature only small differences when a sudden change

Fig. 3. Simulation results: water level over time. (a) h3
water level. (b) h4 water level.

occurs. The states trajectories obtained with LMPC and
LTV-MPC also differ, with a better result for LTV-MPC
yet significantly worse than that of NNMPC.

Fig. 4. h2 over h1 states trajectory with controllers.

Fig.5 depicts the state trajectory with water levels h3

and h4 controlled by LMPC, LTV-MPC, NLMPC and
NNMPC. Fig.5 highlights whether h3 and h4 reached set-
points and the chosen path. Also, h3 and h4 controlled by
LMPC and LTV-MPC did not reach any set-point, while
h3 and h4 controlled by NLMPC and NNMPC reached all
set-points. Furthermore, the h3 and h4 trajectories from
NLMPC and NNMPC are similar with small differences
when a sudden change occurs. In contrast, the states tra-
jectories from LMPC and LTV-MPC are different except
for a relative proximity at steady state (see Table 5).

Table 5. Average steady-state absolute error
and computation time of controllers.

Average LMPC LTV-MPC NLMPC NNMPC

Steady-state 22.189 17.911 2.720 0.836
error (mm)
Computation 1.169 1.175 3.018 2.482

time (s)

Tab.5 depicts the average steady state errors and the av-
erage computation time. It is noteworthy that the average
computation time is equal to 2.482s from NNMPC, 3.018s

Fig. 5. h4 over h3 states trajectory with controllers.

for the NLMPC, 1.175s for the LTV-MPC and 1.169s
to LMPC. It is remarkable that the NNMPC reduces
computation time by 0.536s compared to the NLMPC,
despite the latter’s use of simplified NL model. While
the average steady state error is equal to 0.836mm for
NNMPC, 2.720mm for NLMPC, 17.911mm for LTV-MPC
and 22.189mm for LMPC. Here, the lowest average steady
state error is performed by NNMPC followed by NLMPC.

6. CONCLUSIONS

This study aimed at achieving a better view of MPC
alternatives by comparing the most interesting MPC im-
plementations: LMPC using a linear model, LTV-MPC
using a linear time-varying model, NLMPC using a sim-
plified nonlinear model and finally NNMPC using a neural
network based model. The implementations were quanti-
tatively compared when controlling the QTP. The results
are good for all implementations, despite multi-variable
coupling and non-minimum-phase zero. But the most in-
teresting lies in the analysis of the differences. The results
show that the NNMPC and NLMPC outperformed the
LTV-MPC and LMPC controls, regarding in particular
the steady state error. This advantage would be even
more marked if the process were more highly non-linear.
In the QTP case, the linear MPC may be considered
competitive given their low cost of implementation, taking
care therefore to penalize the tracking error integral. The
perspectives of choosing less conventional artificial neural
networks, but better suited to the problem of identifying,
deserves to be deepened.
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Grüne, L. and Pannek, J. (2017). Nonlinear model predic-
tive control, 45–69. Springer International Publishing,
Cham. doi:10.1007/978-3-319-46024-6 3.

Henrion, D. and Lasserre, J.B. (2004). Solving nonconvex
optimization problems. IEEE Control Systems Maga-
zine, 24(3), 72–83. doi:10.1109/MCS.2004.1299534.

Kim, K.K.K., Patrón, E.R., and Braatz, R.D. (2018).
Standard representation and unified stability
analysis for dynamic artificial neural network
models. Neural Networks, 98, 251–262. doi:
10.1016/j.neunet.2017.11.014.

Kittisupakorn, P., Thitiyasook, P., Hussain, M., and Dao-
sud, W. (2009). Neural network based model pre-
dictive control for a steel pickling process. Jour-
nal of Process Control, 19(4), 579–590. doi:
10.1016/j.jprocont.2008.09.003.

Lazar, M. (2006). Model predictive control of hybrid sys-
tems: stability and robustness. Ph.D. thesis, Technische
Universiteit Eindhoven. doi:10.6100/IR612103.

Li, S., Jiang, P., and Han, K. (2019). Rbf neu-
ral network based model predictive control algorithm
and its application to a cstr process. In 2019 Chi-
nese Control Conference (CCC), 2948–2952. doi:
10.23919/ChiCC.2019.8865797.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., Han,
J., Kingma, D.P., and Ba, J. (2020). On the variance of
the adaptive learning rate and beyond. In International
Conference on Learning Representations (ICLR).

Maddalena, E.T., Lian, Y., and Jones, C.N. (2020). Data-
driven methods for building control — a review and
promising future directions. Control Engineering Prac-
tice, 95, 104211. doi:10.1016/j.conengprac.2019.104211.

Mayne, D., Rawlings, J., Rao, C., and Scokaert, P.
(2000). Constrained model predictive control: Stabil-
ity and optimality. Automatica, 36(6), 789–814. doi:
10.1016/S0005-1098(99)00214-9.

Murillo, M., Sánchez, G., and Giovanini, L. (2016). Iter-
ated non-linear model predictive control based on tubes
and contractive constraints. ISA Transactions, 62, 120–
128. doi:10.1016/j.isatra.2016.01.008.

Muske, K.R. and Rawlings, J.B. (1993). Model predictive
control with linear models. AIChE Journal, 39(2), 262–
287. doi:10.1002/aic.690390208.

Ramachandran, P., Zoph, B., and Le, V.Q. (2018). Search-
ing for activation functions. In International Conference
on Learning Representations (ICLR).

Terzi, E., Bonetti, T., Saccani, D., Farina, M., Fagiano,
L., and Scattolini, R. (2020). Learning-based predic-
tive control of the cooling system of a large business
centre. Control Engineering Practice, 97, 104348. doi:
10.1016/j.conengprac.2020.104348.

Wang, Z. and Bovik, A.C. (2009). Mean squared error:
Love it or leave it? a new look at signal fidelity measures.
IEEE Signal Processing Magazine, 26(1), 98–117. doi:
10.1109/MSP.2008.930649.

Wong, W.C., Chee, E., Li, J., and Wang, X. (2018). Re-
current neural network-based model predictive control
for continuous pharmaceutical manufacturing. Mathe-
matics, 6(11). doi:10.3390/math6110242.



	 Pierre Clément Blaud  et al. / IFAC PapersOnLine 55-16 (2022) 344–349	 349
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