
HAL Id: hal-03368229
https://hal.science/hal-03368229

Submitted on 6 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tabu Search Algorithm for Single and Multi-model Line
Balancing Problems

Mohamed Amine Abdeljaouad, Nathalie Klement

To cite this version:
Mohamed Amine Abdeljaouad, Nathalie Klement. Tabu Search Algorithm for Single and Multi-model
Line Balancing Problems. APMS 2021: Advances in Production Management Systems. Artificial
Intelligence for Sustainable and Resilient Production Systems, Sep 2021, Nantes, France. pp.409-415,
�10.1007/978-3-030-85874-2_43�. �hal-03368229�

https://hal.science/hal-03368229
https://hal.archives-ouvertes.fr

Tabu search algorithm for single and multi-model line

Balancing problems

Mohamed Amine Abdeljaouad1 and Nathalie Klement2

1 CEA Tech Hauts-de-France, 165 Avenue de Bretagne, Lille, 59000 France
mohamed-amine.abdeljaouad@cea.fr

2 Arts et Métiers Institute of Technology, LISPEN, HESAM Université, Lille, France
Nathalie.klement@ensam.eu

Abstract. This paper deals with the assembly line balancing issue. The
considered objective is to minimize the weighted sum of products’ cycle times.
The originality of this objective is that it is the generalization of the cycle time
minimization used in single-model lines (SALBP) to the multi-model case
(MALBP). An optimization algorithm made of a heuristic and a tabu-search
method is presented and evaluated through an experimental study carried out on
several and various randomly generated instances for both the single and multi-
product cases. The returned solutions are compared to optimal solutions given by
a mathematical model from the literature and to a proposed lower bound inspired
from the classical SALBP bound. The results show that the algorithm is high
performing as the average relative gap between them is quite low for both
problems.

Keywords: Line balancing, optimization, tabu search. SALBP, MALBP

1 Introduction

Since their first use in 1913 as part of the Ford automotive manufacturing process,
assembly lines have spread all over the world. They are now one of the main forms of
industrial production, as they significantly reduce the manufacturing time, increasing
thus the productivity. They also reduce the needed workforce and therefore the
production costs.

The performance of an assembly line depends on various factors. Finding a good
balancing of the workload over the line’s stations is one of the most important. Several
line-balancing problems have been dealt with in the literature. A review on the issue
can be found in [18]. Assembly line balancing problems can first be classified according
to the number of models (types of product) that the line can produce: we distinguish
between single-model assembly line balancing problems (SALBP), where a unique
type of product is produced, and the mixed/multi-model assembly line balancing
problems (MALBP) where the outcomes are products of different types . Line balancing
problems can also be classified according to the type of the line (serial line, line with
parallel workstations…) and the durations of the operations (deterministic or
stochastic).

mailto:mohamed-amine.abdeljaouad@cea.fr
mailto:Nathalie.klement@ensam.eu

2

Different objective functions and constraints have been considered by researchers.
The most known objective functions for single-model lines are the minimization of the
number of workstations for a given cycle time (type SALBP-1) and the minimizat ion
of the cycle time (type SALBP-2) for a given number of workstations [17]. Of course,
this list is not exhaustive. In MALB problems, the objectives are more sophisticated.
To name a few, we can mention the reduction of the assembly cost [20], the labor cost
[22], the line idle time [16] or the smoothness index [15]. As for the other operational
research problems, the methods used for the balancing of assembly lines can be exact
or approximate. Exact methods range from mathematical programming [6, 9] to branch
and bound [12, 14], among others. However, as line balancing problems are usually
NP-hard, exact methods cannot solve big-sized instances in a reasonable time. The
alternative is therefore to use heuristic methods, which can quickly find satisfying
solutions. Various kind of heuristics have been proposed for SALBP and MALBP [7,
11, 21]. Most of the time, the heuristic methods are combined with a metaheuristic that
allows to visit more solutions and thus to improve the qua lity of the heuristic’s one [8].
Different kind of metaheuristics have been used; we can mention simulated annealing
[4, 13], tabu search [3, 19], genetic algorithms [2, 5] or ant colony optimization [1].

In this paper, we deal with a line balancing problem where the objective is to
minimize the weighted sum of products’ cycle times (i.e. the weighted sum of the
maximum time each type of product spends on a workstation), where the weight of each
product represents its ratio among all the demanded quantity. This objective, introduced
by [22] as part of a multi-objective MALB optimization problem, can be applied for
both the MALBP and the SALBP (where it will be equivalent to the minimization of
cycle time, i.e. the maximum of the sum of task times assigned to each workstation).
Therefore, we will treat both cases in this work, and provide an optimization algorithm
that will be tested on single and multi-models instances. The rest of the constraints of
the problems are the following: 𝑛 operations have to be assigned to 𝑚 serial
workstations. Each operation can be assigned to any workstation but the precedence
constraints should be respected: an operation 𝑖 cannot be assigned to a station 𝑘1 if one
of its predecessors 𝑗 is assigned to a workstation 𝑘2 such that index 𝑘1 < 𝑘2 . We
consider that the durations of the operations are deterministic. Apart from the
workstations, all the other resources needed for the processing of the operations (such
as workers or tools) are assumed available. This issue is NP-hard [10].

The rest of the paper is structured as follows: In section 2, an optimization algorithm,
based on a heuristic and a tabu-search metaheuristic is presented. In section 3, we carry
out an experimental study to assess the performance of our algorithm and we conclude
the paper in section 4 with our remark and perspectives.

2 Tabu search algorithm

The proposed solving method is made of a heuristic and a metaheuristic. The heuristic
leads to an initial feasible solution and is based on the computation of a lower bound.
This bound is inspired from the classical bound of SALBP-2 given in equation (1), with 𝐽 being the number of product types, 𝑚 the number of workstations, 𝑛𝑗 the number of

3

operations required by product type 𝑗 and 𝑝𝑖 the processing time of operation 𝑖. The
latter is calculated for each product model and the lower bound for our problem is thus
equal to the weighted sum of these cycle time bounds, as specified in equation (2),
where 𝑤𝑗 is the demand proportion for product model 𝑗. 𝐿𝐵𝑗 = max (𝑚𝑎𝑥 𝑖=1,…𝑛𝑗(𝑝𝑖), ∑ 𝑝𝑖𝑚𝑛𝑗

𝑖 =1) ∀𝑗 = 1, … 𝐽 (1)

𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = ∑ 𝑤𝑗𝐿𝐵𝑗 (2)𝐽
𝑗=1

The heuristic starts by sorting the operations on the basis of their precedence
constraints. It puts them into groups as follows: group 1 contains the operations that do
not have a predecessor, group 2 contains the operations whose predecessors are in group
1, group 3 contains the operations whose predecessors are in groups 1 and 2, and so on.
The operations within each group are then sorted in the decreasing order of the number
of their successors and, in case of a tie, in the decreasing order of the sum of their
successors’ processing times.

The heuristic then browses the operations group by group, in that order, and assigns
them to the workstations , starting by station 𝑘 = 1. At each iteration 𝑖, it selects the
first non-assigned operation 𝑜 from the group and assigns it to a workstation, according
to the rule given below, with 𝑆𝑗𝑘 being the sum of the operations’ processing times of

product type 𝑗 that are already assigned to station 𝑘 at iteration 𝑖:
- If assigning operation 𝑜 to station 𝑘 reduce the gap between the value ∑ 𝑤𝑗𝑆𝑗𝑘𝐽𝑗=1 and the 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 , or if 𝑘 = 𝑚, then assign 𝑜 to station 𝑘.

- Otherwise: 𝑘 ← 𝑘 + 1
The solution returned by the heuristic is then used as input for a tabu search

algorithm that tries to improve it. The latter’s main steps are given in Algorithm 1.

Algorithm 1: Tabu search

Input, data: Initial solution 𝑆, stopping criterion 𝑐, size of the tabu list 𝑡𝑠;
Initialization: Best solution  𝑆; Current solution  𝑆; 𝑖  0; Tabu List  ∅;
while 𝑖 < 𝑐 do

for each product type 𝑗 do
 Select station 𝑘 on which 𝑗 has the longest processing time
 Randomly select one of the operations 𝑖 of 𝑗 on 𝑘 with 𝑖 ∉ Tabu List

 Move 𝑖 to either station 𝑘 − 1 and 𝑘 + 1 (the less loaded one if the
 precedence constraints are respected)
 Compute the new solution 𝑆𝑗

 Current solution  𝑚𝑖𝑛𝑗 =1,…𝐽(𝑆𝑗) ;
Add the moved operation 𝑖 to Tabu List for 𝑡𝑠 iterations;

 if Current solution < Best solution then

 Best solution  Current solution
 else 𝑖  𝑖 + 1
return (Best Solution)

4

The idea behind choosing a tabu search method is to create a solution neighborhood

structure for each product type: At each iteration and for each product type, the tabu
search algorithm selects the workstation on which the selected type has its longest
processing time and moves one of its operations to another station, by respecting the
precedence constraints. The new obtained solutions are then compared and the best one
is kept. The moved operation is added to a tabu list during a certain number of iterations,
to prevent the algorithm from being stuck in the same movements’ loop .

A neighborhood structure based on the different product types seems useful since
the considered objective directly depends on the cycle time of each model. This
structure can ease the search process of efficient and high-quality solutions. To the best
of our knowledge, this kind of neighborhood was never used before for multi-model
balancing optimization. The algorithm repeats this process and stops after a certain
number of consecutive iterations without improving the solution.

3 Experimental study

Although there are many benchmark instances from line balancing literature, only few
of them are made for MALB problems. Moreover, to the best of our knowledge, there
is no comparative study dealing with the same objective function. Therefore, we choose
to test the proposed algorithm on several randomly generated instances, where the
durations, the precedence cons traints and the repartition of the operations over the
product types are generated given some probability parameters . We generated two
families of instances: small-sized and big-sized. For the small-sized ones, we compared
the algorithm’s solutions to optimal solutions, obtained with a mathematical model
inspired from the formulation presented in [22]. These small-sized instances are made
of {10, 20, 50} operations, {3, 5, 6} workstations and {1, 3, 5} product types. The big-
sized ones are made of {100, 200} operations, {6, 10, 15, 20} workstations and {1, 3,
5} product types. For these latter instances, the returned solutions are compared to the
lower bound, since the optimal solving of these instances with the mathematical model
cannot be done in a reasonable time. For each size, 5 instances are tested, for a total of
225 tests. The durations of the operations are generated with a uniform distribution in
[1, 99]. The precedence relationship between the operations and the repartition of the
operations over the different product types are generated based on data from a real life
assembly line manufacturing pneumatic cylinders .

All the instances were quickly solved by our algorithm. Those with 200 operations
and multiple products required between 1 and 3 minutes to be solved, while the other
instances took only a few seconds. As it is expected from an approximate approach, the
proposed method thus shows its ability to solve rather quickly big-sized instances of
this NP-hard problem, for which the mathematical solving may take hours. Table 1 and
Table 2 display the results obtained for the small-sized and big-sized instances,
respectively. In Table 1, the ‘GLB’ column gives the average relative gap between the
lower bound calculated in equation (2) and the optimal solutions, while the ‘GSol’
column gives the average relative gap between the algorithm’s solutions and the

5

optimal ones. In Table 2, the ‘Products’ columns display the average relative gap
between the obtained solutions and the lower bound.

As we can see from Table 1, our algorithm is high performing for both the single
and multiple products instances, with a 0.99% overall average relative gap to the
optimal solutions. This is confirmed by a 42.2% rate of optimal solutions among those
returned by the algorithm. Table 1 also shows that the algorithm’s solutions are closer
to the optimal ones than the lower bound, whose average relative gap is higher (about
6.3%). This gap between the bound and the optimal solutions helps to explain the
behavior of our algorithm for the big-sized instances: Indeed, even if the average
relative gap between the algorithm’s solutions and the lower bound is a bit higher in
Table 2, this may be due to the gap between the bound itself and the optimal solutions.
The results of our algorithm are therefore also promising for the big-sized instances.

Table 1. Results for the small-sized instances.

Operations Stations
Products

1 3 5

GLB GSol GLB GSol GLB GSol

10

3 2.26 0.76 12.47 0 16.07 0
5 12.89 0 13.33 0.29 7.5 0.19
6 7.24 1.89 8.28 0 0.21 0

20

3 1 0 5.29 0.16 8.93 0.26
5 3.58 0.62 9.47 1.43 13.99 1.4
6 2.77 1.94 11.36 1.8 13.93 2.74

50

3 0 0.07 0.77 0.9 1.88 0.74
5 0 0.53 2.12 2.44 3.63 2.4
6 0 0.84 2.51 2.4 8.98 3.2

Average 3.3% 0.73% 7.28% 1.04% 8.34% 1.21%

Table 2. Results for the big-sized instances

Operations Stations
Products

1 3 5

100
6 0.78 4.34 5.04
10 1.5 7.46 9.64
15 2.81 12.42 15.01

200

6 0.17 2.22 2.87
10 0.56 4.43 6.26
20 1.29 10.44 12.81

Average 1.18% 6.88% 8.6%

4 Conclusion

In this paper, an optimization algorithm based on a tabu search procedure is presented
to solve a line-balancing problem. The objective is to minimize a weighted sum of the

6

product cycle times, where the weights represent the demand-ratio for each product.
The algorithm is tested on both single-model and multi-model problems and the results
obtained show that the outcomes are very satisfying in both cases, with a close average
relative gap to the optimal solutions and to the lower bound.

The next step of this work is to test the algorithm for other objective functions for
the multi-model line-balancing problems. As a perspective, the balancing obtained for
these different objective functions can also be compared through a simulation for
example, in order to analyze their impact on the production, considering various
constraints. Future work also includes the experimentations of other heuristics to
provide the initial solutions for the tabu search algorithm and testing the method on a
real assembly line. A case-study line producing several models of pneumatic cylinders
has already been linked with this project.

References

1. Akpinar S., Bayhan G.M., Baykasoglu A. Hybridizing ant colony optimization via genetic
algorithm for mixed-model assembly line balancing problem with sequence dependent setup
times between tasks. Applied Soft Computing, 13, 574–589 (2013)

2. Alavidoost M.H., Fazel Zarandi M.H., Tarimoradi M., Nemati Y.: Modified genetic
algorithm for simple straight and U-shaped assembly line balancing with fuzzy processing
times. Journal of Intelligent Manufacturing, 28, 313-336 (2017).

3. Arikan M.: Type-2 assembly line balancing with workload smoothing objective: A reactive
tabu search algorithm. Gazi University Journal of Science, 34(1), 162-178 (2021).

4. Baykasoglu A.: Multi-rule multi-objective simulated annealing algorithm for straight and U
type assembly line balancing problems. Journal of Intelligent Manufacturing 17:217–232
(2006)

5. Chong K.E., Omar, M.K., Baker N.A. Solving assembly line balancing problem using
genetic algorithm with heuristic treated initial population. Proceedings of the World
Congress on Engineering, 978-988 (2008)

6. Çil Z.A., Li Z., Mete S., Özceylan E.: Mathematical model and bee algorithms for mixed-
model assembly line balancing problem with physical human-robot collaboration.

7. Chutima P, Olanviwatchai P Mixed model U shaped assembly line balancing problem with
coincidence memetic algorithm. Journal of Software Engineering and Applications, 3, 347–
363 (2010)

8. Fatini D.M., Mohammad F.R., Mohd Z.Z.: A review on hybrid metaheuristics in solving
assembly line balancing problem. AIP Conference Proceedings, 2138(1) (2019).

9. Gokcen H, Erel E. Binary integer formulation for mixed model assembly line balancing
problem. Computers & Industrial Engineering, 34(2): 451–461 (1998)

10. Gutjahr, A.L., Nemhauser, G.L.: An algorithm for the line balancing problem. Management
Science, 11(2), 308-315 (1964).

11. Kilincci O.: A Petri net-based heuristic for simple assembly line balancing problem of type
2 The international Journal of Advanced Manufacturing Technology 46, 329– 338 (2010)

12. Klein, R., Scholl, A.: Maximizing the production rate in simple assembly line balancing —
A branch and bound procedure. European Journal of Operational Research, 91(2), 367-385
(1996).

13. Lalaoui M., El Afia, A.: A fuzzy generalized simulated annealing for a simple assembly line
balancing problem. IFAC-PapersOnLine, 51(32), 600-605 (2018)

7

14. Li Z., Kucukkoc I., Zhang Z.: Branch, bound and remember algorithm for U-shaped
assembly line balancing problem. Computers & Industrial Engineering, 124, 24-35 (2018).

15. Roshani A., Roshani A., Roshani A., Salehi M., Esfandyari A.: A simulated annealing
algorithm for multi-manned assembly line balancing problem. Journal of Manufacturing
Systems, 32, 238– 247 (2013)

16. Sarker B.R., Pan H. Designing a mixed-model assembly line to minimize the costs of idle
and utility times. Computers and Industrial Engineering, 34(3), 609-628 (2001)

17. Scholl, A., Becker, C. State-of-the-art Exact and Heuristic Solution Procedures for Simple
Assembly Line Balancing. European Journal of Operational Research, 168(3), 666-693
(2006).

18. Sivasankaran P., Shahabudeen P.: Literature review of assembly line balancing problems.
The international Journal of Advanced Manufacturing Technology, 73, 1665-1694 (2014).

19. Suwannarongsri S, Limnararat S.: A hybrid tabu search method for assembly line balancing.
Proceedings of the 7th international conference on simulation (modelling and optimization)
China (2007).

20. Tseng Y.J., Chen J.Y., Huang F.Y.: A multi-plant assembly sequence planning model with
integrated assembly sequence planning and plant assignment using GA. The international
Journal of Advanced Manufacturing Technology, 48, 333-345 (2010).

21. Yeh D.H., Kao H.H.: A new bidirectional heuristic for the assembly line balancing problem.
Computers & Industrial Engineering, 57, 1155–1160 (2009)

22. Zhang W., Gen, M.: An efficient multi-objective genetic algorithm for mixed-model
assembly line balancing problem considering demand ratio-based cycle time. Journal of
Intelligent Manufacturing, 22, 367–78 (2011).

