
HAL Id: hal-03510668
https://hal.science/hal-03510668

Submitted on 4 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From multi-physics models to neural network for
predictive control synthesis

Pierre Clément Blaud, Philippe Chevrel, Fabien Claveau, Pierrick Haurant,
Anthony Mouraud

To cite this version:
Pierre Clément Blaud, Philippe Chevrel, Fabien Claveau, Pierrick Haurant, Anthony Mouraud. From
multi-physics models to neural network for predictive control synthesis. Optimal Control Applications
and Methods, 2021, �10.1002/oca.2845�. �hal-03510668�

https://hal.science/hal-03510668
https://hal.archives-ouvertes.fr


From multi-physics models to neural network for
predictive control synthesis

Pierre Clément Blauda,b, Philippe Chevrelb, Fabien Claveaub, Pierrick
Haurantc, Anthony Mourauda

aCEA, CEA Tech Pays de la Loire, F-44340 Bouguenais, France
bIMT Atlantique, LS2N, UMR CNRS 6004, F-44307 Nantes, France

cIMT Atlantique, GEPEA, UMR CNRS 6144, F-44307 Nantes, France

Abstract

The aim of this document is to present an efficient and systematic method of
model-based predictive control synthesis. Model predictive control requires us-
ing a model of a dynamical system, that can be linear, time-varying, non-linear
or identified from data. Finding a model that is both precise and simulatable at
low computational cost can be challenging and time consuming due to requir-
ing extensive knowledge of the system and physics as well as a large volume of
data with relevant scenarios and sometimes a complicated identification work
(filtering noises and bias, data formatting, etc.). The proposed methodology
begins with fine-scale multi-physics modelling, which is possible thanks to open
model libraries (see Modelica). The obtained model is then simulated by con-
sidering ad hoc scenarios to generate data, which are then used to identify a
neural network, that will support the predictive control syntheses. The system-
atic methodology is detailed and applied to the widely used control benchmark
known as the quadruple tanks process. Results show that the methodology
is accurately applied to optimize hyperparameters in finding a neural network
model and to control the quadruple tanks process with the predictive controller.

Keywords: Feedforward neural network, hyperparameters optimisation,
economic model predictive control, modelica, model identification.

1. Introduction

Systems and control technology are everywhere, from homes to airplanes,
and they face great challenges in areas, such as water networks, increase share of
renewable energy, intelligent transport, process engineering or medical science.
Some challenges require interdisciplinary methods ranging from advanced con-
trol techniques, modelling interconnected complex systems and machine learn-
ing [40]. Among advanced control techniques, Model Predictive Control (MPC)

Email addresses: pierre-clement.blaud@imt-atlantique.fr (Pierre Clément Blaud),
philippe.chevrel@imt-atlantique.fr (Philippe Chevrel)

Preprint submitted to Elsevier December 12, 2021



is commonly studied in academia [49] and used in industrial applications [11],
because it enables considering constraints on the state variables of the process.
Since initial implementation in the petroleum industry [56], MPC has broad-
ened its field of industrial applications to include traffic control [71], energy
management in residential house [42], heating ventilation and air-conditioning
control [3], aerospace [65] or the automotive industry [29]. Classical MPC in-
volves a state space model of the dynamical system, states constraints, inputs
constraints and a quadratic cost function to minimize. The optimization is
performed online and the first optimal control sample is the one applied to
the actuators, while a new optimization is relaunched to prepare the next step.
There are some extensions or variants of MPC, such as Economic Model Predic-
tive control (EMPC), where an economic cost is substituted with the quadratic
one in order to control the dynamical system for economic behavior [55, 17].

Finding a suitable dynamical model allowing predictive control synthesis
poses a challenging task for control engineering. Models that finely represent
the process are generally complicated, which makes it difficult to use them for
MPC, and model simplification is often required. To acquire a suitable model,
one method is to linearize the physical model around an operative point, which
allows controller tuning and leads to linear MPC [51] or linear EMPC [36];
however, the model poorly represents the non-linear dynamical system. To
increase model accuracy, a linear time-varying model from the non-linear model
can be adopted [50] or more directly the non-linear model [25]. Furthermore,
a hybrid MPC is possible to handle systems with continuous states, logic rules,
discrete states or if-then-else conditions [41]. The engineering time required
for the modelling process of modelling is labour intensive and may be out of
proportion based on industrial expectations [46].

One method of reducing engineering time is to identify the model from input-
output signals of the process to achieve a black-box model. Black-box models
used for predictive controllers can be canonically parametrized model or a neural
network. An AutoRegressive Exogenous (ARX) model is presented in [30],
while a recurrent neural network is used by an MPC in [67] and also in [68]
with an EMPC. In [60], the authors compared parametric models and neural
networks models to identify a cooling system for a business center and found
that the neural network model is more accurate compared to a parametric one.
In [67], the data were generated from the non-linear state space model, by
simulation. In [60], the data originate from experimental measures and yield
favorable results; however, there are many cases where measured data are lacking
or expensive [57].

The method considered in this work is intended for dynamical systems to
be controlled, for which measured data are lacking, and therefore data will be
generated via simulation using multi-physical modeling. Model identification
is then performed to acquire a model which requires less calculation time for
its simulation while maintaining accuracy. The following method includes sev-
eral advantages: First, when using a simulation model, a dedicated researcher
or engineer performs physical modelling using specific simulation tools, which
makes the simulation model accurate regarding the state of the art. Second, this

2



method reduces engineering time for the control researchers in finding a black-
box model rather than a classical physical model for a predictive controller.
Third, this method helps finding a black-box model with greater accuracy than
classical physical models. Fourth, in some real systems, there are insufficient
measurement data to identify an accurate black-box model, this method helps in
generating data. Moreover, many simulation tools represent dynamical system
in detail, such as the Modelica language [48], which allows modeling multi-
physical networked systems such as mechanical, electrical, thermal, hydraulic,
pneumatic and fluid. In addition, commercial or open-source libraries model
many systems, such as electrical [20], buildings [66], power plant system [27],
district heating system [22] or greenhouses [5].

Despite the popularity of i) multi-physics modeling for simulation on the one
hand, ii) neural network modeling and iii) predictive control method, the current
literature seemed to the authors not to make the most of the recent advances
on these subjects, in particular by not proposing an integrated methodology for
the global synthesis of control laws. The main contribution of this work comes
in the form of a methodology systematically addressing the issue of predictive
controller synthesis relying on a dynamic model based on a neural network for
its implementation, this model being identified from data from multi-physical
simulations (in the absence of big measurement data). The identification of
the process proceeds from hyperparameters optimized with a meta-heuristic
algorithm to obtain the ad hoc neural network. The predictive controller thus
deduced from the application of the proposed methodology was successfully
applied to a conventional control benchmark. In summary, the methodology
proposed in this article links:

• The use of multi-physics modeling by taking advantage of its ability to
combine physical subsystems of different types as well as the capitalization
and reuse of such models thanks to shared libraries;

• The possibilities of identifying neural networks based non-linear dynamic
models, with an automated choice of hyperparameters, the latter being
heuristically optimized according to explicit criteria;

• The possibilities offered in control theory by non-linear model-based pre-
dictive control;

The paper is organized as follows: in Section 2, main elements of the method-
ology are depicted; in Section 3, the methodology is detailed; Section 4 presents
the application of the methodology to a classical control benchmark; the results
are depicted in Section 5; Section 6 concludes the work.

2. Methodology highlights

This study’s methodology is shown in Fig. 1 and divided into five stages.
This section provides a tutorial to aid understanding and implementation.

3



Data generation 

from simulation 

results

System 

identification from 

available data

Tuning 

predictive 

control

Neural

Networks

EMPC

Controller

Controller 

available for 

implementation

Modelling of multi-

physics complex 

system

Figure 1: Schematic view of the methodology.

The first step regards the fine-scale modelling using multi-physical modelling
tools, which can be performed by modelling experts to achieve a model with
the closest resemblance. In addition, the model’s parameters can be scaled
using known completed plant parameters and using calibration from plant data
measures if some are missing. Information about complex networked physical
systems modeling is provided in Section 3.1.

The second step involves data generated from the simulation model designed
in the first step. The model is extensively simulated from selected scenarios to
best cover the conditions of the system’s use to be controlled, and the data
produced must be both qualitative and quantitative to obtain a representative
neural network (by optimization). These aspects are discussed in Section 3.2.

The third step concerns identifying the neural network approximating the

4



System x(t)u(t)

Figure 2: System input-output representation with inputs ū(t) and outputs x̄(t).

dynamic behavior of the process (see Section 3.3). The accuracy of the targeted
predictive control depends on the quality of this model, which will be used as
an internal model. The description of this model and methods analyzing its
stability will be specified, and an automated tuning method of an appropriate
set of hyperparameters will be introduced to aid for building and optimizing the
neural network.

The fourth step regards with establishing the predictive control. In this
work, the predictive control considered is economic, although the methodology
could be applied to a classical MPC with a quadratic cost function. Section 3.4
introduces the EMPC (cost and constraint function) and specifies using the neu-
ral model from step three. In addition, some computer tools for implementing
the controller and resolving the optimization problem will be detailed.

All steps are detailed in the following sections.

3. Methodology

3.1. Modelling complex systems

The modelling of complex networked physical systems has been a focus for
years through formalism as bond graph [21] or Energetic Macroscopic Represen-
tation (EMR) [4] that enable graphical representation. Both are based on energy
flows, effort and power relation, and physical relations use time-dependent Or-
dinary Differential Equation (ODE) supporting 0-D modelling. In addition, a
computing language such as Modelica allows modeling and simulation based on
a uniform general language for model design. A graphical representation of each
sub-system and their interactions may be used, either from bond graph [62] or
Modelica’s graphical representations. Each block and subsystem are assembled
(graphically or not) to build the whole system [48]. A Modelica code concate-
nating all the physical equations is produced, which enables numerically simu-
lation using a numerical solver such as a Differential Algebraic System Solver
(DASSL) [45].

3.2. Data generation

Generating simulation data is mandatory for system identification. Before
generating data, the control actuators must first be selected and will form the
inputs of the identified dynamical system; second, the measures must be selected
and will form the states of the identified dynamical system. As a result, we will
use an input-output description of the system (see Fig. 2). Both actuators and

5



measures must be chosen wisely according to the dynamical system capabilities
and with physical implementation possibilities. After inputs and outputs are
chosen, the signals sequences are applied to the inputs while the outputs are
measured. The characteristics of input sequences of the simulated dynamical
system require careful selection to generate output data that reveal its dynamic
nature, which is called persistent excitation [57]. Various inputs could be used
to excite the system, such as constant input signals (on-off), ramps, steps, sinu-
soidal, random sequences or Pseudo-Random Binary Sequences (PRBS) [57, 39].
These sequences lack the same persistent excitation. In [57], the authors found
that random sequences adequately excite the system; in [39], the authors indi-
cate that PRBS can excite the dynamical system with distinct sinusoidal com-
ponents. In addition, a sequence that is a mix of the random sequence and
PRBS is called a Multilevel Pseudo-Random Signal (MPRS).

3.3. Identification
3.3.1. Dynamical system

In this work, we considered a discrete time invariant system of the following
form:

x̄k+1 = f(x̄k, ūk) (1)

where x̄ ∈ X̄nx̄ is the system state, ū ∈ Ūnū is the command system input
and k ∈ I≥0 is the discrete sampling time occurrences. Moreover, all states are
available for the controller.

3.3.2. Feedforward neural network

The first mathematical model of a neuron was proposed by W. McCulloch
and W. Pitts in 1943 and is called the McCulloch-Pitts model [70]. The mathe-
matical formulation of single artificial neuron with multi-inputs is equal to [70]:

a = σ(Wp+ b) (2)

where a is the output of the neuron, σ is the activation function, W is the weight
matrix, p is the input of the neuron and b is the bias. One neuron is clearly
insufficient to extract interesting characteristics from the data, which are usually
stacked and leads to a Feedforward Neural Network (FNN) [37]. A schematic
representation of FNN is shown in Fig. 3. FNNs represent the simplest neural
network architectures and were chosen for implementation in this work. The
mathematical formulation of a FNN with i hidden layers with the purpose to
identify the dynamical system from Eq. (1) is equal to:

xk+1 = fh1
(vk) ◦ fh2

(a1) ◦ · · · ◦ fhi−1
(ai−2) ◦ fhi

(ai−1) (3)

where xk+1 is the predicted output of the dynamical system by the neural
network, and fhi

is the hidden layer, such as ai = fhi
(pi) = σi(W ipi + bi) with

ai the output and pi the input. In addition, σi is the activation function, W i is
the weighting matrix and bi is the bias. Then, vk is the input of the FNN, which
is the concatenation of the dynamical system inputs ūk and states x̄k at current
and past points in time, vk = cat(x̄k, ūk, x̄k−1, ūk−1, ..., x̄k−l, ūk−l), with l the
back horizon as number of lag.

6



x
k+1

u
k

x
k

u
k-l

x
k-l

⋮

Figure 3: Schematic view of a feedforward neural network with four hidden layers, inputs
layer neurons are black, hidden layers neurons are grey, and output layer is white.

3.3.3. Fidelity measure

The loss function is employed to measure the quality of the FNN to reproduce
a signal. This provides a quantitative scoring that shows the degree of similarity
between from the data and the FNN output [64]. Several loss functions are
available, such as the Mean Square Error (MSE):

floss =
1

Nb

Nb∑
i=1

[xi − x̄i]2 (4)

where Nb is the number of samples, xi is the neural network output and x̄i is the
target. Other loss functions include Mean Absolute Error (MAE), Root Mean
Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) [43].

3.3.4. Hyperparameters tuning

The hyperparameters defining the neural network influence its performance
and include the number of hidden layers, number of neurons per hidden layers,
type of activation function, batch size, epochs, the optimizer used and its own
parameters [69]. For widelyd use accelerated gradient descent optimizers, pa-
rameters include the learning rate and momentums [72]. It is difficult to tune
hyperparameters since they offer numerous choices, and we propose to auto-
mate these choices by selecting them via optimization, therefore at a higher
hierarchical level, to minimize the final loss function. Performing optimization
is challenging since it is non-differentiable and involves mixed and constrained

7



variables. The optimization problem is formalized in the form:

min
χ

floss(χ) (5a)

subject to fnn(σ, δ, θ, µ, ν, o, τ, υ, φ) (5b)

σ ∈ Σ (5c)

δ ∈ ∆ (5d)

θ ∈ Θ (5e)

µ ∈M (5f)

ν ∈ N (5g)

o ∈ O (5h)

τ ∈ T (5i)

υ ∈ Υ (5j)

φ ∈ Φ (5k)

where floss is the loss function for a given data set. fnn is the neural net-
work architecture with dedicated inputs and outputs and Eq. (5b) is the related
constraint. σ is the activation function and Σ is the constraint, see Eq. (5c). δ
is the number of neurons per hidden layer and ∆ is the related constraint, see
Eq. (5d). θ is the number of hidden layer and Θ is the hidden layer constraint,
see Eq. (5e). µ is the epoch number and M is the constraint, see Eq. (5f). ν is
the batch size and N is the constraint, see Eq. (5g). o is the optimizer and O is
the constraint, see Eq. (5h). τ is the optimizer learning rate and T is the related
constraint, see Eq. (5i). υ is the optimizer momentum exponential decay and
Υ is the constraint, see Eq. (5j). φ is the optimizer momentum estimate and Φ
is the related constraint, see Eq. (5k). Finally χ is the vector of optimization
variables.

3.3.5. Implementation on computer machines

FNNs are implemented within machine learning tools such as PyTorch [52]
or Flux [32], which help reduce implementation complexity and allow training
neural networks with Graphical Processing Unit (GPU) to accelerate training.
In addition, a meta-heuristic algorithm is used to solve the optimization problem
Eq. (5) due to the problem’s of non-differentiability. The era of meta-heuristics
features abundant algorithms for finding the best set of hyper-parameters, such
as genetic algorithms or particle swarm optimization [1]. In addition, meta-
heuristic algorithms are available in language tools such as DEAP [19] or Black-
BoxOptim.jl [18]. The implementation proposed in this paper is discussed in
Section 4.2.

3.4. Economic Model Predictive Control

3.4.1. Description

There are two types of EMPC: The first involves a terminal cost and/or
terminal states constraints [17], while the second has no terminal cost and con-
straints [24] and is employed in this work. The cost function used is moreover not

8



quadratic, but associated with a so-called “economic” cost (Economic MPC).
Traditionally, approaches seeking to guarantee the stability of MPC controls,
introduce a constraint or a terminal cost. Traditionally, approaches seeking to
ensure the stability of MPC controls introduce a constraint or a terminal cost.
Here, a contractive constraint was added on the terminal state to ensure the
MPC to be stabilized [13]. The formulation is described below, but please note
that neural network input vk is reworded with xk, uk for notation simplicity :

min
x,u

N−1∑
k=0

le(xk, uk) (6a)

subject to xk+1 = f∗nn(xk, uk) (6b)

x0 = x̄(t) (6c)

x ∈ X (6d)

u ∈ U (6e)

x̃′0Px̃0 ≤ x̃′NPx̃N (6f)

where Eq. (6a) is the economic cost to minimize and N is the number of
samples defining the length of the considered time horizon. Eq. (6b) is the time
evolution constraint of the state, which is based on the best neural network
architecture found in Section 3.3.4. Let’s note that optimization problem (6) is
non-linear, in particular, Eq. (6b) is non-linear due to FNN’s activation func-
tions. Moreover, we opted for a multiple shots approach. So, it is clear that
the EMPC optimization stage is nonlinear, hence generically non-convex. It
possibly leads to a only local optimum [26]. Eq. (6c) is the plant state measure,
Eq. (6d) is the state constraints and Eq. (6e) is the input constraints. Eq. (6f)
is the contractive constraint, P the contractive weighting matrix, and x̃ is the
state deviation from the optimal steady state. The EMPC is computed at each
iteration, and the first sample of the optimal input computed is applied to the
plant’s actuators until the next sampling period. In addition, the EMPC defines
an implicit feedback law:

µN (x̄) = u∗0 (7)

Where µN (x̄) is the implicit feedback related to x̄ and u∗0 is the optimal input
computed.

3.4.2. Computing machine implementation

The EMPC is translated and implemented in a modeling language specific
to the field of optimization, and the optimization problem must be solved by
an ad hoc solver. Several tools are available, such as JuMP [16] or Casadi [7].
The neural network used to define the state evolution constraint is a non-linear
model, and thus a non-linear programming solver is needed, such as the Ipopt
solver, which implements the interior point method [63]. Implementing such an
on-line implicit feedback law µN (x̄) with high sampling can be computation-
ally difficult [2], especially when the model is non-linear [14]. The optimization

9



Lower tank

qa qb

Va Vb

Tank 3 Tank 4

Tank 1 Tank 2

Figure 4: Four tank benchmark schematic view.

computation cannot exceed a sampling period. For some problems, a paral-
lel implementation within computing machines composed of multi-core Central
Processing Unit (CPU), GPU or Field-Programmable Gate Array (FPGA) [2]
is necessary.

4. Example

4.1. Four tank benchmark

To illustrate the relevance of the methodology, we apply it to a benchmark
widely used for ordering: the level control of a Quadruple Tank Process (QTP),
also known as the four-tank benchmark [34], is widely used by academics [33]
and recognized for its capacity to illustrate industrial issues [58]. Contributions
include the use of a decentralized PID controller [31] or a control by sliding
mode in [53]. The implementation of a predictive control applied to the QTP
benchmark is also widely discussed, and several distributed MPC methods are
compared in [6]. The QTP benchmark has four tanks, two three-way valves
and two pumps. The aim is to maintain a certain water level in the reservoirs.
Pump qa fills tanks 1 and 4, then pump qb fills tanks 2 and 3. In addition, water
leaks through tanks orifices, as tank 3 leaks to tank 1 and tank 4 to tank 2,
then tanks 1 and 2 to lower tank, Fig. 4. As a result, the pump flows must be
greater than zero. The main parameters of the benchmark are shown in Tab. 1.

4.2. Application of the proposed methodology

4.2.1. Physical modelling

The QTP is firstly modelled using Modelica to support the simulation tests,
which is fine modeling that considers water property, pumps inertia, pipe rough-
ness and valve pressure loss. Each sub-model is graphically assembled graphi-
cally, see Fig. 5.

10



Table 1: QTP parameters [6].

Parameters Value Units Description
h1max 1.36 m Maximum water level tank 1
h2max

1.36 m Maximum water level tank 2
h3max

1.30 m Maximum water level tank 3
h4max

1.30 m Maximum water level tank 4
hmin 0.2 m Minimum water level all tanks
qamax 3.26 m3/h Maximum water flow pump a
qbmax 4.00 m3/h Maximum water flow pump b
qmin 0 m3/h Minimum water flow all pumps
Sc 0.06 m All tanks cross-section
a1 1.31 ×

10−4
m2 Surface of the tank 1 leakage orifice

a2 1.51 ×
10−4

m2 Surface of the tank 2 leakage orifice

a3 9.27 ×
10−5

m2 Surface of the tank 3 leakage orifice

a4 8.82 ×
10−5

m2 Surface of the tank 4 leakage orifice

Va 0.3 - Three way valve a opening
Vb 0.4 - Three way valve b opening

Table 2: Parameters of the PRBS signals.

Parameters Value Units
Time period 500 s
Start time 500 s
End time 30 days

Amplitude qmin or qmax m3/h

4.2.2. Data generation

The actuators of the dynamical system are the two pumps, and the measures
are the four tanks water levels. Each water level in the reservoir can be viewed
as a state variable: x̄i = hi. The inputs are the pump water flows ūi = qi. Two
random sequences were applied to the control inputs: The first is a PRBS signal,
whose properties are provided in Tab. 2; the second is the piecewise constant
with constant random values ranging from minimum to maximum water flow,
see Tab. 3. The simulations were performed to generate a total of 10,368,000
samples for each neural network input with a 5s sample period. Furthermore,
the data are filtered to only use data within water level constraints, which leads
to 5,686,738 data samples available to feed the neural network.

4.2.3. Dynamical system identification

The neural network inputs are water flows from pumps, and current water
levels with back horizon l = 0, vk = hcat(qak , qbk , h1k , h2k , h3k , h4k). The out-

11



I

level =

0.65 m

II

level =

0.65 m

III

level =

0.65 m

IV

level =

0.65 m

qa
_m

m
_f

lo
w

qb
_m

m
_f

lo
w

LowerTank

level =

0.1 m

system

g
defaults

0.3

gamma_a

0.4

gamma_b

qa

m
_f

lo
w

_i
n

M qb

m
_f

lo
w

_i
n

M

qb
_I

II

m
_f

lo
w

qa
_I

V

m
_f

lo
w

qa_I

m_flow
qb_II

m_flow

I.level

sens_h1

II.level

sen_h2

III.level

sens_h3

IV.level

sens_h4

valveLinear

va
lv

eL
in

ea
r1

0.7

comp_gamma_a

valveLinear2

va
lv

eL
in

ea
r3

0.6

comp_gamma_b

valveLinear4

valveLinear5

1
op

en
_v

3

1

open_v2

valveLinear6

1
op

en
_v

valveLinear7

1
open_v1

qa_in

qb_in

h1

h2

h3

h4

Figure 5: Graphical representation of the four-tank benchmark within Modelica in Dymola
Software.

put of the neural network is the water levels predicted for the next sample time,
xk+1 = hcat(h1k+1

, h2k+1
, h3k+1

, h4k+1
). The data generated are separated into

two arrays for the training stage, where the first array contains the neural net-
work inputs while the second has the outputs. The available data (5,686,738)
are separated and randomized into 80% for training and 20% for testing, and
during each of the 20 epochs, 10% of the training data are extracted for vali-
dation while the remainder feeds the neural network. Furthermore, the chosen
loss function chosen is the MSE, and the neural networks were implemented
with Flux.jl [32]. The meta-heuristic algorithm chosen to optimize the hyper-
parameters is a differential evolution algorithm [12] with adaptive setting [10]

Table 3: Parameters of constant input signals.

Parameters Value Units
Time period 1200 s
Start time 30 days
End time 600 days

Amplitude qmin to qmax m3/h

12



Table 4: Hyperparameters range values.

Symbol Description Range value
σ Activation function σ ∈ [Bent [59], Gelu [28], Soft-

plus [23], Swish [54]]
δ Neurons number δ ∈ [4 to 19]
θ Hidden layer number θ ∈ [1,2]
µ Epoch number µ ∈ [20 to 180]
ν Batch size ν ∈ [2048]
o Optimizer o ∈ [adam [38], radam [44],

nadam [15]]
τ Learning rate τ ∈ [1× 10−7 to 0.01]
υ Momentum exponential decay υ ∈ [0.7 to 0.999]
φ Momentum estimate φ ∈ [0.7 to 0.999]

and radius limited from Julia package BlackBoxOptim.jl [18].Hyperparameters
range values are shown in Tab. 4. Otherwise, the neural network training were
performed on Nvidia P6000 GPUs thanks to JuliaGPU [8].

4.2.4. EMPC tuning and implementation

EMPC is optimized every 5s and over a time horizon equal to 25s (5 periods).
The economic cost considered is a function of the squared weighted sum of the
pump flow rates and the inverse of the water volumes in reservoirs one and
two [35]. This reflects the objective of the search for two conflicting objectives:
the maximization of the volume of water and the minimization of the energy
consumption of the pumps (linked to the square of the flow rates):

le(xk, uk) = u21k + κ1u
2
2k

+ κ2
Vmin

Sc(x1k + x2k)
(8)

Where κ1 and κ2 are time varying costs. Vmin = 0.012m3 is the minimum
volume of water in a tank, and Sc is the tank cross-section. κi = (κ1; κ2) values
are equal to κi = (1; 500) from 1 to 1,500s, κi = (1; 1000) from 1,500 to 3,000s,
κi = (5; 100) from 3,000 to 4,500s and κi = (0.5; 500) from 4,500 to 6,000s,
Tab. 5. Also, the P matrix selected is the identity matrix and the optimal
steady state are visible in Tab. 5. Furthermore, constraints enable considering
the water tanks’ max level (state constraints) and admissible water flows (input
constraints), Tab. 1. The predictive control is implemented within JuMP.jl
with multiple shooting numerical method and the solver used is Ipopt within a
workstation equipped with an Intel Xeon Gold 5122 CPU.

4.3. Simulation test bench

The QTP fine-scale modelling from Modelica was exported using a Func-
tional Mock-up Interface (FMI). A simulation software (Simulink) simulated
the Functional Mock-up Unit (FMU) and saved states and inputs in text files
throughout simulation. Furthermore, every 5s, the simulation was paused to

13



Table 5: κ and optimal steady state values.

Time κi x∗1;x∗2;x∗3;x∗4
1 to 1,500 (1; 500) (0.519; 0.524; 0.514; 0.543)

1,500 to 3,000 (1; 1000) (0.689; 0.675; 0.705; 0.668)
3,000 to 4,500 (5; 100) (0.244; 0.291; 0.203; 0.370)
4,500 to 6,000 (0.5; 500) (0.746; 0.512; 1.031; 0.260)

Simulation software

States

FMI

FMU

FMI
EMPC

Kappa

Text file

NN Model

Julia

Inputs

Plant fine scale 

modeling with 

Modelica

Dymola

Export

save

Hard drive

Figure 6: Controller and plant control in simulation.

execute the predictive control. Finally, the optimal control inputs computed
were sent to the FMU and the simulation run again until the next iteration. A
schematic representation is provided in Fig. 6.

5. Results

5.1. System identification

Fig. 7.a depicts the boxplot hyperparameters optimization results with val-
idation loss versus trained networks, where 618 neural networks were trained,
487 algorithm steps were performed and vanishing gradients occurred with 18
trained networks. The lowest validation loss is equal to 8.11×10−7 and the high-
est is equal to 3.79× 10−1. The validation loss median is equal to 5.17× 10−6,
and as a result, 50% of the trained networks have validation loss higher than
5.17× 10−6. Hyperparameters optimization allows selecting the best set of hy-
perparameters for a network with accurate identification. Fig. 7.b depicts the
validation loss with clusters of 10 trained, which shows three groups: The first
is from the first trained network until 200 trained networks. The boxplot vali-
dation loss slightly decreased and reached a lower validation loss at 200 trained

14



Figure 7: Cost function dependency on (a) the trained networks, (b) the trained networks
with clusters of 10, (c) the neuron number.

networks. The second group, from 210 trained networks to 470 trained networks,
validation loss increased and then decreased and reached lower validation loss
at 470 trained networks. The third group, from 480 trained networks until the
last trained networks, validation loss increased and then decreased and reached
lower validation loss at 600 trained networks. This behavior shows that the
meta-heuristic algorithm can select hyperparameters to reduce validation loss,
but it needed a couple iterations. In addition, it reached some local minimal
and tried to escape to find a lower validation loss. Furthermore, due to meta-
heuristic optimization, it is not possible to answer whether the global minimal
was reached. Fig. 7.c depicts validation loss with the total number of neurons
considered within networks, which shows a validation loss reduction for network
forms of 4 to 11 neurons; however, the validation loss plateaued for networks
with more than 11 neurons. As a result, increasing beyond 11 neurons does not
produce a reduction in validation loss but increases computational workload.

Fig. 8.a presents validation loss with activation functions. The medians are
equal to 3.78 × 10−6 for bent, 6.40 × 10−6 for gelu, 8.26 × 10−6 for softplus
and 3.84 × 10−6 for swish. Using bent or swish as activation functions allows
a slight validation loss reduction compared to gelu or softplus. Fig. 8.b depicts
the validation loss with hidden layers. The medians are equal to 4.34×10−6 for
one hidden layer and 6.37× 10−6 for two hidden layers. In this case, networks
with one hidden layer allow reducing the validation loss, which is advantageous
since neural networks with one hidden layer allow reducing network complexity

15



Figure 8: Cost function dependency on (a) the activation function considered, (b) the hidden
layers number, (c) the epoch number.

and computational workload compared to networks with two hidden layers.
Fig. 8.c depicts the validation loss and epochs and shows that increasing epoch
beyond 40 is not necessary since the trained neural network median is equal
to 1.84 × 10−5 for 20 epochs and plateaued from 40 to 180 epochs between
5.00× 10−6 to 6.00× 10−6.

Fig. 9.a presents the validation loss with optimizers adam, nadam and radam.
The validation loss medians are equal to 5.21 × 10−6 for adam, 7.37 × 10−6

for nadam and 3.50 × 10−6 for radam. The radam reduced median validation
loss compared to adam and nadam; however, because nadam and radam are
derivative from the adam optimizer, the median validation loss remains similar,
and no breakthroughs are noticeable. In addition, Fig. 9.b shows that the
learning rate lower than 2.50× 10−3 allows reducing the median validation loss
compared to learning rates higher than 2.50 × 10−3. Furthermore, Fig. 9.c
and Fig. 9.d show that momentums exceeding 0.9 allow reducing the validation
loss. The median is equal to 2.49× 10−6 for the momentum exponential decay
compared to 1.53 × 10−5 and 6.71 × 10−6. Additionally, median is equal to
3.01× 10−6 for momentum estimate compared to 1.35× 10−5 and 5.07× 10−6.

Table 6 presents the top 10 with trained neural networks which have the
lowest validation loss, which shows that both one and two hidden layers are
represented; however, there is only one network with two hidden layers. The
number of neurons goes from 11 to 36, where increasing the number of neurons is
not necessary, as shown in Fig. 7.c. The fourth activation functions are present

16



Figure 9: Cost function dependency on (a) the optimizer considered, (b) the learning rate,
(c) the momentum exponential decay, (d) the momentum estimate.

within the top 10; however, there is a majority of swish with 6 over 10. In
addition, the epoch number from the top 10 confirms the information extracted
from Fig. 8.c, showing that increasing the number of the epoch is not necessary
since there are trained networks with 40 or 80 epochs. Furthermore, radam and
nadam prevail as optimizers, and adam is not represented within the top 10.
Regarding learning rate, the results from Fig. 9.b are confirmed since a majority
of the top 10 were trained with learning rates lower than 2.50×10−3. Concerning
momentums, the results from Fig. 9.c and Fig. 9.d are confirmed since most
networks were trained with momentums higher than 0.9. Furthermore, the top
10 trained network validation loss goes from 9.46× 10−7 to 8.11× 10−7, which
is close. Finally, we selected the top network for the EMPC (highlighted in bold
in Table 6), and we calculated the trained loss and test loss. The results show
a training loss equal to 8.22× 10−7 and test loss equal to 8.38× 10−7, and the
network is not overfitted as test loss slightly increased compared to validation
loss.

5.2. Process control

Fig. 10.a depicts the simulation results with h1 and h2 water level controlled
by the EMPC. Water levels h1 and h2 are controlled in an economic manner
according to the economic cost given in Eq. (8), without using any explicit
reference trajectory. The results show that the tanks’ water levels stay within
the constraints. In addition, h1 and h2 remain close when κi = (1; 500) and

17



Table 6: Hyperparameters optimization results top 10 validation loss.
- Hidden

layers
Amount
of neu-
rons

Activation
function

Epoch Optimizer Learning
rate

Momentum
exponential
decay

Momentum
estimate

Validation
loss

1 1 19 bent 180 nadam 2.18× 10−3 9.97× 10−1 8.97× 10−1 8.11× 10−7

2 1 17 swish 140 radam 2.71 ×10−3 9.79 ×10−1 9.22 ×10−1 8.22 × 10−7

3 1 12 bent 180 nadam 1.12 ×10−4 9.82 ×10−1 8.52 ×10−1 8.93 × 10−7

4 1 16 swish 100 radam 3.08 ×10−3 9.79 ×10−1 9.22 ×10−1 9.14 × 10−7

5 1 11 swish 140 nadam 2.71 ×10−3 9.79 ×10−1 9.22 ×10−1 9.18 × 10−7

6 1 11 swish 140 nadam 2.71 ×10−3 9.79 ×10−1 9.22 ×10−1 9.19 × 10−7

7 2 36 swish 40 radam 4.55 ×10−4 9.72 ×10−1 9.09 ×10−1 9.35 × 10−7

8 1 17 swish 80 radam 3.74 ×10−3 9.84 ×10−1 9.72 ×10−1 9.35 × 10−7

9 1 14 softplus 160 radam 5.58 ×10−3 9.73 ×10−1 9.82 ×10−1 9.43 × 10−7

10 1 16 gelu 180 radam 3.16 ×10−4 9.07 ×10−1 9.32 ×10−1 9.46 × 10−7

Figure 10: Simulation results. (a) Depicts tank 1 and 2 water levels over time. (b) Depicts
tank 3 and 4 water levels over time.

κi = (1; 1000). Furthermore, when the cost function weights change from κi =
(1; 500) to κi = (1; 1000) at 1,500s, the water levels h1 and h2 are both increased,
which is the expected behavior. Moreover, h1 and h2 pull apart as expected
when using distinct weights associated with the different levels κi = (5; 100) or
κi = (0.5; 500). Fig. 10.b depicts the simulation results with h3 and h4 water
level controlled by EMPC. Once again, water levels h3 and h4 are controlled
economically within the economic cost function defined by Eq. (8). The latitude
of permissible water levels for these reservoirs is exploited while remaining within
the established limits. It can be observed that h3 is equal to the minimum water

18



Figure 11: Simulation results. (a) Depicts pump a flow control over time. (b) Depicts pump
b flow control over time.

level constraint from 3,000 to 4,500s. In addition, h3 and h4 remain close when
κi = (1; 500) and κi = (1; 1000) and h3 and h4 pull apart when κi = (5; 100)
and κi = (0.5; 500).

Fig. 11.a depicts the qa pump flow controlled by the EMPC. During the
simulation, the pump flow stays within constraints. When the cost index κi
changes from (1;500) to (1;1000), the pump flow increases. In addition, when
the cost index κi change from (1;1000) to (5;100), the pump flow decreases.
However, at 3,250s, it can be seen a peak on the pump flow qa. This behavior is
related to the h3 state’s constraint, during which time the pump flow increases
to avoid violating the water level constraint. Finally, when the cost index κi
changes from (5;100) to (0.5;500), pump qa flow increases to maximum flow and
then decreases and plateaus until the end of the simulation. Fig. 11.b depicts
the qb pump flow controlled by the EMPC. During all simulations, the pump
flow stays within constraints. When the cost index κi changes from (1;500) to
(1;1000), the pump flow increases. In addition, when the cost index κi changes
from (1,1000) to (5,100), the pump flow decreases to 0 m3/h. At 3250s however,
it can be seen a peak on the pump flow qb. This behavior, identical to the
previous case, is due to the state constraint h3, during which time the pump
flow increases to avoid breaking the water level constraint. Finally, when the cost
index κi changes from (5;100) to (0.5;500), pump qb flow increases to maximum
flow and then decreases and plateaus at 2.4 m3/h until the end of the simulation,
compared to qa which plateaus at 1 m3/h.

19



6. Conclusion

This study aimed to propose an integrated methodology for non-linear pre-
dictive control design, synthesized from a neural network based model identified
thanks to simulated data from multi-physics modelling. Results showed that
the Quadruple Tank Process benchmark considered was well identified thanks
to a neural network with optimized hyperparameters. Simulation using the
predictive controller designed thanks to the methodology proposed depicts the
expected behavior, in total consistency with the economic cost used. The pre-
sented methodology features interesting characteristics, such as being based on
a fundamental movement in modeling, which consists of using bricks from ex-
isting physical models to constitute the model of the process considered. This
supposes that such bricks exist, but this assumption becomes more reasonable
every day, since a large community enriches the existing library.Based on this
observation, the goal is to reduce the experiments providing data likely to cal-
ibrate the model, which thus performs appropriate simulations to produce the
ad hoc data. On this basis, the model identifies an FNN which approaches the
behavior of the physical process as closely as possible, while being less expensive
to simulate. Choosing the characteristics of the target neural network (archi-
tecture and components among others) is effectively achieved by proceeding to
the automated choice of the hyperparameters of the neural network by means
of an adapted heuristic. Finally, the desired predictive control is obtained by
choosing an economic criterion (EMPC), which is efficiently optimized thanks
to choosing an ad hoc optimizer and using the FNN as an internal model. This
method has been successfully implemented to control the QTP benchmark, for
which different MPC solutions have already been tested in the control literature.

Among the perspectives, we are currently working to demonstrate the in-
terest of this methodology applied to the generic problem of controlling multi-
energy network systems [47]. One perspective in order to avoid possible risks
for the MPC control, i) to be satisfied with local minima and ii) to accelerate
the resolution consists, in reformulating the optimization problem in convex
and conic constraints with a disciplined convex programming [61]; in this case,
restrictions must be added to the neural network [9].

Acknowledgment

This research was funded by Conseil Régional des Pays de la Loire, France.
The authors thank the Julia community for online comments about the Julia
language and packages.

Data availability statement

Research data are not shared.

20



References

[1] M. Abdel-Basset, L. Abdel-Fatah and A. K. Sangaiah, “ Metaheuristic
Algorithms: A Comprehensive Review,” in Computational Intelligence for
Multimedia Big Data on the Cloud with Engineering Applications, A. K.
Sangaiah, M. Sheng and Z. Zhang, Eds., Academic Press, 2018, ch. 10, pp.
185–231, doi: 10.1016/B978-0-12-813314-9.00010-4.

[2] K. M. Abughalieh and S. G. Alawneh, “A Survey of Parallel Implementa-
tions for Model Predictive Control,” IEEE Access, vol. 7, pp. 34348–34360,
2019, doi: 10.1109/ACCESS.2019.2904240.

[3] A. Afram and F. Janabi-Sharifi, “Theory and applications of HVAC control
systems – A review of model predictive control (MPC),” Buil. Environ., vol.
72, pp. 343–355, Feb. 2014, doi: 10.1016/j.buildenv.2013.11.016.

[4] K.S. Agbli et al., “Multiphysics simulation of a PEM electrolyser: Energetic
Macroscopic Representation approach,” Int. J. Hydrogen Energy, vol. 36,
no. 2, pp. 1382–1398, Jan. 2011, doi: 10.1016/j.ijhydene.2010.10.069.

[5] Q. Altes-Buch, S. Quoilin and V. Lemort, “Greenhouses: a modelica library
for the simulation of greenhouse climate and energy systems,” in Proc. 13th

International Modelica Conference, Regensburg, Germany, 4-6 Mar. 2019,
pp. 533–542, doi: 10.3384/ecp19157533.

[6] I. Alvarado et al., “A comparative analysis of distributed MPC techniques
applied to the HD-MPC four-tank benchmark,” J. Process Control, vol. 21,
no. 5, pp. 800–815, Jun. 2011, doi: 10.1016/j.jprocont.2011.03.003.

[7] J. A. Andersson et al., “CasADi: a software framework for nonlinear op-
timization and optimal control,” Math. Program. Comput., vol. 11, no. 1,
pp. 1–36, Mar. 2019, doi: 10.1007/s12532-018-0139-4.

[8] T. Besard, C. Foket, and B. De Sutter, “Effective extensible programming:
unleashing Julia on GPUs,” IEEE Trans. Parallel Distrib. Syst., vol. 30,
no. 4, pp. 827–841, Apr. 2019, doi: 10.1109/TPDS.2018.2872064.

[9] Y. Chen, Y. Shi, and B. Zhang, “Optimal Control Via Neural Networks: A
Convex Approach,” Proc. 7th International Conference on Learning Rep-
resentations, New Orleans, LA, USA, 6-9 May 2019.

[10] R. D. Al-Dabbagh et al., “Algorithmic design issues in adaptive differential
evolution schemes: Review and taxonomy,” Swarm Evol. Comput., vol. 43,
pp. 284–311, Dec. 2018, doi: 10.1016/j.swevo.2018.03.008.

[11] M. L. Darby and M. Nikolaou, “MPC: current practice and challenges,”
Control Eng. Pract., vol. 20, no. 4, pp. 328–342, Apr. 2012, doi:
10.1016/j.conengprac.2011.12.004.

21



[12] S. Das, S. S. Mullick and P. N. Suganthan, “Recent advances in differential
evolution–an updated survey,” Swarm Evol. Comput., vol. 27, pp. 1–30,
Apr. 2016, doi: 10.1016/j.swevo.2016.01.004.

[13] S. L. de Oliveira Kothare and M. Morari, “Contractive model predictive
control for constrained nonlinear systems, ” IEEE Trans. Autom. Control.,
vol. 45, no. 6, pp. 1053–1071, Jun. 2000, doi: 10.1109/9.863592.

[14] M. Diehl, H. J. Ferreau and N. Haverbeke, “Efficient Numerical Methods
for Nonlinear MPC and Moving Horizon Estimation,” in Nonlinear Model
Predictive Control: Towards New Challenging Applications, L. Magni, D.
M. Raimondo, and F. Allgöwer, Éds., Berlin, Springer, 2009, pp. 391–417.

[15] T. Dozat, “Incorporating nesterov momentum into adam,” in Workshop
track - International Conference on Learning Representations, San Juan,
Puerto Rico, 2-4 May 2016.

[16] I. Dumming, J. Huchette and M. Lubin, “JuMP: a modeling language for
mathematical optimization,” SIAM Rev., vol. 59, no. 2, pp. 295–320, May
2017, doi: 10.1137/15M1020575.

[17] M. Ellis, H. Durand and P. D. Christofides, “A tutorial review of economic
model predictive control methods,” J. Process Control, vol. 24, no. 8, pp.
1156–1178, Aug. 2014, doi: 10.1016/j.jprocont.2014.03.010.

[18] R. Feldt and A. Stukalov, “BlackBoxOptim.jl,” GitHub repository, 2018,
[Online], available: https://github.com/robertfeldt/BlackBoxOptim.jl.

[19] F. A. Fortin et al., “DEAP: Evolutionary algorithms made easy,” J. Mach.
Learn. Res., vol. 13, no. 1, pp 2171–2175, 2012.

[20] R. Franke and H. Wiesmann, “Flexible modeling of electrical power
systems–the Modelica PowerSystems library,” in Proc. 10th International
Modelica Conference, Lund, Sweden, 10-12 Mar. 2014, pp. 515–522, doi:
10.3384/ecp14096515.

[21] P. J. Gawthrop and G. P. Bevan, “Bond-graph modeling,” IEEE
Control Sys. Mag., vol. 27, no. 2, pp. 24–45, Apr. 2007, doi:
10.1109/MCS.2007.338279.

[22] L. Giraud et al, “Presentation, validation and application of the District
Heating modelica library,” in Proc. 11th International Modelica Conference,
Versailles, France, 21-23 Sep., 2015, pp. 79–88, doi: 10.3384/ecp1511879

[23] X. Glorot, A. Bordes and Y. Bengio, “Deep sparse rectifier neural net-
works,” in Proc. 14th International Conference Artificial Intelligence and
Statistics, Fort Lauderdale, FL, USA, vol. 15, pp. 315–323, Apr. 2011.

[24] L. Grüne, “Economic receding horizon control without terminal con-
straints,” Automatica, vol. 49, no. 3, pp. 725–734, Mar. 2013, doi:
10.1016/j.automatica.2012.12.003.

22



[25] L. Grüne and J. Pannel, “Nonlinear model predictive control,” in Nonlinear
Model Predictive Control: Theory and Algorithms, Springer, Cham, 2017,
ch. 3, pp. 45–69, doi: 10.1007/978-3-319-46024-6 3.

[26] L. Grüne and J. Pannek, “Numerical Optimal Control of Nonlinear Sys-
tems,” in Nonlinear Model Predictive Control: Theory and Algorithms,
Springer, Cham, 2017, ch. 12, pp. 367–434, doi: 10.1007/978-3-319-46024-
6 12.

[27] B. El Hefni, D. Bouskela and G. Lebreton, “Dynamic modelling of a com-
bined cycle power plant with ThermoSysPro,” in Proc. 8th International
Modelica Conference, Dresden; Germany, 20-22 Mar., 2011, pp. 365–375,
doi: 10.3384/ecp11063365.

[28] D. Hendrycks and K. Gimpel, “Gaussian error linear units (GELUs),” 2016,
accessed: 2020, [Online], available: https://arxiv.org/abs/1606.08415.

[29] D. Hrovat et al., “The development of model predictive control in
automotive industry: a survey,” in Proc. IEEE Int. Conf. Con-
trol Appl., Dubrovnik, Croatia, Oct. 3–5, 2012, pp. 295–302, doi:
10.1109/CCA.2012.6402735.

[30] J. K. Huusom et al., “Tuning of methods for offset free MPC based
on ARX model representations,” in Proc.s of the 2010 Am. Control
Conf., Baltimore, MD, USA, 30 Jun.-2 Jul., 2010, pp. 2355–2360, doi:
10.1109/ACC.2010.5530560.

[31] P. Hušek, “Decentralized PI Controller Design Based on Phase Margin
Specifications,”” IEEE Trans. Control Syst. Technol., vol. 22, no. 1, pp.
346–351, Jan. 2014, doi: 10.1109/TCST.2013.2248060.

[32] M. Innes, “Flux: elegant machine learning with Julia,” J. Open Source
Softw., vol. 3, no. 25, art no. 602, May 2018, doi: 10.21105/joss.00602.

[33] K. H. Johansson et al., “Teaching multivariable control using the
quadruple-tank process,” in Proc. 38th IEEE Conf. Decis. Control, Vol.
1, pp. 807–812, Dec. 1999, doi: 10.1109/CDC.1999.832889.

[34] K. H. Johansson, “The quadruple-tank process: a multivariable laboratory
process with an adjustable zero,” IEEE Trans. Control Syst. Technol., vol.
8, no. 3, pp. 456–465, May 2000, doi: 10.1109/87.845876.

[35] A. D’ Jorge et al, “A robust economic MPC for changing economic cri-
terion,” Int. J. Robust Nonlinear Control, vol. 28, no. 15, pp. 4404–4423,
Oct. 2018, doi: 10.1002/rnc.4243.

[36] J. B. Jørgensen et al., “Economic MPC for a linear stochastic system of
energy units,” in Proc. Control Conf. ECC Eur., Aalborg, Denmark, 29
Jun.- 1 Jul. 2016, pp. 903–909, doi: 10.1109/ECC.2016.7810404.

23



[37] K. K. K. Kim, E. R. Patrón and R. D. Braatz, “Standard represen-
tation and unified stability analysis for dynamic artificial neural net-
work models,” Neural Netw., vol. 98, pp. 251–262, Feb. 2018, doi:
10.1016/j.neunet.2017.11.014.

[38] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in Proc. 3rd International Conference on Learning Representations, San
Diego, CA, USA, 7-9 May 2015.

[39] I. D. Landau and G. Zito, “System identification: the bases,” in Digital
control systems. Design, identification and implementation, Springer, Lon-
don, 2006, doi: 10.1007/978-1-84628-056-6 5

[40] F. Lamnabhi-Lagarrigue et al., “Systems & Control for the future of hu-
manity, research agenda: Current and future roles, impact and grand
challenges,” Annu. Rev. Control, vol. 43, pp. 1–64, Apr. 2017, doi:
10.1016/j.arcontrol.2017.04.001.

[41] M. Lazar, “Model predictive control of hybrid systems : stability and ro-
bustness,” Ph.D. dissertation, Technische Universiteit Eindhoven, Eind-
hoven , 2006, doi: 10.6100/IR612103.

[42] A. Lefort et al., “Hierarchical control method applied to energy manage-
ment of a residential house,” Energy Buil., vol. 64, pp. 53–61, Sept. 2013,
doi: 10.1016/j.enbuild.2013.04.010.

[43] G. Li and J. Shi, “On comparing three artificial neural networks for wind
speed forecasting,” Appl. Energy, vol. 87, no. 7, pp. 2313–2320, Jul. 2010,
doi: 10.1016/j.apenergy.2009.12.013.

[44] L. Liu et al., “On the Variance of the Adaptive Learning Rate and Beyond,”
in Proc. 8th International Conference on Learning Representations, Addis
Ababa, Ethiopia, 26-30 Apr. 2020.

[45] L. Liu, F. Felgner and G. Frey, “Comparison of 4 numerical solvers for stiff
and hybrid systems simulation,” in Proc. IEEE 15th Conf. Emerg. Technol.
& Factory Automat. (ETFA), Bilbao, Spain, 13-16 Sept., 2010, pp. 1–8, doi:
10.1109/ETFA.2010.5641330.

[46] E. T. Maddalena, Y. Lian and C. N. Jones, “Data-driven meth-
ods for building control — A review and promising future direc-
tions,” Control Eng. Pract., vol. 95, art no. 104211, Feb. 2020, doi:
10.1016/j.conengprac.2019.104211.

[47] M. J. O’Malley et al, “Multicarrier energy systems: shaping our energy
future”, Proc. IEEE, vol. 108, no. 9, pp. 1437–1456, Sept. 2020, doi:
10.1109/JPROC.2020.2992251.

24



[48] S. E. Mattsson, H. Elmqvist and M. Otter, “Physical system modeling with
Modelica,” Control Eng. Pract., vol. 6, no. 4, pp. 501–510, Apr. 1998, doi:
10.1016/S0967-0661(98)00047-1.

[49] D. Q. Mayne, “Model predictive control: recent developments and fu-
ture promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, Dec. 2014, doi:
10.1016/j.automatica.2014.10.128.

[50] M. Murillo, G Sánchez and L Giovanini, “Iterated non-linear model predic-
tive control based on tubes and contractive constraints,” ISA Trans., vol.
62, pp. 120–128, May 2016, doi: 10.1016/j.isatra.2016.01.008.

[51] K. R. Muske and J. B. Rawlings, “Model predictive control with lin-
ear models,” AIChE J., vol. 39, no. 2, pp. 262–287, Feb. 1993, doi:
10.1002/aic.690390208.

[52] A. Paszke et al., “Pytorch: an imperative style, high-performance deep
learning library,” Adv. Neural Inf. Process Syst., pp. 8026–8037, 2019.

[53] S. B. Prusty et al., “Sliding mode control of coupled tank systems using
conditional integrators,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp.
118–125, Jan. 2020, doi: 10.1109/JAS.2019.1911831.

[54] P. Ramachandran, B. Zoph and Q. V. Le, “Searching for activation func-
tions,” in Proc. 6th International Conference on Learning Representations,
Vancouver, BC, Canada, 30 Apr. - 3 May, 2018.

[55] J. B. Rawlings, D. Angeli and C.N. Bates, “Fundamentals of eco-
nomic model predictive control,” in Proc. 51st IEEE Conf. Decision
Control (CDC), Maui, HI, Dec. 10-13, 2012, pp. 3851–3861, doi:
10.1109/CDC.2012.6425822.

[56] J. Richalet et al., “Model predictive heuristic control: application to indus-
trial processes,” Automatica, vol. 14, no. 5, pp. 413–428, Sept. 1978, doi:
10.1016/0005-1098(78)90001-8.

[57] P. Schrangl, P. Tkachenko and L. del Re, “Iterative Model Identification of
Nonlinear Systems of Unknown Structure: Systematic Data-Based Model-
ing Utilizing Design of Experiments,” IEEE Control Sys. Mag., vol. 40, no.
3, pp. 26–48, Jun. 2020, doi: 10.1109/MCS.2020.2976388.

[58] D. Shneiderman and Z. J. Palmor, “Properties and control of the quadruple-
tank process with multivariable dead-times,” J. Process Control, vol. 20,
no. 1, pp. 18–28, 2009, doi: 10.1016/j.jprocont.2009.10.010.

[59] D. Smith and H. LeBlanc, “Variable Activation Functions and Spawning in
Neuroevolution,” in Proc. 2018 ASEE North Central Section Conference,
Akron, Ohio, USA, 2018.

25



[60] E. Terzi et al., “Learning-based predictive control of the cooling system of
a large business centre,” Control Eng. Pract., vol. 97, art no. 104348, Apr.
2020, doi: 10.1016/j.conengprac.2020.104348.

[61] M. Udell et al., “Convex optimization in Julia”, First Workshop for High
Performance Technical Computing in Dynamic Languages, New Orleans,
LA, USA, 17-17 Nov. 2014, doi: 10.1109/HPTCDL.2014.5.

[62] A. Vasilyev et al., “Component-based modelling of PEM fuel cells with
bond graphs,” Int. J. Hydrogen Energy, vol. 42, no. 49, pp. 29406–29421,
Dec. 2017, doi: 10.1016/j.ijhydene.2017.09.004.

[63] A. Wächter and T. Biegler, “On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming,” Math.
Program., vol. 106, no. 1, pp. 25–57, Mar. 2006, doi: 10.1007/s10107-004-
0559-y.

[64] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it? A new
look at Signal Fidelity Measures,” IEEE Signal Proc. Mag., vol. 26, no. 1,
pp. 98–117, Jan. 2009, doi: 10.1109/MSP.2008.930649.

[65] A. Weiss et al., “Model predictive control for spacecraft rendezvous and
docking: strategies for handling constraints and case studies,” IEEE Trans.
Control Syst. Technol., vol. 23, no. 4, pp. 1638–1647, Jul. 2015, doi:
10.1109/TCST.2014.2379639.

[66] M. Wetter et al., “Modelica buildings library,” J. Build. Perform. Simul.,
vol. 7, no. 4, pp. 253–270, 2014, doi: 10.1080/19401493.2013.765506.

[67] W. Wong et al., “Recurrent neural network-based model predictive control
for continuous pharmaceutical manufacturing,” Mathematics, vol. 6, no.
11, art no. 242, Nov. 2018, doi: 10.3390/math6110242.

[68] Z. Wu and P. D. Christofides, “Economic Machine-Learning-Based Predic-
tive Control of Nonlinear Systems, ” Mathematics, vol. 7, no. 6, art no.
494, Jun. 2019, doi: 10.3390/math7060494.

[69] L. Yang and A. Shami, “On hyperparameter optimization of machine learn-
ing algorithms: Theory and practice,” Neurocomputing, vol. 415, pp. 295–
316, Nov. 2020, doi: 10.1016/j.neucom.2020.07.061.

[70] X. S. Yang, Nature-inspired metaheuristic algorithms, Frome, United King-
dom, pp. 117–118, 2010.

[71] B.L. Ye et al., “A Survey of Model Predictive Control Methods for Traffic
Signal Control,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 623–640,
May 2019, doi: 10.1109/JAS.2019.1911471.

[72] J. Zhang and I. Mitliagkas, “Yellowfin and the art of momentum tuning,”
Proc. 2nd SysML Conference, Palo Alto, CA, USA, 31 Mar. - 2 Apr., 2019.

26


