
HAL Id: hal-03400151
https://telecom-paris.hal.science/hal-03400151v3

Submitted on 18 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An OPC UA PubSub Implementation Approach for
Memory-Constrained Sensor Devices

Quang-Duy Nguyen, Patrick Bellot, Pierre-Yves Petton

To cite this version:
Quang-Duy Nguyen, Patrick Bellot, Pierre-Yves Petton. An OPC UA PubSub Implementation Ap-
proach for Memory-Constrained Sensor Devices. 2022 IEEE 31st International Symposium on In-
dustrial Electronics (ISIE), IEEE Industrial Electronics Society (IES), Jun 2022, Anchorage, Alaska,
United States. �hal-03400151v3�

https://telecom-paris.hal.science/hal-03400151v3
https://hal.archives-ouvertes.fr


An OPC UA PubSub Implementation Approach for
Memory-Constrained Sensor Devices

Quang-Duy NGUYEN
LTCI, Télécom Paris

Institut Polytechnique de Paris
91120, Palaiseau, France

quanguyen@telecom-paris.fr

Patrick BELLOT
LTCI, Télécom Paris

Institut Polytechnique de Paris
91120, Palaiseau, France

patrick.bellot@telecom-paris.fr

Pierre-Yves PETTON
Departement physique du système Ferroviaire

SNCF - Direction Innovation et Recherche
93210 Saint-Denis, France
pierreyves.petton@sncf.fr

Abstract—Open Platform Communications Unified Architec-
ture (OPC UA) comprises 14 specifications to deploy an industrial
system with reliability, security, and interoperability. While
realizing this standard, the devices of the considering industrial
system must have enough capabilities in computation and storage.
It is a challenge in the Industrial Internet of Things (IIoT), a
scenario in which field-level devices can be memory-constrained
sensor devices. Tailoring OPC UA to fit such devices requires
advanced programming skills; otherwise, system developers must
simplify or remove some essential features of OPC UA. This
paper presents another implementation approach to tailor OPC
UA PubSub, a specification for the publish-subscribe messaging
pattern, into memory-constrained sensor devices. This approach,
titled OPC UA PubSub-C, proposes using a remote OPC UA
server as a configurator to operate large-memory-footprint tasks
for field-level devices.

Index Terms—Industry, IoT, OPC UA, PubSub, Sensor Device,
Memory-constrained, Configuration

I. INTRODUCTION

Industrial Internet of Things (IIoT), together with other
innovations in the industry such as Cyber-Physical Systems
(CPS), form Industrie 4.0 [1]. Technically speaking, the Inter-
net of Things (IoT) is a set of physical objects with communi-
cation capabilities, ranging from resource-constrained sensor
devices to high-computational servers, that exchange data
throughout internet connections. The physical objects in the
IIoT are devices in the industry. One main concern of the IIoT
is to enable memory-constrained sensor devices to work in
industrial environments. Memory-constrained sensor devices
are electronic devices equipped with one or several sensors that
aim to generate sensed data and send them to data consumers.
In general, they have random data access (RAM) memory sizes
ranging from a few kilobytes (KB) to a few megabytes (MB)
and a few MB of read-only memory (ROM). With such a
minimal amount of memory, they can only work with small-
footprint requirement software programs. It is a challenge for
many standards in the industry, which are reliable, secure, and
solid, but also require resources to afford such advantages.

Open Platform Communication Unified Architecture (OPC
UA) is a widely used standard in the industry. It consists
mainly of 14 specifications that provide conventions to deploy
industrial devices, so they can collaborate with reliability,
security, and interoperability. A system based on the OPC UA

specifications is called an OPC UA system. The strong point
of OPC UA is that it supports multiple interoperability levels
[2]. It provides network protocols, security policies, and data
formats solutions, which are fundamental elements for tech-
nical and syntactic interoperability. Also, OPC UA supports
semantic interoperability by providing the address space and
information model mechanisms. In detail, an address space is
a collection of OPC UA nodes. They represent resources of
an OPC UA system following the schema of an information
model [3], [4]. OPC UA nodes can be accessed and discovered
from the other devices. Another strong point of OPC UA
is its scalability. It provides many profiles corresponding to
different features, functionalities, or scenarios [5]. Of which,
each profile is a group of conformance units. A conformance
unit defines the minimum needed facets of OPC UA that must
be carried out in system development.

Two roles engaged in an OPC UA system are data provider
and data consumer. A data provider manages an address
space, generates data, and sends them to one or several
data consumers. Depending on the messaging pattern used
in an OPC UA system, the two roles have different titles.
With the request-response, data providers are servers, and
data consumers are clients. With the publish-subscribe, data
providers are publishers, and data consumers are subscribers.
OPC UA specification 14, also called OPC UA PubSub, is
dedicated to the publish-subscribe messaging pattern [6].

The advantage of OPC UA implies two drawbacks for
memory-constrained sensor devices, which play the role of
data providers. Concerning interoperability, an information
space containing thousands of nodes can consume a signif-
icant amount of memory [7]. Concerning scalability, OPC
UA designs some profiles for memory-constrained embedded
devices, such as Nano Embedded Device Server Profile1

(nano profile) or Micro Embedded Device Server Profile2

(micro profile). However, implementing these profiles involves
removing some OPC UA facets, such as a server with the nano
profile or micro profile has no security in default.

This paper proposes an implementation approach to over-
come the two above drawbacks. In a limited scope, this ap-

1http://opcfoundation.org/UA-Profile/Server/NanoEmbeddedDevice2017
2http://opcfoundation.org/UA-Profile/Server/MicroEmbeddedDevice2017

This is not the final version. For more information, please check: https://ieeexplore.ieee.org/xpl/conhome/1000354/all-proceedings

https://orcid.org/0000-0002-3517-0945
https://orcid.org/0000-0002-1612-2251


proach addresses only OPC UA PubSub. The idea is to create a
version of OPC UA PubSub specified for memory-constrained
sensor devices while respecting all OPC UA specifications,
without reducing the information model or removing OPC
UA facets. This implementation approach, called OPC UA
PubSub-C, produces an OPC UA PubSub system that uses
a configurator to configure all memory-constrained sensor
devices and manage one unified information model for them.
This system is called an OPC UA PubSub-C system. Even
more, the configurator is encouraged to handle other features
of an OPC UA PubSub system defined in specification 14.

The rest of this paper is organized as follows. Section II
presents the background of this paper: the publish-subscribe
communication pattern, OPC UA PubSub, and the memory
consumption factors of an OPC UA PubSub system. Next,
Section III focuses on this research’s contribution: the OPC
UA PubSub-C implementation approach. Section IV details
a proof-of-concept experiment and analyzes its results. Sec-
tion V presents some other OPC UA implementations and
compares them with OPC UA PubSub-C. Finally, Section VI
summarizes the content of this paper and opens a discussion.

II. BACKGROUND

Publish-subscribe messaging pattern, with its advantages of
selective distribution of message and real-time data offering,
becomes an effective communication method in the IoT [8].
OPC foundation provides its version of this messaging pattern
dedicated to OPC UA, called OPC UA PubSub, presented
in specification 14. OPC UA PubSub proposes two modes
of work: broker-less and broker-based. Each mode requires
different resources, then costs differently.

A. Publish-Subscribe Messaging Pattern

The publish-subscribe messaging pattern is an asynchronous
data exchange mechanism, in which some devices perform
as subscribers and some as publishers. A subscriber needs
to subscribe to a data source only once and receive newly
generated data as soon as available. Data sources are parts
of the publisher’s side. Two communication modes between
publishers and subscribers are the broker-based mode and the
broker-less mode. The broker-based mode requires another
computing device playing as a broker. The broker has two
features. The first feature is to manage the information of
data sources and the details required to create links between
publishers and subscribers. This information is called a topic.
When a subscriber subscribes to a topic, it is equivalent to
when the subscriber subscribes to a data source related to
the topic. The second feature of a broker is to collect data
from publishers and forward them to subscribers. In the scope
of this paper, the first feature is called topic management,
and the second feature is called data forwarding. Therefore,
it is possible to say that a broker provides two features:
topic management and data forwarding. A typical example
of the broker-based mode is the MQTT protocol. The broker-
less mode uses the multicast approach to spread new data to
subscribers. Instead of using topics and a broker as in the

broker-based mode, publishers manage a list of subscribers’
addresses or use a default multicast address domain of the
TCP/IP stack. In this sense, the broker-less mode can profit
from the default network infrastructure.

In the IIoT, one typical publisher can be a field-level device
that equips one or several sensors. It is also called a sensor
device. Each sensor of a sensor device is a data source. A
subscriber is a computer that consumes sensed data collected
from sensor devices. In the broker-based mode, a broker
manages topics and forwards data between sensor devices
and data consumers. This broker can be another computer
or a gateway having enough capabilities in computation and
storage. In the broker-less mode, a data consumer can request
sensor devices to add its information, such as the address of the
data consumer, into a custom multicast group on the sensor
devices’ side. Otherwise, when a data consumer and sensor
devices agree to communicate through some default multicast
addresses of the TCP/IP stack, the data consumer only needs
to listen to these multicast addresses.

B. OPC UA PubSub System

OPC UA PubSub adopts the concept of the publish-
subscribe messaging pattern. Also, this specification presents
the other specific features of OPC UA. Figure 1 illustrates
the prototype of an OPC UA PubSub system. A publisher
manages an address space containing nodes representing its
resources. In general, the address space contains a group of
standard nodes defined by OPC UA and a group of nodes
defined in a specific use case. The node identifiers of the
former group link to a namespace titled namespace zero (ns0).
Thus, these nodes are also known as namespace zero nodes.
The nodes in the latter group can be called custom-specific
nodes. New generated data from a node and its additional
information are represented by a dataset field. The dataset
writer encodes the dataset field into a dataset. Then, the
dataset is put into a message. One message may contain
several datasets. The message is sent from the publisher to
the message-oriented middleware (MOM), which is a broker
in the broker-based mode or a device supporting the multicast
mechanism in the broker-less mode. Then, MOM forwards
the message to one or several subscribers. When the message
arrives at a subscriber, the dataset reader of the subscriber
processes the received message. In addition to the above work,
an OPC UA PubSub system also requires three features. First,
registration management is a mechanism for publishers to
be available in the system so that subscribers can query the
list of publishers. Second, dataset metadata management is
a mechanism to exchange dataset metadata which includes
the semantic of a message. Third, security key management
is a mechanism to distribute security information for both
publishers and subscribers.

The broker-less mode of OPC UA PubSub uses the UDP
transport protocol. Moreover, it defines UA Datagram Protocol
(UADP) message mapping and proposes to use binary encod-
ing to serialize data into UADP messages. After serialization,
a UADP message is the payload of a UDP message.



Message Oriented
Middleware

Address
Space

DataSetMetaData 

Security Key Manager
SecurityKey

SecurityKey

Registration Manager

Publisher

Subscribers

Registed Publisher Registed Publishers

Legends:
DataSet Writer DataSet Reader Message

Fig. 1: The prototype of an OPC UA PubSub system

The broker-based mode of OPC UA PubSub reuses the
MQTT and AMQP protocols. Therefore, OPC UA PubSub can
profit from the advantages of these two protocols and can use
MQTT and AMQP brokers available in the market. Moreover,
OPC UA PubSub provides also two profiles called PubSub
MQTT UADP profile3 and PubSub AMQP UADP profile4 that
allows combining them with binary UADP message format.

C. Memory Consumption Factors of OPC UA

While reducing the memory footprint of an application, it
is necessary to find the memory consumption factors. Each
OPC UA communication mode produces a different memory
footprint. This subsection compares all three OPC UA com-
munication modes, including the OPC UA request-response
mode, OPC UA PubSub broker-based mode, and OPC UA
PubSub broker-less mode. There are three criteria to discuss.

First, the address space on the data provider side is the
main factor for the memory cost. Loading a thousand nodes
of an address space requires a significant amount of RAM
[7]. At this point, there is no difference between the three
communication modes: their systems need to manage an
address containing namespace zero and custom-specific nodes.

Second, maintaining connection sessions consumes RAM.
In the OPC UA request-response mode, the communication
between a server and a client relies on TCP protocol. Thus,
they must grant memory to manage their connection sessions.
In the OPC UA PubSub broker-based mode, both MQTT
and AMQP rely on TCP protocol to maintain connections
between a broker and other components of a system. In
this sense, this communication mode consumes memory for
connection sessions. Different from the above, the OPC UA
PubSub broker-less mode uses UDP protocol. UDP protocol
is connectionless, then it has no waste for connection sessions.

Third, the pre-allocated buffer for temporary stocking mes-
sages consumes RAM. It is necessary to calculate the size of
each message format. In general, the size of a binary format
message is much smaller than the size of a JSON or XML

3http://opcfoundation.org/UA-Profile/Transport/pubsub-mqtt-uadp
4http://opcfoundation.org/UA-Profile/Transport/pubsub-amqp-uadp

format message with the same content. All three communica-
tion modes support binary message format. Moreover, the OPC
UA request-response mode also supports XML format, and the
OPC UA broker-based mode also supports JSON format.

Table I summarizes the memory-consumption factors that
affects the three OPC UA communication modes. The first
row, from the second column, lists the three OPC UA com-
munication modes. The first column, from the second row,
lists the criteria corresponding to three categories of factors.
The intersection box between a communication mode and a
criterion is the detail factor that consumes memory.

TABLE I: Memory consumption factors of three OPC UA
communication modes

Factor

Mode
Request-
response

PubSub
broker-based

PubSub
broker-less

Address space Namespace zero and custom-specific nodes

Connection
management

Sessions MQTT or
AMQP sessions

Pre-allocated
buffer

Binary size or
XML size

Binary size or
JSON size

Binary size

III. OPC UA PUBSUB-C
OPC UA PubSub-C is a new approach to implement OPC

UA PubSub systems with memory-constrained sensor devices
as publishers. OPC UA PubSub-C stands for OPC UA PubSub
with a configurator. A configurator is a new role in OPC UA
PubSub-C. The key of OPC UA PubSub-C relies on three
criteria. First, all configurations and parameters are specified
and simplified for sensor devices. Second, OPC UA PubSub-C
systems use a configurator to manage a unified information
model for all sensor devices. Third, a configurator could
support other features required in specification 14, including
registration management, dataset metadata management, secu-
rity key management, topic management, and data forwarding.

A. Configurations and Parameters for Sensor Devices

A sensor device consists of several electronics units: a
microprocessor, memory, power supply, analog-to-digital con-
verter (ADC), network transceiver, and one or several sensors
[9]. Of which, a sensor is a unit that measures a physical
property of a phenomenon. It is necessary to distinguish
between a sensor device and a sensor. While a sensor is a
data source that provides sensed data, a sensor device manages
serialization, security, and transportation. It is easy to see that
in an OPC UA PubSub system, a sensor device can play
the role of a publisher, and a sensor can play the role of
a dataset writer. In this sense, since an OPC UA PubSub-C
system is dedicated to sensor devices, the term "sensor device"
is interchangeable with "publisher" and the term "sensor" is
interchangeable with "dataset writer" in this kind of system.

While considering the memory-consumption factor pre-
sented in Section II-C, OPC UA PubSub-C tends to select the
most lightweight configurations proposed by OPC UA PubSub.
Concerning the data serialization, this approach chooses UA



binary encoding with UADP message mapping to format data.
The reason is that the size of a UADP network message formed
by UA binary encoding is smaller than the other format; thus,
a sensor device can grant less pre-allocated memory for each
message. OPC UA PubSub-C suggests configuring a UADP
network message to contain only datasets generated from one
dataset writer at a time, since sensors may have different
measurement schedules. The field representation should be
DataValue which contains a sensed value, the sensed time in
timestamp format, and the sensor’s status. Concerning security
policy and transport, OPC UA PubSub-C selects to implement
only the profiles in the list proposed by OPC UA PubSub
appropriate to the UADP message mapping. Therefore, the
accepted security policy profiles are PubSub-Aes128-CTR5,
PubSub-Aes256-CTR6, and None7. The accepted transport
profile for the broker-less mode is PubSub UDP UADP8. In
the broker-based mode, to recall, OPC UA PubSub reuses
and supports both MQTT and AMQP protocols. However,
OPC UA PubSub-C uses only the MQTT protocol for com-
munication, since it is designed for lightweight and limited
resources systems [10]. Thus, the accepted transport profile
for the broker-based mode is PubSub MQTT UADP.

In OPC UA specification 14, PublisherId, WriterGroupId,
and DataSetWriterId are three fundamental parameters. In
detail, they are always integrated into a UADP network mes-
sage. A subscriber can further process the message’s payload
based on these parameters. PublisherId is the identifier of
a publisher. In OPC UA PubSub-C, a publisher is a sensor
device; then, this parameter corresponds to the identifier of the
sensor device, and it is called DeviceId. Next, DataSetWriterId
is the identifier of a dataset writer. This parameter corresponds
to the identifier of a sensor in OPC UA PubSub-C. In this case,
it is known by the name SensorId. Finally, WriterGroupId is
the identifier of an abstracted group of dataset writers sharing
one or several similar features. OPC UA PubSub-C simplifies
the dataset writer group into a group of sensors that have the
same security policy profile and transport profile. For short,
this parameter is called GroupId.

The following example is to clarify the meaning of the
above parameters. A weather station is equipped with two
sensors: one pluviometer to measure rain quantity and one
thermometer to measure air temperature. This weather station
is a component of an OPC UA PubSub-C system that imple-
ments the PubSub UDP UADP transport profile and the None
security policy. The unique identifier of this weather station
in this system is a DeviceId. The identifier of its pluviometer
is a SensorId and the identifier of its thermometer is another
SensorId. Since the data from the pluviometer and the data
from the thermometer are secured and sent with the same
method; then, they should be in the same group. The identifier
of this group is a GroupId.

5http://opcfoundation.org/UA/SecurityPolicy#PubSub-Aes128-CTR
6http://opcfoundation.org/UA/SecurityPolicy#PubSub-Aes256-CTR
7http://opcfoundation.org/UA/SecurityPolicy#None
8http://opcfoundation.org/UA-Profile/Transport/pubsub-udp-uadp

B. OPC UA PubSub-C System

Three fundamental roles in an OPC UA PubSub-C system
are publisher, subscriber, and configurator. As an OPC UA
PubSub system, a publisher is a data provider, and a subscriber
is a data consumer. However, a publisher has no address space
management feature, and a message contains only datasets
from one dataset writer. A configurator supports publishers
by featuring address space management. This address space
contains nodes of all publishers in an OPC UA PubSub-C
system. Also, a configurator handles the other two fundamen-
tal features, which are registration management and dataset
metadata management. It can optionally have the security key
management feature. Moreover, in broker-based mode, the
configurator can be a broker; in other words, it provides topic
management and data forwarding features. Figure 2 illustrates
the prototype of an OPC UA PubSub-C system.

Message Oriented
Middleware

Publisher

Subscribers

Address
Space

Configurator

Configuration
Information

Configuration
Information

Registration Manager

Security Key Manager

DataSetMetaData Manager

Broker

Legends:
DataSet Writer DataSet Reader Message

Fig. 2: Prototype of an OPC UA PubSub-C system

The operation of an OPC UA PubSub-C has two phases:
configuration and data exchange. In the configuration phase,
publishers expose their resources, parameters, and require-
ments to the configurator of an OPC UA PubSub-C system.
The configurator uses the information from publishers to
update the address space and sends back configuration in-
formation to publishers. Configuration information means the
information for a component of the system to configure itself.
Also, in this phase, subscribers can request the configurator for
topics. The configurator sends back configuration information
to subscribers. The configuration information for subscribers
differs from the one for publishers. In the data exchange phase,
publishers send messages to subscribers. The destination of the
messages are multicast addresses in the broker-less mode or
is the broker’s address in the broker-based mode.

OPC UA PubSub-C proposes three new messages for the
configuration phase, as follows.

• REGISTER: is a message sent from a publisher to a
configurator. This message has two missions. First, it
contains the default identifier of a sensor of the publisher.
Also, it may contain other information, such as the
security and communication modes that the publisher



supports. They allow the configurator to register the
sensor. Second, the message contains dataset metadata
corresponding to the sensor. The dataset metadata is
necessary for the data exchange phase.

• QUERY: is a message sent from a subscriber to a con-
figurator. This message contains the query content. For
example, a query for a list of registered thermometers and
their dataset metadata. Moreover, it may contain other
information, such as the security and communication
modes that the subscriber supports.

• CONFIGURE: is a message sent from a configurator to a
publisher or a subscriber. This message contains the con-
figuration information required by the publisher or sub-
scriber so that they can start the data exchange phase. On
the one hand, the configuration information fundamental
to a publisher are PublisherId, GroupId, SensorId, the
destination’s address, the destination’s port, the security
mode, and the communication mode. On the other hand, a
subscriber requires available topics, available publishers,
dataset metadata corresponding to topics or publishers,
the security mode, and the communication mode. When
the data exchange of the system uses a security policy
that differs from None, such as PubSub-Aes128-CTR,
the publisher and subscriber also need encryption and
signature keys. In this case, if the configurator features
security key management, a CONFIGURE message will
optionally contain the two above keys.

C. OPC UA PubSub-C in the Broker-less Mode

The configurator of an OPC UA PubSub-C system in
the broker-less mode has three fundamental features: ad-
dress space management, registration management, and dataset
metadata management. Security key management is an op-
tional feature. Figure 3 shows the exchange between publish-
ers, subscribers, and a configurator.

Publisher SubscriberConfigurator

REGISTER

PUBLISH

CONFIGURE
QUERY

CONFIGUREC
on

fig
ur
at
io
n

Fig. 3: Exchanges in the broker-less mode

On the one hand, publishers send REGISTER messages
to the configurator in the configuration phase. A publisher
sends a REGISTER message relevant to each sensor that
it possesses. For example, the weather station in Section
III-A is equipped with one thermometer and one pluviometer;
then, it has two different REGISTER messages. The publisher
repeats to send the message after an interval and waits for
CONFIGURE messages from the configurator. CONFIGURE
messages must contain the information which assigns the
communication mode to broker-less. A sensor is in the data

exchange phase as soon as having enough configuration infor-
mation. In this phase, the publisher encodes the sensed data of
the sensor into a PUBLISH message and sends the message
to destinations. Corresponding to each sensor, the schedule
of sending PUBLISH messages is different. For example, the
weather station sends PUBLISH messages containing the air
temperature every 30 minutes but sends a PUBLISH message
containing the rain quantity every 15 minutes.

On the other hand, subscribers send QUERY messages to
the configurator and wait for CONFIGURE messages in the
configuration phase. CONFIGURE messages must contain the
information which assigns the communication mode to broker-
less. Each subscriber repeats to send the message until having
enough configuration information. It can choose to listen to
one or several multicast addresses and wait for PUBLISH
messages from publishers.

D. OPC UA PubSub-C in the Broker-based Mode

The configurator of an OPC UA PubSub-C system in
the broker-based mode has three fundamental features: ad-
dress space management, registration management, and dataset
metadata management. Security key management is an op-
tional feature. Moreover, in this case, the configurator also
functions as a broker. Then, it provides the data forwarding
feature and the topic management feature. Figure 4 shows the
exchange between publishers, subscribers, and a configurator.

MQTT connection MQTT connection

C
on

fig
ur
at
io
n

Publisher SubscriberConfigurator

REGISTER

SUBSCRIBE
PUBLISH

CONFIGURE

PUBLISH

QUERY

CONFIGURE

Fig. 4: Exchanges in the broker-based mode

The configuration phase in the broker-based mode has many
commons with the one in the broker-less mode presented in
Section III-C. The difference is that CONFIGURE messages
of the broker-based mode contain the information indicating
the communication mode is broker-based.

In the data exchange phase, publishers and subscribers must
establish MQTT connections with the configurator. Techni-
cally speaking, publishers and subscribers are MQTT clients,
the configurator is a broker, and the MQTT connections
between them are established and maintained based on four
MQTT messages: CONNECT, CONNACK, PINGREQ, and
PINGRESP [11]. Next, subscribers send SUBSCRIBE mes-
sages to the configurator to subscribe to topics. When a
publisher sends a PUBLISH message to the configurator, it
classifies the received PUBLISH message and forwards it to
subscribers based on the subscribed topics.



IV. EXPERIMENTATION AND RESULT

The experimental platform comprises three fundamental
components: a publisher, a subscriber, and a configurator. The
three components connect to a TCP/IP local network. Figure 5
illustrates the infrastructural architecture of the platform. This
platform can run in the broker-less or in broker-based mode.

Configurator

Publisher Subscriber

Thermometer

Pluviometer

Features: 
 - Information Model Management
 - Registration Management
 - Dataset MetaData Management
 - Security Key Management
 - Topic Management (broker)
 - Data Forwarding (broker)

Legends:

Component

Data Source

Fig. 5: Infrastructural architecture of the experimental platform

The publisher is equipped with two sources of data, im-
itating the sensed data from one thermometer and one plu-
viometer. The thermometer is an air temperature sensor, and
the pluviometer is a rain quantity sensor. Each source of data
processes a SensorID. The application of the publisher is
developed on the framework of the Zephyr real-time operating
system (RTOS). Zephyr RTOS (https://zephyrproject.org/) is
a small-footprint kernel designed for use on a resource-
constrained embedded system. An application developed on
Zephyr RTOS is called a Zephyr application. While imple-
menting the Zephyr application for the publisher, in addition
to the Zephyr core libraries, the Zephyr built-in mbedTLS
and MQTT API are also used. The Zephyr built-in mbedTLS
provides functions to implement security policy profiles. The
Zephyr MQTT provides functions for the MQTT protocol.

The Open62541 (https://open62541.org/) library is used to
develop the application of the configurator. This application
profits from the advantages of Open62541 in managing address
space. It also turns the configurator into an OPC UA server.
The configurator in this experiment provides five features.
First, it manages the address space that contains all nodes
representing publishers’ resources corresponding to address
space management. Second, it manages the list of configura-
tion information of publishers corresponding to the registration
management. Third, it manages the list of dataset metadata
corresponding to dataset metadata management. Finally, it runs
Eclipse Mosquitto (https://mosquitto.org/), an open-source and
lightweight MQTT broker, in a subprocess to turns itself
into a broker. As a broker, it provides two more features:
topic management and data forwarding features. Finally, it
distributes encryption and signature keys to the publisher
and subscriber. This experimental platform uses the PubSub-
Aes128-CTR security policy; then, the length of the encryption
key is 16 bytes, and the length of the signatures key is 32 bytes.

The subscriber’s application is developed using Node-Red
(https://nodered.org/). Node-Red is a flow-based programming
tool that allows building an application by configuring and
wiring Node-Red nodes. A Node-Red node is a functional unit

of the Node-Red tool that performs one or several predefined
tasks. The application developed by Node-Red provides a
friendly web browser graphical user interface. The subscriber’s
application can monitor air temperature and rain quantity
value data derived from the publisher and projects them in
two graphs. Figure 6 shows a screenshot of the subscriber’s
application when the experimental platform is running.

Fig. 6: Screenshot of the subscriber’s application

This research uses several tools to evaluate the exper-
imentation. The first tool is a UaExpert (https://unified-
automation.com), a full-featured OPC UA Client of Unified
Automation GmbH. This tool allows users to access the
address space of an OPC UA server. In this project, this tool
access the address space located in the configurator. Figure 7
shows the address space and attribute windows on the screen
of UaExpert after the configurator receiving a REGISTER
message from the publisher. In detail, the configurator adds
new objects representing the publisher and its sensors. The
configurator creates a new identifier (NodeId) for each object.
It uses the information provided by the publisher to assigns
the name, description, and data type attributes.

Fig. 7: UaExpert’s address space and attribute windows

The second and third tools are the RAM report and ROM
report, two tools of the Zephyr project. By using these two
tools, users can view the reports of memory consumption of a
Zephyr application. In evaluation with different security policy
and transport profiles presented in Section III-A, the produced
maximal RAM is always smaller than 48 KB, and the produced
maximal ROM is always smaller than 96 KB.

V. RELATED WORK

Many research works concern integrating OPC UA for field
devices, of which the challenge is still tailoring OPC UA into
devices with limited memory size. The first approach is to
implement OPC UA nano or micro profiles. These two profiles
have fewer OPC UA conformance units than the standard
version, such as they include no security mechanism. Imtiaz



et al. claimed the core of their OPC UA server implemented
OPC UA nano profile only needs 15 KB of ROM, and a low
amount of RAM [12]. Note that the above memory footprint
reflects only the functions of OPC UA conformance units.
However, the memory footprint of their application, including
the information model with the nodes of namespace zero
and the nodes of their light sensor process application, is
unspecified. Pribiš et al. deployed a demo with embedded
devices implemented in the OPC UA micro profile [13]. The
information model used in this demo includes the nodes of
namespace zero and their custom-specific application nodes.
Their devices are equipped with 512 KB of RAM and 2 MB
of ROM. Another work of Pfrommer et al. using open62541
library to build an OPC UA server which only needs 100 KB of
both RAM and ROM [14]. It declared to use OPC UA PubSub
with a minimal set of activated features; however, there is no
further detail about the features that this system can provide.

The second approach is to reduce the size of OPC UA
implementation by using special techniques to optimize the
software or hardware of an embedded device. Veichtbauer et
al. propose a software prototype and a technique to load nodes
of an information system when they are queried [7]. As result,
the memory utilization of their OPC UA server is between
1000 KB and 1900 KB. The implementation of Bauer et al.
is an optimal OPC UA hardware engine following the OPC
UA nano profile [15]. The hardware engine is integrated into
a test chip and requires only 36 KB of memory.

The approach of OPC UA PubSub-C is different from the
above ones. It proposes to use a configurator to support other
components in an OPC UA PubSub-C system to accomplish
their goals. While a configurator occupies the heavy works for
memory-constrained sensor devices, such devices can reserve
their memory for other works. The idea of OPC UA PubSub-C
is inspired by the work of Liu et al. [16]. They use an OPC
UA MQTT Configuration Tool to support OPC UA PubSub
systems. However, their tool aims only to configure parameters
in publishers and subscribers distantly but provides no other
OPC UA PubSub features as the configurator in this paper.

VI. CONCLUSION

To sum up, this paper presents OPC UA PubSub-C, an OPC
UA PubSub implementation approach for memory-constrained
sensor devices. The difference of OPC UA PubSub-C to other
implementations in the market is that it uses a new component
called configurator to manage the address space of all sensor
devices in the system and to provides other features defined
in OPC UA PubSub. OPC UA PubSub-C systems can work
both in the broker-less and broker-based modes. In practice,
this approach proves that it can fit sensor devices that require
less than 48 KB of RAM and 96 KB of ROM.

This research has two points to discuss further. First, the
broker-less mode can work in the local network. However,
the Intranet or Internet requires routers to have a multicast
routing feature. An OPC UA PubSub-C system that uses
these routers must configure them to recognize the multicast
addresses available in the system. The broker-based mode can

avoid the above inconvenience since the broker can connect to
the intranet and internet to forward data. However, the broker
itself is a weak point: when it is disabled by accident or by a
cyberattack, the whole system is down.

Second, the messages REGISTER, QUERY, and CONFIG-
URE in this paper are only prototypical. In practice, they
should be in a widely accepted format, such as JSON. As
if it happens, the REGISTER message in JSON format should
be simple, since a complex message involves a complex data
parsing process; that also means more memory consumption.

ACKNOWLEDGMENT

This research is funded by SNCF, the France’s national
railway company.

REFERENCES

[1] Y. Lu, “Industry 4.0: A survey on technologies, applications and open
research issues,” Journal of Industrial Information Integration, p. 10,
June 2017.

[2] S. Profanter, A. Tekat, K. Dorofeev, M. Rickert, and A. Knoll, “OPC
UA versus ROS, DDS, and MQTT: Performance Evaluation of Industry
4.0 Protocols,” in 2019 IEEE International Conference on Industrial
Technology (ICIT). Melbourne, VIC, Australia: IEEE, February 2019,
pp. 955–962.

[3] OPC Foundation, “OPC Unified Architecture - Part 3: Address Space
Model,” Industry Standard Specification OPC 10000-3, 2017.

[4] OPC Foundation, “OPC Unified Architecture - Part 5: Information
Model,” Industry Standard Specification OPC 10000-5, 2017.

[5] OPC Foundation, “OPC Unified Architecture - Part 7: Profiles,” Industry
Standard Specification OPC 10000-7, November 2017.

[6] OPC Foundation, “OPC Unified Architecture - Part 14: PubSub,” Indus-
try Standard Specification OPC 10000-14, February 2018.

[7] A. Veichtlbauer, M. Ortmayer, and T. Heistracher, “OPC UA integration
for field devices,” in 2017 IEEE 15th International Conference on
Industrial Informatics (INDIN), July 2017, pp. 419–424.

[8] D. Happ, N. Karowski, T. Menzel, V. Handziski, and A. Wolisz,
“Meeting IoT platform requirements with open pub/sub solutions,”
Annals of Telecommunications, vol. 72, no. 1-2, pp. 41–52, February
2017.

[9] V. Romanov, I. Galelyuka, and Y. Sarakhan, “Wireless sensor networks
in agriculture,” in 2015 IEEE Seventh International Conference on
Intelligent Computing and Information Systems (ICICIS). Cairo, Egypt:
IEEE, December 2015, pp. 77–80.

[10] N. Q. Uy and V. H. Nam, “A comparison of AMQP and MQTT
protocols for Internet of Things,” in 2019 6th NAFOSTED Conference
on Information and Computer Science (NICS). Hanoi, Vietnam: IEEE,
December 2019, pp. 292–297.

[11] OASIS, “MQTT Version 3.1.1,” OASIS Open, OASIS Standard, Septem-
ber 2014.

[12] J. Imtiaz and J. Jasperneite, “Scalability of OPC-UA down to the chip
level enables Internet of Things,” in 2013 11th IEEE International
Conference on Industrial Informatics (INDIN). Bochum, Germany:
IEEE, July 2013, pp. 500–505.

[13] R. Pribiš, L. Beňo, and P. Drahoš, “Implementation of Micro embedded
OPC Unified Architecture server-client,” IFAC-PapersOnLine, vol. 52,
no. 27, pp. 114–120, 2019.

[14] J. Pfrommer, A. Ebner, S. Ravikumar, and B. Karunakaran, “Open
Source OPC UA PubSub Over TSN for Realtime Industrial Commu-
nication,” in 2018 IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA). Turin: IEEE, September
2018, pp. 1087–1090.

[15] H. Bauer, S. Höppner, C. Iatrou, Z. Charania, S. Hartmann, S.-U.
Rehman, A. Dixius, G. Ellguth, D. Walter, J. Uhlig, F. Neumärker,
M. Berthel, M. Stolba, F. Kelber, L. Urbas, and C. Mayr, “Hardware
implementation of an opc ua server for industrial field devices,” ArXiv,
vol. abs/2105.00789, 2021.

[16] Z. Liu and P. Bellot, “OPC UA PubSub Implementation and Configura-
tion,” in 2019 6th International Conference on Systems and Informatics
(ICSAI). Shanghai, China: IEEE, November 2019, pp. 1063–1068.


	Introduction
	Background
	Publish-Subscribe Messaging Pattern
	OPC UA PubSub System
	Memory Consumption Factors of OPC UA

	OPC UA PubSub-C
	Configurations and Parameters for Sensor Devices
	OPC UA PubSub-C System
	OPC UA PubSub-C in the Broker-less Mode
	OPC UA PubSub-C in the Broker-based Mode

	Experimentation and Result
	Related Work
	Conclusion
	References

