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Jean-Christopheb, Moretti Robertob,e, Malfante Mariellef, Beauducel Françoisb, Saurel Jean-Marieb,
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Abstract

The classification of seismo-volcanic signals is performed manually at La Soufrière Volcano, which is time
consuming and can be biased by subjectivity of the operator. We propose here a machine-learning-based
model for classification of these signals, to handle large datasets and provide objective and reproducible
results. To describe the properties of the signals, we used 104 statistical, entropy, and shape descriptor
features computed from the time waveform, the spectrum, and the cepstrum. First, we trained a random
forest classifier with a dataset provided by the Observatoire Volcanologique et Sismologique de Guadeloupe
that consisted of 845 labeled events that were recorded from 2013 to 2018: 542 volcano-tectonic (VT); 217
Nested; and 86 long period (LP). We obtained an overalll accuracy of 72%. We determined that the VT
class includes a variety of signals that cover the VT, Nested and LP classes. After visual inspection of the
waveforms and spectral characteristics of the dataset, we introduced two new classes: Hybrid and Tornillo.
A new random forest classifier was trained with this new information, and we obtained a much better overall
accuracy of 82%. The model is very good for recognition of all event classes, except Hybrid events (67%
accuracy, 70% precision). Hybrid events are often considered to be a mix of VT and LP events. This can be
explained by the nature of this class and the physical processes that include both fracturing and resonating
components with different modal frequencies. By analyzing the feature weights and by training a model
with the most important features, we show that a subset of the 14 best features is sufficient to obtain a
performance that is close to that of the model with the whole feature set. However, these best features are
different from the 13 best features obtained for another volcano in Peru, with only one feature common to
both sets of best features. Therefore, the model is not universal and it must be trained for each volcano, or
it is too specific to the one station used here.

Keywords: Seismology, Volcano, La Soufrière, Classification, Machine Learning

1. Introduction

Volcanoes are highly complex nonlinear systems where their behavior reflects a diversity of internal hidden
processes that can lead to their unrest and eruptive activity. Volcano monitoring rests on the paradigm that
various observable parameters have a more or less direct causal link to these complex processes and to the
internal variables of the system, as well as to a series of forcing and modulating processes. Although unrest
is often linked to rate-dependent processes, this is not always the case, as sometimes just the absence or
presence of some observables can provide very valuable insight into the dynamics of these systems. Volcano
monitoring is crucial to evaluate the state of activity of a restless volcano, and to determine the likelihood of a
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future eruption, along with the probable temporal window of such an occurrence. Hence, volcano monitoring
constitutes one of the pillars of the scientific methods that contribute to mitigate the risks to human societies.
Among the many disciplines used in volcano monitoring, which include geodesy, geochemistry, gravimetry,
geophysical imaging, thermal monitoring, acoustics, and physical volcanology, seismology remains one of the
most widely developed. Seismology can provide an often overwhelming wealth of high-resolution continuous
real-time data from networks of sensors deployed on volcanoes, both on land and on the sea floor.

Optimal seismic monitoring requires the detection, location, magnitude quantification, and classification
of large numbers of volcano-seismic signals, and it must be performed daily at volcano observatories. Given
the vast progress in volcano seismology in recent decades and the high-resolution monitoring of numerous
very active volcanoes, there is now a corpus of knowledge that allows the association of the different types
of seismic signals recorded at volcanoes to different source processes with greater certainty (e.g., McNutt et
al. (2005); Chouet and Matoza (2013); McNutt and Roman (2015)). Thus, together with other monitoring
data, volcanic seismicity constitutes a fundamental tool to track the evolution of the dynamics of volcanic
activity in time and space, to provide timely forecasts of the likelihood of future scenarios in a context of
uncertainty, which is intrinsic to the behavior of such complex nonlinear systems. The occurrence of some
events might be precursors of volcanic eruptions, and as such, can be used in early warning systems.

However, while the detection work is now mostly automatic, the classification task is often performed
manually. The manual classification tasks are limited, and there are several factors that can decrease the
robustness of the labeling. The classification is based on the subjective judgement of the operator, so if the
task is performed by several people, the resulting classification criteria can vary from one person to another.
This work also has to be carried out in near real-time, while there can be huge amounts of data to deal with,
in particular during periods of volcanic crises, when the scientific interpretation needs to be rapid and timely,
so that the required advice can be provided by scientists to the authorities to assist in their decision-making
processes that are designed to mitigate the risks to the population and the critical infrastructures. With
the constantly increasing volumes of data and the limitations of the manual classification, the development
of automatic tools using a machine-learning approach to rapidly classify these volcanic seismic signals as
accurately as possible is essential for spatio-temporal interpretation and process modeling of the data, as
well as for pattern recognition. This methodology thus has the potential to significantly improve the timely
tracking and analysis of volcanic unrest and the forecasting of its possible evolution.

The machine learning methodology consists of training an algorithm to do a task, here assigning a seismic
class to a volcanic event. However, rather than analyzing the waveform of the signal, we transform this signal
into a set of features that describes its characteristics. Then, the role of the machine-learning algorithm
is to define boundaries in the feature space that specifically correspond to each class considered. To best
differentiate each of the classes, the features must be carefully chosen and must represent the variability
of the signals. Here, we chose to use the feature set proposed by Malfante et al. (2018), which provides a
general and precise description of transient signals. These have been shown to be efficient, and they also
allow us to investigate whether features selected at one volcano can be used for another volcano.

One of the first attempts to automatically recognize earthquakes was made by Allen (1978), who built
a decision tree, through which 70% of the events could be recognized. Many studies in recent years have
considered such automatic classification of volcano seismic events, and many techniques have been used.
Benitez et al. (2006) used hidden Markov modeling for continuous classification of four classes, and they
reached an overall accuracy of 90%, where the overall accuracy is the percentage of correct predictions out
of all of the predictions made. Hibert et al. (2014) used fuzzy logic and a method based on decision rules to
distinguish rockfalls from volcano-tectonic events, and they obtained a success rate of 92%. Langet (2014)
used logistic regression and a support vector machine, through which they obtained 90% and 92% good
results, respectively. At Ubinas Volcano, Malfante et al. (2018) tried a random forest (RF) and support
vector machine classifiers, and here they obtained 92.5% and 92.1% overall accuracy, respectively. Titos et
al. (2018) used a deep neural network approach with seven classes of volcanic events, and they reached 94%
overall accuracy. At the same time, Curilem et al. (2018) used spectrogram cross-correlations in conjunction
with the K-nearest neighbors algorithm with five classes of volcanic events at Llaima Volcano (Chile), and
they reached an overall accuracy of 95%. Finally here, Bueno et al. (2019) used a Bayesian neural network
for classification of five classes on two volcanoes, through which they achieved an excellent performance of
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92.1% when the two datasets were merged, and they also showed that their uncertainties were linked to the
state of unrest of the volcanoes.

The algorithm used in the present study is a RF classifier, because this allows a wide range of features to
be handled without overfitting and producing a model that is too specific to the data used for the training,
and it also gives information about the feature importance. This kind of algorithm has already been tested
and has been shown to be powerful not only in a volcanic context. Provost et al. (2016) proposed an
automatic classification method based on the computation of 71 features, and they used a RF classifier.
They focused on classification of events recorded near the Super-Sauze landslide (southeastern France).
They obtained 93% sensitivity for this classification, where the sensitivity defines the proportion of the true
events that are correctly classified. Using several stations, Maggi et al. (2017) presented an operational
automatic classifier based on a RF algorithm for monitoring at the Piton de la Fournaise Volcano. They
defined eight classes of seismic signals used a multi-station approach, and they reached peak performance
when running on a three-station combination (92% good classification). Hibert et al. (2017) also proposed
a RF classifier for binary classification of seismic signals (rockfall, volcano-tectonic) that were recorded at
the Piton de la Fournaise Volcano. They obtained results from 90% to 99%, which depended on the size
of their training dataset. Malfante et al. (2018) proposed a large set of features for representation of the
seismic signals, as 34 features in three representation domains: temporal, spectral, and cepstral domains
(where cepstral describes the periodic properties of a signal, as commonly used in speech processing, and as
obtained by computing the Fourier transform of the logarithm of the signal spectrum). Hence they defined
102 features, which they used to train a RF classifier with signals from Ubinas Volcano in Peru, and with
which they obtained 92.5% overall accuracy. Malfante et al. (2018) also showed that with only the three
best features included, they obtained 84% overall accuracy, while with the 13 best features they obtained
90% overall accuracy with their RF classifier.

Some studies have refined their initial classification into a second step of automatic classification. Langer
et al. (2006) classified five volcanic classes at Soufrière Hills Volcano, in Montserrat. They obtained a fair
performance, where 70% of the automatic signal classification was consistent with the manual classification
of the signals. From an analysis of the misclassified events, however, they found that for most of them, the
original a-priori classification was incorrect. They carried out a re-analysis by hand of the seismic traces
recorded at different seismic stations. Then they trained the classifier again using this new information, and
here obtained a success rate of 80% good classification. Hammer et al. (2013) proposed a hidden Markov
model for detection and classification of events in an alpine context. They applied their model to the
continuous signal and they managed to detect 97% of the events and correctly classified 87% of them. At
first they distinguished two classes, as earthquake and quarry-blast, although they were also able to detect
rockfalls using a threshold criterion to flag a poor match between the incoming signal and all of the defined
classes. Langet (2014) showed that the current classification for Kawah Ijen Volcano with eight classes was
not adapted. By using an unsupervised classification, they showed that with the data and features available,
only five classes were clearly distinguishable.

In this paper, we have applied a method following that developed for the first time by Malfante et al.
(2018), where we have automatically classified volcano-seismic events recorded from 2013 to 2018 for La
Soufrière Volcano. In Section 2, we present La Soufrière Volcano, in terms of its historical eruptive activity,
then we detail how the detection and classification work was performed at the observatory, and finally we
discuss the dataset used in our analysis. Then, in Section 3, we present the method and discuss the large
set of statistical features that were calculated in the three domains to represent the seismic signals (i.e.,
temporal, spectral, cepstral domains). In Section 4, we test the robustness of the actual classification, and
then we refine the classification by adding new classes in the analysis. We show which features are the most
useful to differentiate classes of volcanic eathquakes at La Soufrière, and finally, we compare these important
features with the most valuable features defined by Malfante et al. (2018) for Ubinas Volcano.
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2. Data

2.1. La Soufrière de Guadeloupe

La Soufrière de Guadeloupe is an active and hazardous volcano located on the island of Basse-Terre in
Guadeloupe in the Lesser Antilles (Figure 1). It is currently monitored by the Observatoire Volcanologique et
Sismologique de Guadeloupe - Institut de Physique du Globe de Paris (OVSG-IPGP). Numerous magmatic
and nonmagmatic eruptions have occured in its history. The current andesitic dome was formed in the
last major magmatic eruption in 1530 CE (Boudon et al., 1988, 2008). The volcano also had several
historical nonmagmatic phreatic or hydrothermal explosive eruptions in 1690, 1797-98, 1809-12, 1836-37,
1956, 1976-77 AD (Komorowski et al., 2005). The last one of these was particularly violent, and required
the evacuation of more than 70,000 people for 6 months; it was also associated with a major controversy
in the scientific community (Komorowski et al., 2005; Hincks et al., 2014; Komorowski et al., 2018). After
this crisis, the volcanic activity gradually declined, and in 1990 it reached its lowest level since the start
of seismic monitoring in 1950 (Komorowski et al., 2005; Villemant et al., 2014; Jessop et al., 2019; Moretti
et al., 2020). Since 1992, its seismic fumarolic and thermal unrests has increased gradually (Komorowski
et al., 2005; Villemant et al., 2014)(OVSG-IPGP, 1999-2020), to reach its highest level of seismic energy
on April 27, 2018. This resulted in the strongest volcano-tectonic earthquake recorded (M4.1) since the
phreatic eruption of 1976-77, with an associated episode of deep-sourced magmatic degassing (Moretti et
al., 2020). Although the release of seismic energy has decreased markedly since the January-April 2018
period of elevated unrest, in August 2018, the seismicity of La Soufrière de Guadeloupe was characterized
by the periodic occurrence of earthquake swarms of low energy, with numerous volcano-tectoninc (VT) and
Nested signals, and only rare long-period (LP) signals (OVSG, 2018-2020). Between August 2018 and the
end of April 2020, 37 of these swarms were recorded by the OVSG (based on the swarm quantitative criteria
defined by the OVSG), for a total of 7114 identified signals with a mean of 192 ± 187 events per swarm
(minimum, 13; maximum, 1014). Although of low energy, this continuous heightened seismicity represents a
very significant challenge for event identification, classification, and interpretation by the observatory staff,
to provide tracking in an efficient and timely manner during this unrest.

2.2. The OVSG classification

Currently at OVSG, the detection work is carried out mostly automatically using a short-time average
over long-time average algorithm. The operators on site review the detected signals daily, considering the
several stations located at different distances from the volcano summit, and they determine the magnitude
and location of the signals. By observing the seismograms at different stations, they can assign a class to
detected events according to the nomenclature used by the OVSG. The vast majority of volcanic signals
have very low magnitudes (i.e., mostly negative) and short durations, and they are very often discernible
by only two stations, unlike tectonic earthquakes, which are generally recorded by more stations and by
stations from larger networks.

Although five main types of signals are recognized in the data analysis by the observatory (Moretti et
al., 2020), only three main classes are readily distinguishable on the continuous seismic traces during the
daily analytical protocol, which are defined as: VT events, Nested events, and LP events. The two other
classes, as Hybrid events and LP monochromatic events (or Tornillos) are included as VT and LP events,
respectively. Figure 2 shows the typical waveforms, spectrograms, and Fouriers spectra of these events.
Volcano-tectonic, or high frequency, earthquakes: These events have a high frequency content similar
to tectonic earthquakes. Chouet and Matoza (2013) defined their frequency range as 5 Hz to 15 Hz. For
La Soufrière, a characteristic peak is often observed between 10 Hz and 15 Hz. The waveform has a very
impulsive P-wave arrival. These are brittle failure events that are associated with stress changes due to
magma movement (Chouet and Matoza, 2013).
Nested earthquakes: These events appear as small packets of several seismic signals in which successive
events appear within the coda of each other. They are not concomitant or precursors to any particular
phenomenon (Moretti et al., 2020). Nested events consist of a sequence of several volcano-seismic events
with very short inter-times, very often as more than 6 seismic events in a short sequence (10 s)(Ucciani ,
2015; Moretti et al., 2020). These Nested events are mainly composed of VT high-frequency events, but not
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always, as they can also sometimes be Nested LPs. The different signals in a Nested event are not always
similar, in terms of amplitude or waveform. The source process related to this class is not well understood,
and indeed, these events are specific to La Soufrière Volcano. Waite et al. (2008) indicated the presence
of ’drumbeat’ LP earthquakes at Mount St. Helens Volcano, which are characterized by a restricted range
of inter-event times and amplitudes compared to the more typical activity and highly similar waveforms.
These properties require a persistent source location, a nondestructible or rapidly renewing mechanism, and
a physical system that involves small oscillatory deviations from near equilibrium conditions. These events
of Mount St. Helens Volcano are similar to the Nested events of La Soufrière de Guadeloupe; although
the Nested events are mostly VT and the drumbeats are LP, the different signals are similar in terms of
amplitude and waveform.
Long-period or low-frequency earthquakes: The frequency range for these events is generally taken
as 0.5 Hz to 5 Hz (Chouet and Matoza, 2013). At La Soufrière, these LP events are characterized by a
relatively narrow spectral content, at around 4 Hz. Their waveforms are characterized by the emerging
arrival of P-waves, with the S-phases not identifiable. LP events can be generated by the resonances of
fractures, dykes, conduits, or cavities during the propagation of magmatic or hydrothermal fluids (Chouet ,
1988). Some other models without fluids or resonance have been proposed, such as trapped waves in loosely
consolidated and shallow layers of the crust (Bean et al., 2008). Another model proposed by Bean et al.
(2014) indicated that LPs might be generated by slow rupture of the nonconsolidated volcanic material
itself.

2.3. Catalog

The learning base used for this analysis comes from the catalog built by the OVSG, which is available
on WebObs (Beauducel et al., 2020). WebObs is a web-based tool that performs integrated, centralized,
and automated real-time volcano monitoring. This system mainly offers a modular database for equipment
network management, with a dozen evolving dedicated periodic tasks for each monitoring technique, such
as for seismology, geodesy, and geochemistry, with automated execution of periodic tasks and web-form
interfaces for manual data input/editing and export (Beauducel et al., 2020). Our study period extended
from 2013 to 2018. The information available on WebOBS indicates the first arrival times, the event
durations, and the classes.

In this paper, we focus on the data recorded by one component (i.e., the vertical component) of one
station. We selected the three-component Piton Tarade station (TAG; nanometric Taurus Trillum compact
120S, at 100 Hz), a historic station of the La Soufriere monitoring network that is located closer than 1 km
from the summit. This station is protected from external disturbance and is not subject to strong winds,
and we have the data for 84% of the days for the period from 2013 to 2018. The catalog contains 7149
events, 78% of which are VT events, 20% are Nested events, and 2% are LP events, and hence these three
classes are highly unbalanced. Figure 3 shows the distribution of these events over time. The distributions
of the VT and Nested events are correlated with a much greater number of VT events than Nested events.
The LP events are evenly distributed over time, except for the swarm of a few dozen events that occurred
in April 2017. Conversely, the distributions of the VT and Nested events are not constant over time, and
we observed a strong increase in their occurrence at the end of 2018.

3. Processing methodology

In this section, we detail our workflow (Figure 4) to automatically classify the three classes of events;
namely, VT, Nested, and LP events. There are several main steps involved here.

Data: Here our data consist of labeled windowed seismic waveforms. The waveforms are extracted from
the continuous signals, with the detection time and duration provided by the OVSG. These waveforms are
associated with a label linked to the physical phenomenon that triggers the event.

Pre-processing: First, we need to eliminate the poor quality signals from our dataset. Not all of the
events recorded by the network are observed well at station TAG. We need to visually check if the events
are correctly labeled, and this is easier if the signals are strong compared to the ambient noise. A criterion
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was therefore applied to keep the signals with a significant signal-to-noise ratio at TAG. The criterion we
applied was to compare the mean squared amplitude of 20 s of noise recorded before the event with the
mean squared amplitude of the event considered. We kept those signals with a signal-to-noise ratio greater
than 1.5. Then, we applied a bandpass filter between 0.8 Hz and 25 Hz to keep only the signals related to
the event. Finally, signals were normalized by the maximum of 1.0, so that the model can be applied to all
observations regardless of their amplitudes.

Feature Calculation: The data used for learning are not the windowed waveforms, but a set of de-
scriptors that are extracted from the windowed waveforms. The features are important as they carry the
information related to the classes. Here, we used the features proposed by Malfante et al. (2018). The
description of the features is given in Table 1. We grouped these into three categories, as statistical features
(n = 9), entropy-based features (n = 9), and shape descriptors (n = 16). These 34 features were computed
in three representation domains of the signal: the temporal domain, the spectral domain, and the cepstral
domain. The cepstral domain describes the periodic properties of the signal, as commonly used in speech
processing, and it is obtained by computing the Fourier transform of the logarithm of the signal spectrum.

Using a large number of features allows the signals to be represented in many ways, while keeping as
much of the information about the signal as possible. Another advantage of using features is to reduce the
dimension of the data, while keeping the information contained in the signals. Here, the input vector has a
dimension of 34 x 3 = 102, whereas dealing with the corresponding 10-s-long waveforms sampled at 100 Hz
would imply a vector size of 10 x 100 = 1000. We do not expect to need all of the features, as some provide
redundant or useless information; e.g., the length of the signal is the same whatever the representation
domain.

Training: The training step consists of defining the boundaries between the different classes in the
feature space. For this, the learning algorithm automatically selects the most discriminative features among
the 102 features. We chose to train the model from a given percentage of the labeled data, and we used the
rest of the data to test the reliability of the model constructed. The algorithm used here is the RF classifier,
which is available in the python scikit-learn library (sklearn.ensemble.RandomForestClassifier).

This algorithm involved decision trees that split the parameter space into simple regions. A decision tree
(Quinlan , 1986) is an algorithm with a tree-like structure where each internal node corresponds to a test
on a subset of the features, each branch represents the outcome of the test, and each leaf node is a class
label. The random forest algorithm (Breiman , 2001) consists of a collection of decision trees. This works as
follows: first subsets are randomly selected from the learning dataset, then a decision tree is constructed for
each subset, and a prediction result is obtained for each tree. Then, the most frequent prediction is selected
as the final prediction. The biggest advantage of the RF over a single tree is that the overfitting problem
is attenuated by averaging out the predictions from all of the trees. With this algorithm, we also gain
information about the feature importance. This information is obtained by computing the relevance score
of each feature in the training phase. This allowed us to reduce the number of features by selecting only
the most important. We performed a grid search in the hyper-parameter space to determine which features
were the best, and we selected the hyperparameters around which the classification score was stable, which
are given in the captions to Tables 2 and 4.

Test: To test the model, we performed cross-validation, by randomly partitioning the labeled dataset
between a training dataset and a testing dataset. The random selection of the training dataset and the
testing dataset was performed several times, to have statistically valid results. Due to the low number of
LPs compared to the other classes, we made sure that the number of LPs was balanced in all partitions. We
can modify the partition coefficient, and thus see the effects of the size of the training set on the performance
of the model. To analyze the results, we computed the mean confusion matrix obtained after several trials
(i.e., at least 10) by comparing the predicted classes with the real classes of the test dataset. We also
considered three metrics: the accuracy, the precision, and the overall accuracy:

Accuracy =
#GoodPredictionClassi

#TotalTrueClassi
(1)
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Precision =
#GoodPredictionClassi
#TotalPredictedClassi

(2)

OverallAccuracy =
#GoodPrediction

#TotalEventTestDataset
(3)

These metrics provide information on the specificity (i.e., false-positives) and sensitivity (i.e., false-
negatives) of the model. If the precision is too low, it means that there are too many bad predictions
compared to good ones, and thus it means there are too many false-positive outcomes. If the accuracy is
low, it means that most of the data of a class have been badly predicted, and thus it means there are too
many false-negative outcomes. The overall accuracy gives information on the general performance of the
model.

Classification: Once the model is trained and reliable, we can apply it on a new dataset, as either
labeled or not labeled. This is the operational part of the process, which we do not include as part of this
study.

4. Results and analysis

4.1. Performance of initial classification

Here we present the performance of the automatic classification using the three classes of events: VT,
Nested, and LP events. At the TAG station, many of the events detected did not meet the quality criterion
of the pre-processing step of the analysis described earlier. The OVSG detected 7149 events over the period
from 2013 to 2018, although only 845 passed our selection phase. The selection phase allows visual checking
of whether the events we analyze were correctly labeled, and for computational reasons, it is easier to process
less data. This analysis was thus performed with 542 VT, 217 Nested, and 86 LP events. Table 2 gives
the average confusion matrix of the classification that was obtained after 10 trials, with a ratio between the
training dataset and the testing dataset of 50:50. For each trial, we randomly selected the data used for the
training, and tested the model with the remaining data.

We obtained an overall accuracy of 73% +/-1%, which is relatively low compared to the scores obtained
in the literature, some of which reached up to 80% or 90%. Different ratios between the training and the
test dataset were also tested. Between the 80:20 and 30:70 ratios, the data were almost the same, at around
73% +/-1%. With more than 80% of the data for the training and less than 30% for the testing, the overall
accuracies decreased, and overfitting and underfitting problems started to appear. We detected several
trends after analysis of these data.

The score of 73% was largely due to the size of the VT class compared to the rest of the dataset, which
masks the poor classification. The accuracy of the VT class was 93%, so most of the true VT events are well
classified. However, the precision of the VT class was only 68%, which means that some events of the VT
class are also assigned to the true Nested and LP events. In more detail, 71 of the 108 Nested events used
for the test were classified as VT events, and 16 of the 43 LP events were classified as VT events. The bad
precision of the VT class can be explained in two ways. The VT class is too broad, and contains a variety
of signals that cover the characteristics of the Nested and LP events, or on the contrary, there are signals in
the LP and Nested classes that have characteristics of the VT class.

The precision of the Nested classification was 61%, so the predicted nested events are not reliable. The
accuracy was 31%, so most of the true Nested events are not well recognized. Indeed, 71 of the 108 true
Nested events were classified as VT events, and only 4 of the 108 were classified as LP events.

The precision of the LP classification was 73%, which means that the LP prediction was quite reliable,
although the accuracy of 51% shows that half of the true LP events are not well recognized by the model.
Almost a third of these misclassifications of LP (16 of 43) were classified as VT (48 of 54).

These results show that VT events can be confused with LP events and Nested events, while Nested and
LP events are rarely confused with each other. The confusion in the classification of the VT and Nested
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events was partly because the Nested events actually consisted of several individual VT events that were
separated by very short inter-event times, such that the coda of the first signal was mixed with the onset
of the next signal. In the other cases, many VTs appeared to show what looks like an emergent P-phase on
the low resolution seismic trace. However, upon zooming in on the waveforms in the Seiscomp3 environment
when picking phases, it was clear that this apparent P-wave was a low amplitude initial VT signal that was
quickly followed by another larger amplitude VT signal with a P-phase and S-phase. Thus, if Nested events
are groups of VT signals, it is highly possible that the discrimination between these is difficult because many
of the description features of VT events are also in the Nested events.

At OVSG, the visualization tool used to manually classify events makes this work very complicated,
because the spectrograms are not ready available to all of the operators, so some some events might have
been misclassified. This would explain the broad variety of signals in the VT class. New visualization of
the signals with a spectrogram and new labeling based on the definition of the VT (5-20 Hz) and LP (0.1-5
Hz) frequency domains given here appears to be necessary to improve the performances and the reliability
of the models.

4.2. Performance of the refined classification

We visually reviewed all of the 845 events, to check whether some were misclassified and whether we
observed signals that showed characteristics different from the classes of events already considered, and if
new classes should be introduced into our analysis.

After reviewing all of the signals by hand, two new classes were introduced, the Hybrid class and the LP
monochromatic, or Tornillos, class (Figure 5). These types of events were considered by the observatory in
the form of a comment, but were not taken into account during the routine daily classification work. Here
we now add those two classes into our learning step.

Hybrid earthquakes: Numerous detailed analyses of volcanic earthquakes during recent eruptions
(Redoubt, Lahr et al. (1994); Soufriere Hills, Miller et al. (1998); White et al. (1998)) have shown that
a distinct category of earthquakes has spectral characteristics of both VT (or high frequency) and LP
earthquakes. These have been called Hybrid earthquakes (e.g., Chouet and Matoza, 2013). Typically, they
have a high frequency impulsive arrival between 10 Hz and 20 Hz, as typical of VT earthquakes, while
the coda is dominated by lower frequency waves in the upper range of the LP frequency spectrum (1.2-2.5
Hz, as at Redoubt, Lahr et al. (1994) and Soufriere Hills, Montserrat, White et al. (1998)). Also, the LP
component is observed from the beginning to the end of these events. This indicates a fluid component in
the mechanism of rupture. At La Soufrière, the Hybrid earthquakes (Figure 5) had a lower frequency coda,
at around 5 Hz to 6 Hz, and a higher frequency onset, at around 12 Hz to 14 Hz. Various studies have
sought to understand Hybrid events. Lahr et al. (1994) proposed a model halfway between VT and LP, with
fragile fracturing processes producing high frequencies, and then the propagation of fluid responsible for
the resonance phenomena that produces low frequencies. Neuberg et al. (2000) showed a clear continuum
between LP and Hybrid events. Harrington et al. (2007) proposed a model where a simple fracturing process
with a very slow rupture velocity was enough to explain these events.

LP monochromatic earthquakes: These Tornillos are a subcategory of LPs; however, their particular
waveform (which looks like a screw) makes them easily distinguishable. They were first described as such for
Galeras Volcano (e.g., Gomez et Torres , 1997), and have subsequently being identified for many eruptions.
We therefore have an emerging wave arrival, with a duration of a few tens of seconds, an almost sinusoidal
signal, and a coda that decreases very slowly, and almost linearly. Their Fourier spectrum has a characteristic
peak, which was at around 4 Hz for La Soufrière. On the spectrogram we saw that the resonance lasted
longer than for the LPs. A model of self-oscillations of fluid filling a cavity was proposed as the physical
process that generates Tornillos seismic signals (Gomez et Torres , 1997; Konstantinou , 2015). In a recent
experimental study, Fazio et al. (2019) suggested that gas pressure gradients trigger the event that regulates
the slow decay of the coda, whereas fluid resonance in small structures controls the frequency content of the
signal. This type of event was introduced into the analysis for the observatory in 2001, but was removed
from the classification routine later.

Table 3 shows the classes that were newly assigned to our catalog. First, 89 Nested events and 15 LP
events were reclassified as VT events. Then 39 VT events and 22 Nested events were reclassified as LP
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events. Only 9 VT events and 1 LP event were reclassified as Nested events. Also, 2 Nested events and 26
LP events were reclassified as Tornillos events. Finally, 151 VT events, 45 Nested events, and 8 LP events
were reclassified as Hybrid events.

We note that very few of the Nested events remained in this class (59 of 217), with a lot reclassified as
VT events (89 of 217). The Nested events are a relatively unique type of seismo-volcanic event, because
these are specific to the La Soufrière seismicity. Nothing exactly like this type of event has been reported in
the literature, so to maintain a certain robustness in the new labeling, and not to confuse this type of event
with the VT events, we chose an explicit criterion to decide whether these belonged to one or the other class.
We considered the events as Nested when they clearly presented several signals in the waveform. As the
reviewing of the events was carried out using only one station, it is possible that an event clearly presents
several signals at one station but not at another, because these Nested signals can be different in terms of
their amplitudes and waveforms.

When we created a model with these new classes and the same ratio between the training dataset and
the test dataset of 50:50, as previously here, the overall accuracy increased from 73% to 82% +/-2%. This
shows that this new classification was much better for the automatic process. Furthermore, by looking at
the results in detail (Table 4), we see that the classification of certain classes was significantly improved.
With different ratios between the training dataset and the test dataset, as 90:10, 70:30, 30:70, and 10:90,
the accuracies obtained were (respectively): 83% +/-4%, 83% +/-2%, 82% +/-1%, and 77% +/-2%; i.e.
they remained similar.

Then we looked at the results class by class, to analyze the errors. These were significantly lower for the
Nested class, with 68% and 79% for the accuracy and precision, instead of the 31% and 61%, respectively,
for the previous classification. One true LP event was classified as a Nested event, and vice versa. Five
Nested events were classified as VT and five as Hybrid. This confusion was seen when there were few Nested
signals in the event (i.e. 2 or 3) and when one of these signals was much more energetic than the others,
whereby the model recognized the energetic signal. The six events that were incorrectly classified as Nested
events were also particularly noisy events.

The Tornillos events were well classified by the model, with 100% and 87% accuracy and precision. There
was 1 true Tornillo event classified as an LP event. Once again, this kind of error in the model is easily
understandable, because the Tornillo class is a subclass of the LP class. The biggest difference between these
two classes is the long monochromatic resonating coda in the Tornillos events. Depending on the shape of
the coda, we can choose to classify an event as LP or Tornillo, and sometimes this distinction was hard to
make. The other badly classified Tornillo was labeled as Nested by the model; it was the most noisy Tornillo
event of the catalog. In addition, the various tests carried out with different sizes of training sets showed
that there was no need to have a large training database to effectively recognize the Tornillos events.

The accuracy of the predicted LP events was increased from 51% to 84%. One true VT event, one
true Nested event, one true Tornillo event, and seven true Hybrid events were classified as LP events. The
precision of the LP events was increased from 73% to 80%. One true LP event was classified as a VT
event, and one as a Nested event, with six classified as Hybrid events. LP events can be confused with VT,
Hybrid, and Tornillo events. The confusion between the LP and VT events decreased a lot compared to the
previous classification, with 16 LP events of 43 classified as VT events before, and only 1 of 49 with this
new classification.

With the new calssification, the VT class showed an accuracy of 91% and a precision of 87%. While
the accuracy was slightly decreased from 93%, the precision was increased from 74% to 87%. These results
show that the variety of the signals in the previous VT class was reduced.

The hardest events to classify were the Hybrid events. The accuracy was 67% and the precision was
70%. Hybrid events were only confused with VT and LP events, with 25 true Hybrid events classified as
VT events, and 67 as LP events. Here, 25 predicted Hybrid events were true VT events, and six predicted
Hybrid events were true LP events. Hybrid events were more often confused with VT events than LP events.
This might be explained by the impulsive and high frequency onset of the Hybrid events, which resulted
in confusion between Hybrid and VT events more frequently than for LP events. We saw that the Hybrid
events with a low frequency component that was much more energetic than the high frequency component
tended to be classified as LP events. These results reinforce the idea that Hybrid events are a continuum
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between VT and LP events. Although the scores of the Hybrid classification were weaker than the scores of
the others classes, this is still encouraging because these events are the most difficult for a human operator
to recognize.

This new classification appears to be very effective, and allowed the automatic algorithm to distinguish
the different earthquake classes more easily than the previous classification. Moreover, two new earthquake
classes, as Hybrid earthquakes and LP monochromatic earthquakes (Tornillos), were introduced to better
characterize the seismicity. There is a wealth of literature data and well-documented active volcanic se-
quences that have culminated in eruptive activity that underscore the fundamental roles that these Hybrid
earthquakes and Tornillos earthquakes have to understand and track the complex nature and dynamics of
seismogenic processes for an active volcano.

4.3. Feature performance

Selection of the features is a decisive step to obtain good classification results. Here, we were interested
in the possibility to reduce the number of features, while keeping the most representative features, and also
to determine which features were important for which class. It is also possible that some features were not
optimal for the classification, if they were highly correlated. To keep the intrinsic physical properties of the
features, we did not transform or project features in a new space (e.g., with principal component analysis).
RF allows determination of the weight of each feature in a classification, using the impurity score. The
impurity score is related to the loss of accuracy when a feature is removed. The greater the importance
of a feature in the classification, the higher the loss will be in the performance of the classification upon
its removal. However, following this method, a feature that has a low importance is not automatically
meaningless, as two features can be correlated, and only one will have a high score. More information about
the feature importance can be found in Menze et al. (2009).

In Figure 6, we show the weights of the 102 features for the binary classifications (i.e., each class against
all of the other classes) and for the classification with all of the classes. We can see that the most important
features changed depending on the class. The best features for recognizing all of the classes are the minimum
of the signal (29), the index of central energy (6), the maximum energy (24), the rate of attack (19), the
maximum signal (30) in the time domain, the mean kurtosis (9), the root mean square bandwidth (7), the
standard deviation in the frequency domain, and the rate of decay (20) in the cepstral domain. These nine
features had weights greater than 2% in the classification, and came from the three representation domains
(i.e., temporal, spectral, cepstral domains), so they underscore the relevance of using these representation
domains.

For the Hybrid class, the best features had lower weight compared to those of the best features obtained
for the other classes, at 4.9% importance compared to 8.2%, 8.7%, 8.2%, and 7.5% importance for the VT
class, the Nested class, the LP class, and the Tornillo class. Also, the best feature of the Hybrid class was
less discriminant than the best feature of the other classes. This is consistent with this class being the most
difficult to classify correctly.

Among the 10 best features of the least numerous classes, as the Nested class and the Tornillo class, there
were only 3 and 1 of these features, respectively, in common with the 10 best features of the classification
with all of the classes. This means that the most discriminant features of a class do not necessarily have
great importance in the general classification, and this depends on the number of events in these classes.
Conversely, 7 of the 10 best features of the VT class, 6 of the 10 best features of the LP class, and 5 of the 10
best features of the Hybrid class were among the 10 best features of the general classification. In particular,
the maximum of energy (24) in the temporal domain was in the 10 best features of the VT, the LP, and the
Hybrid classes, and also for the classification with all of the classes. This means that this feature is useful to
distinguish these classes from the rest of the dataset, and also to discriminate between these three classes.

In Figure 7, we show the mean overall accuracies obtained after 10 trials of the classification using only
the best feature, and then adding the second best feature, and so on until every features has been added
in the classification analysis. With the nine best features having an individual weight greater than 2%, the
mean accuracy rapidly converged above 80% after the use of these features. To reach the mean accuracy
score of 82.5% of the full set of 102 features, the 14 best features need to be used for the learning: after 14,
adding new features did not change the score significantly.
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This set of features has already been used by Malfante et al. (2018) for Ubinas Volcano in Peru. Malfante
et al. (2018) obtained 84.4% accuracy with only the three best features, and needed the 13 best features
to reach a score (90.3%) that was close to the accuracy obtained with all of the features (92.5%). Here,
we compared the 13 best features obtained by Malfante et al. (2018) with the 14 best features that we
determined in our analysis. It is interesting to note that among the 13 best features of the Ubinas Volcano
analysis by Malfante et al. (2018), only one of their features was in our set of 14 best features. This was
the mean of the signal (2) in the cepstral domain. This difference can be explained by the different type of
seismic activity recorded at Ubinas Volcano compared to the seismic activity of La Soufrière de Guadeloupe.
The seismicity of La Soufrière Volcano was dominated by VT and Hybrid events, whereas Ubinas Vaolcano
was dominated by LP and Tremor events. It also suggests that the model we built is specific to La Soufrière
Volcano, or at least the kind of seismicity shown by La Soufrière Volcano. It would be interesting to test the
performances of the features on a volcano with the same kind of seismicity as La Soufrière de Guadeloupe,
that is characterized by a very active and extensive hydrothermal system. Another possible explanation
for the difference in the best features might be that the 14 best features obtained at the TAG station for
La Soufrière Volcano are more specific to the station position than to the volcano itself. On the basis of
the complex internal structures of volcanoes, the TAG station might show strong and specific site effects
that distort the signals (e.g., high attenuation, strong anisotropy, waveguide effects, high density contrasts).
The very small number of events that passed the selection phase (i.e., only 845 of the 7194 detected by the
OVSG met the quality criterion at station TAG) is probably an illustration of this phenomenon.

To overcome this issue, different approaches can be used. The first one, although not very efficient
and time consuming, would be to apply the same single-station approach to other stations at La Soufrière
Volcano and see whether the best features are identical for all of the individual stations. A second approach
would be to use a multi-station approach, using the features computed from different stations to take into
account the variability of the same signal all over the volcano, as in Maggi et al. (2017). These authors
reached their best performance by using a combination of features from three stations. A third approach
would be to use a multi-station approach of a higher level, with multi-station specific features. These features
would be derived from signals obtained from network-based analyses that involve data from multiple sensors,
such as cross-correlations or higher-order cross-correlations. We could compute the features based on these
cross-correlation in the three representation domains (i.e., temporal, spectral, cepstral domains).

5. Conclusions and prospects

We have applied an automatic classification method based on machine learning, and more specifically on a
RF classifier, for the analysis of the volcanic seismicity of La Soufrière Volcano of Guadeloupe. The principle
is based on the calculation of a large set of descriptors from the waveforms of the volcanic seismic events
that satisfy the quality criteria. This set of descriptors, or features, is then used to train a RF classifier using
all of the seismic events for their classification into the main classes of seismic signals that have causal links
to specific dynamic volcanic processes in the system. After training of the model on a subset of the seismic
signals from the catalog of volcanic seismic events built by the OVSG, we obtained a good classification
rate of 73% on the subset of seismic signals that remained to be classified. However, after a review of the
results class by class, we showed that the variability in the VT class was too broad, and that it caused
distortion for the recognition of the two other classes. We therefore manually reviewed and relabeled all of
the events, which resulted in the addition of two new classes that had been recognized by the observatory,
but were not taken into account during the daily classification protocol. After the introduction of these new
Hybrid and monochromatic LP (Tornillo) classes, the performance of the automatic classification increased
to 82.50%. Most of the errors made by the model were due to the confusion between Hybrid events and VTs
and LPs. This result reinforces the idea that Hybrid events are a continuum between VTs and LPs. The
relatively poor scores obtained with the initial automatic classifier highlighted the presence of inaccuracies
in the classification. The much improved accuracy that we achieved after refining the classification shows
that the machine learning helps to build a robust catalog of volcanic earthquake signals that are classified
into process-related classes. We explored the importance of the features in our model to determine which
features of the full set of 102 performed best for the recognition of these classes of volcanic earthquakes at
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La Soufrière de Guadeloupe that characterized the period analyzed (i.e., January 1, 2013, to December 31,
2018). We showed which features are the most useful depending on the class we want to recognize for La
Soufrière Volcano. We also showed that with only a subset of the features (i.e., 14 of 102), we can obtain
a substantially similar score. Finally, we compared our best features for La Soufrière Volcano with the
best features presented by Malfante et al. (2018) for Ubinas Volcano, and showed that the most important
features are different (except one) between these two volcanoes. Therefore, it is important to maintain this
whole feature set to test the method on another volcano.

In the future, we will apply this methodology to data obtained from the complete volcanic seismic
network for La Soufrière, which is composed of about 20 sensors, to improve the accuracy. Futhermore, it
will be interesting to repeat the exploration of these features on other stations or for other volcanoes that
have activities that are similar to that of La Soufrière de Guadeloupe, to see if the same features are among
the most important, or at least if the same features are useful for the same classes of volcanic seismic events.
More importantly, by training a classification model on a specific time period for La Soufrière Volcano or
any volcano and applying this to a subsequent time period, it will be possible to detect any changes in the
nature, dynamics, and/or patterns of seismicity by quantifying and following with time the progressive or
rapid loss in accuracy of the classification algorithm. This approach was reported by Hibert et al. (2017)
at Piton de la Fournaise Volcano, and by Malfante et al. (2018) at Ubinas Volcano. We will test this at La
Soufrière Volcano to monitor for any changes in the pattern of seismicity that preceded the major unrest
phase of January to April 2018 (Moretti et al., 2020) with the seismicity that has been recorded from after
April 2018 that showed characteristic swarm activity of numerous low-energy events (OVSG-IPGP, 1999-
2020). It will be possible to test whether all swarms show similar patterns, or whether, as qualitatively
observed, some swarms are dominated by certain classes of events, and also whether this pattern changes
within the swarm.

In this paper, we have proposed a new machine learning classification scheme that is based on direct
human examination and analysis of each signal. It is fundamental to test the performance of a supervised
classification using the machine learning algorithms to discriminate the different signals. Our final goal
is to implement this model in the OVSG in Guadeloupe, and also to test it for other active volcanoes
that are monitored by IPGP, such as Montagne Pelée in Martinique (OVSM-IPGP, 2020), and even in the
context of the major submarine eruption offshore of Mayotte that has been ongoing since 2018 (REVOSIMA,
2019-2020).

Our results show that these machine learning tools can represent a major component of any volcanic
monitoring system for an active volcano. By providing rapidly significant real-time insight into the nature,
style, and patterns of seismicity at active volcanoes in a state of unrest while optimizing human resources,
these tools will allow scientists to gain access to new knowledge to understand and track the complex nature
and dynamics of the nonlinear processes of active volcanoes. Hence, this approach contributes to improved
forecasts of the likelihood of future eruptive activity, and to improve the societal responses to crises and risk
mitigation in a context of increasing exposed assets and vulnerability.
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Table 1: Features used to represent each transient signal, as the feature set from Malfante et al. (2018).

Features Definition Ref.
Statistic features

Length n = length(s) 1
Mean µs = 1

nΣis[i] 2

Standard deviation σs =
√

1
n−1Σi(s[i] − µs)2 3

Skewness 1
nΣi(

s[i]−µs

σs
)3 4

Kurtosis 1
nΣi(

s[i]−µs

σs
)4 5

i of central energy i = 1
E .ΣiEi.i 6

RMS bandwidth Bi =

√
1
EΣii2.Ei − i

2
7

Mean skewness

√
Σi(i−i)3Ei

E.B3
i

8

Mean kurtosis

√
Σi(i−i)4Ei

E.B4
i

9

Entropy features (with p(sj) the probability of amplitude level sj)

Shannon entropya −Σjp(sj)log2(p(sj)) 10 to 12
Rényi entropyb 1

1−α log2(Σjp(sj)
α) 13 to 18

Shape descriptors features

Rate of attack maxi(
s[i]−s[i−1]

n ) 19

Rate of decay maxi(
s[i]−s[i+1]

n ) 20
Ratios min/mean and max/mean 21 to 22
Energy descriptors Signal Energy, maximum, average, standard 23 to 28

deviation, skewness and kurtosis
Specific values min, max, i of min, i of max, threshold crossing rate 29 to 34

and silence ratio

Note. Features computed for a signal s[i]ni=1 (in which i might correspond to a temporal, frequency or
cepstral sample). E = Σni=1s[i]

2 and Ei = s[i]2 describe the signal energy and the energy at sample i,
respectively. Some features have a dimension greater than others; e.g., entropy measurements are made on
three different estimations of the amplitude probability (i.e., different histogram bin numbers).
aBin numbers for probability estimation: 5, 30 and 500.
bBin numbers for probability estimation: 5, 30, 500, α = 2, inf.
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Table 2: Confusion matrix obtained with a ratio of 50:50 between the training and testing datasets for the
catalog from the OVSG for January 1, 2013, to December 31, 2018, with the model trained using a random
forest classifier (n estimators=100, criterion=’entropy’, bootstrap=True, class weight=None), mean score
after 10 trials.

True class Predicted Class Accuracy

VT Nested LP (%)
VT 251 16 4 92.6

Nested 71 33 4 30.6
LP 16 5 2 51.2

Precision (%) 74.3 61.1 73.3
Overall accuracy (%) 72.5 ±1.0

Table 3: New event classes that were manually assigned after visual review based on the waveform, the
spectrogram, and the Fourier spectrum.

Old class New class Total

VT Nested LP Hyb Tor
VT 343 9 39 151 0 542

Nested 89 59 22 45 2 217
LP 15 1 36 8 26 86

Total 447 69 97 204 28 845

Table 4: Confusion matrix obtained with a ratio of 50:50 between the training and testing datasets for the
refined catalog for January 1, 2013, to December 31, 2018, with the model trained using a random forest
classifier (n estimators=100, criterion=’entropy’, bootstrap=True, class weight=None), mean score after 10
trials.

True class Predicted Class Accuracy

VT Nested LP Hyb Tor (%)
VT 203 2 1 18 0 90.6

Nested 5 23 1 5 0 67.7
LP 1 1 41 6 0 83.7
Hyb 25 2 7 69 0 67.0
Tor 0 1 1 0 13 86.7

Precision (%) 86.8 79.3 80.4 70.4 100
Overall accuracy (%) 82.1 ±1.6
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Figure 1: Map of Guadeloupe. Red triangle, La Soufrière summit; blue stars, seismic stations. TAG station
was used in this study.

Figure 2: Examples of waveforms filtered between 0.8 Hz and 25 Hz, for spectrogram and Fourier spectrua
of volcano-tectonic events (top left), long-period events (top right), and Nested events (bottom) recorded at
station TAG, for the vertical component, from January 1, 2013, to December 31, 2018.
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Figure 3: Distributions (blue) and cumulative distributions (black) of the numbers of events between January
1, 2013, and December 31, 2018, for (top to bottom) volcano-tectonic (VT), Nested, and long period (LP)
events, along with the cumulative distribution of all of the classes (data from OVSG-IPGP).
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Figure 4: Workflow of the machine learning process. Step 1: Feature calculation step to represent the signals.
Step 2: Learning step on a given proportion of the dataset. Step 3: Testing step to evaluate the performance
of the model. Step 4: Classification step on new, unlabeled data with a validated model, as the operational
part of the process.
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Figure 5: Example of a waveform filtered between 0.8 Hz and 25 Hz, with the spectrogram and Fourier
spectrum for Tornillo events (top) and Hybrid events (bottom) recorded at station TAG at La Soufrière de
Guadeloupe, for the vertical component, for January 1, 2013, to December 31, 2018.

Figure 6: Weigths as percentages for all of the features, for each class, and for all classes combined for the
volcanic seismicity detected at La Soufrière de Guadeloupe (January 1, 2013, to December 31, 2018; OVSG-
IPGP) determined with the feature importance function in the scikit-learn library. Blue, poor importance
in the classification; yellow, important for the classification; red, the 14 most useful features with which the
classification is similar to the mean score obtained for the whole feature set.
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Figure 7: Mean accuracies for each successive nth best feature; learning rate = 50%; model trained using
a random forest classifier (n estimators=100, criterion=’entropy’, bootstrap=False, class weight=None), as
mean score after 10 trials. Black line, mean score obtained with all 102 features after 10 trials, for the La
Soufrière de Guadeloupe volcanic seismicity from January 1, 2013, to December 31, 2018 (OVSG-IPGP)
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