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[1] Snow plays an important role in land surface models (LSM) for climate and
hydrometeorological studies, but its current treatment as a single layer of constant density
and thermal conductivity in ORCHIDEE (Organizing Carbon and Hydrology in Dynamic
Ecosystems) induces significant deficiencies. The intermediate complexity snow scheme
ISBA-ES (Interaction between Soil, Biosphere and Atmosphere-Explicit Snow) that
includes key snow processes has been adapted and implemented into ORCHIDEE, referred
to here as ORCHIDEE-ES. In this study, the adapted scheme is evaluated against the
observations from the alpine site Col de Porte (CDP) with a continuous 18 year data set and
from sites distributed in northern Eurasia. At CDP, the comparisons of snow depth, snow
water equivalent, surface temperature, snow albedo, and snowmelt runoff reveal that the
improved scheme in ORCHIDEE is capable of simulating the internal snow processes
better than the original one. Preliminary sensitivity tests indicate that snow albedo
parameterization is the main cause for the large difference in snow-related variables but not
for soil temperature simulated by the two models. The ability of the ORCHIDEE-ES to
better simulate snow thermal conductivity mainly results in differences in soil
temperatures. These are confirmed by performing sensitivity analysis of ORCHIDEE-ES
parameters using the Morris method. These features can enable us to more realistically
investigate interactions between snow and soil thermal regimes (and related soil carbon
decomposition). When the two models are compared over sites located in northern Eurasia
from 1979 to 1993, snow-related variables and 20 cm soil temperature are better
reproduced by ORCHIDEE-ES than ORCHIDEE, revealing a more accurate representation
of spatio-temporal variability.

Citation: Wang, T., C. Ottlé, A. Boone, P. Ciais, E. Brun, S. Morin, G. Krinner, S. Piao, and S. Peng (2013), Evaluation
of an improved intermediate complexity snow scheme in the ORCHIDEE land surface model, J. Geophys. Res. Atmos.,
118, 6064–6079, doi:10.1002/jgrd.50395.

1. Introduction

[2] Snow covers nearly half of the Northern Hemisphere
(NH) land surface in the cold season [Robinson et al.,
1993; Lemke et al., 2007]. Because of its large seasonal

variability and distinct physical properties (i.e., high albedo,
low thermal conductivity, and low roughness length), snow
can exert strong positive feedbacks on local climate
[Groisman et al., 1994; Qu and Hall, 2006; Fernandes
et al., 2009; Flanner et al., 2011]. Snow cover also influ-
ences atmospheric variability and seasonal climate predict-
ability in the NH [Gong et al., 2007; Fletcher et al., 2009;
Douville, 2010]. In addition, snow water storage impacts
runoff, soil moisture, and evaporation [e.g., Groisman
et al., 2004]. For example, snow can act as a moisture reser-
voir in cold semiarid and arid regions, where vegetation
activity is found to be related to spring snowmelt [e.g., Peng
et al., 2010, Tahir et al., 2011].
[3] A variety of snow models have been developed, rang-

ing from simple degree-day models [e.g., Hock, 2003], snow
schemes of intermediate complexity [e.g., Boone and
Etchevers, 2001; Shrestha et al., 2010], to detailed snow-
pack models [e.g., Brun et al., 1992; Lehning et al., 2002,
Rasmus et al., 2007]. By comparing the results of 1701 com-
binations of parameterizations currently used in intermediate
complexity snow models at an alpine site, Essery et al.
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[2013] showed that good performance always stems from
model configurations that have prognostic representation of
snow albedo and snow density and that account for storage
and refreezing of liquid water within the snowpack. The
importance of these processes in a snow model has also been
emphasized in previous studies [e.g., Slater et al., 2001;
Rutter et al., 2009]. For example, Rutter et al. [2009]
showed that the representation of a vertically heterogeneous
snowpack is very important since incomplete melting
enables the presence of liquid water that is allowed for later
freezing and can also significantly change snow pack
properties. However, these important snow physical
processes are not considered in the current snow module of
the ORCHIDEE (Organizing Carbon and Hydrology in
Dynamic Ecosystems) LSM, although this model has been
used for hydrological applications [e.g., Piao et al., 2007]
and land-atmosphere coupling with LMDz (Laboratoire de
Météorologie Dynamique zoom). Recently, Gouttevin et al.
[2012a] reported that using spatially variable instead of con-
stant values of the bulk snow effective thermal conductivity
of the snowpack in different regions in ORCHIDEE would
lead to a difference of 8% in simulated pan-arctic soil carbon
stocks. This highlights that snow physical processes are crit-
ical for many processes operating in the underlying soil and
that snow processes in ORCHIDEE should be better re-
solved to build confidence for accurate representation of
snow characteristics in these high-latitude regions.
[4] Acknowledging the limitations of single-layer scheme

[e.g., Dutra et al., 2012], we introduce an intermediate
complexity snow model largely inspired from ISBA-ES
(Interaction between Soil, Biosphere and Atmosphere-
Explicit Snow) [Boone and Etchevers, 2001] accounting
for snow settling, water percolation, and refreezing into
ORCHIDEE (called ORCHIDEE-ES hereafter). The main
purpose of this study is to evaluate ORCHIDEE-ES against
snow observations. Previous snow model evaluations have
often been restricted to a few sites [e.g., Brown et al.,
2006; Shrestha et al., 2010]. In snow model intercompari-
sons [e.g., Rutter et al., 2009; Essery et al., 2013], snow
model performances were found to be variable across sites
and years. It is thus necessary to develop snow model
evaluations spanning across large spatial and temporal scales
[e.g., Pan et al., 2003; Habets et al., 2008; Parajka et al.,
2010]. This becomes possible since numerous in situ
snow data from surface observation networks can be
accessed [e.g., Dyer and Mote, 2006; Parajka et al., 2010;
Peng et al., 2010; Brun et al., 2013]. In a multisite evalua-
tion exercise, one limitation is the lack of collocated meteo-
rological forcing used for driving models locally. This can
be overcome by the use of state-of-the-art meteorological
reanalyses, e.g., ERA-Interim reanalysis [Brun et al.,
2013]. In this study, snow in ORCHIDEE is thus evaluated
at sites with meteorological variables either measured in situ
or sampled from reanalysis products. Moreover, a global
sensitivity analysis of ORCHIDEE-ES is performed on one
site based on the Morris method [Morris, 1991] to character-
ize the relative influence of different related parameters
when studying snow. The paper is organized as follows.
Section 2 introduces the physical parameterizations used in
the improved snow scheme. Section 3 describes the statisti-
cal metrics used for model evaluation. Section 4 describes
the model evaluation and model sensitivity tests at the

experiment site Col de Porte. Section 5 provides the model
evaluation results at sites covering large spatial and temporal
scales in northern Eurasia.

2. Model Description

2.1. Representation of Snow Processes in the Current
ORCHIDEE Version

[5] The snow module in the version 1.9.6 of ORCHIDEE is
a simple scheme designed for use in general circulation
models [Chalita and Le Treut, 1994], where snowpack
processes are coarsely represented. Snow is described with a
single bucket of constant snow density (330 kgm�3). Snow
surface temperature is derived by resolving energy budget
equation taking into account incoming shortwave and
longwave radiations, sensible and latent heat flux, and ground
heat flux in the skin layer that is assumed to be an infinitesimal
layer without heat capacity. When surface temperature is
simulated to be above freezing, it is automatically reset to
0�C in the snow, and the excess energy is applied to melt
snow. Snowmelt directly feeds runoff, since liquid water is
not allowed to be stored in the snowpack. This simplification
implies that ORCHIDEE is not capable to represent liquid
water refreezing and the related heat release used to limit the
cooling of the snow layer. In addition, a mixed snow-soil
structure is assumed, which implies that temperature in the first
soil layer is set equal to the snow temperature. The initial snow
albedo values of bare soil and each plant functional type are
prescribed, and their values are updated with both snow age
and new snowfall. Snow albedo is then weighted by the frac-
tional snow coverage over a grid cell leading to rapid varia-
tions of albedo during the ablation period when the snow
fraction decreases [Chalita and Le Treut, 1994].

2.2. Representation of Snow Processes in ORCHIDEE-ES

2.2.1. Snow Layering
[6] The ORCHIDEE LSMwith the improved snow module

referred to here as ORCHIDEE-ES is presented in details in
the following. The structural differences between ORCHIDEE
and ORCHIDEE-ES are shown in Figure 1. The snowpack in
ORCHIDEE-ES is represented with three snow layers, which
is shown to adequately resolve the snow thermal gradients
between the top and base of the snow cover [Lynch-Stieglitz,
1994; Sun et al., 1999]. In order to have a reasonable simula-
tion of diurnal change in surface temperature, the maximum
upper layer thickness is prescribed to be 5 cm (Dj1max). In
addition, since the diurnal variations of snowpack thermal
properties are most pronounced near the snow surface, the
thickness of the second layer is limited to 50 cm. The
definition of snow layer thickness can be found as follows
[Lynch-Stieglitz, 1994; Boone and Etchevers, 2001].

Dj1 ¼ dD0:25Dj þ 1� dDð ÞDj1max (1)

Dj2 ¼ dD0:50Dj

þ 1� dDð Þ 0:34 Dj � Dj1max

� �þ Dj1max

� �
Dj2 ≤ 10Dj1Þ ð2Þ�

Dj3 ¼ Dj � Dj1 � Dj2 (3)

Dj1, Dj2, Dj3, and Dj are the first layer, second layer, third
layer, and total snow thickness (cm). dD is 0 and 1, respec-
tively, when Dj is above and below 20 cm.
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2.2.2. Energy Balance and Transfer
[7] In ORCHIDEE, vertical diffusion equations are used to

describe heat conduction from the bottom of the soil to the skin
layer, which is achieved by the implicit method through cou-
pling one-layer snow bucket model and the thermodynamic
soil model to the surface energy balance [Polcher et al.,
1998]. The same scheme is implemented in ORCHIDEE-ES
but includes solar radiation absorption by each snow layer;
the first snow layer instead of the skin layer as in ORCHIDEE
is used to calculate the surface energy balance.
[8] At each half-hourly model time step, energy is trans-

ferred through the snow/soil column based on the vertical
heat-transfer equation,

Cp
@Tj
@t

¼ @

@z
kj
@Tj
@z

� �
þ @R

@z
(4)

where Tj is snow temperature, z is vertical coordinate, t is
time, and Cp is snow or soil heat capacity (J m�3K�1). Snow
Cp is the product of snow density (r

i
, kgm�3) and specific

heat of ice (2106 JK�1 kg�1). Compared to the constant
value used in ORCHIDEE, the thermal conductivity of the
snow in ORCHIDEE-ES, kj (Wm�1K�1) is given by

kj ¼ al þ blr2i
� �þ alv þ blv

Tj � clv

� �
P0

Pa

� �
(5)

where the parameters al=0.02, bl =2.50� 10� 6, alv=
�0.06, blv=�2.54, clv=�289.99, and Pa is the atmospheric
pressure in hPa and P0 = 1000hPa. The first term of equation
(5) corresponds to the snow thermal conductivity [Anderson,
1976]. The second term represents the thermal conductivity
from vapor transfer in the snow [Sun et al., 1999]. Both soil
Cp and soil kj are prescribed as constants. @R

@z , which is not
considered in ORCHIDEE, is the solar-radiative energy source
term depending on snow depth, which is determined by

R zð Þ ¼ R0 1� að Þexp �gzð Þ (6)

Where R0 (Wm�2) is incoming shortwave radiation, a is the
surface albedo, and g (m�1) is the extinction coefficient for
solar radiation.

Figure 1. The soil module coupled with (a) a one-layer snow module in ORCHIDEE and (b) a three-layer
snow module in ORCHIDEE-ES.

WANG ET AL.: ORCHIDEE SNOW MODEL EVALUATION

6066



2.2.3. Liquid Water Treatment
[9] For phase change processes, we use snow heat content

(Hj) defined as equation (7) [e.g., Lynch-Stieglitz, 1994; Sun
et al., 1999] to allow the presence of either cold (dry) or
warm (wet) snow. According to equation (7), heat content
is used to diagnose the snow temperature assuming that
there is no liquid water in the snow layer. If the calculated
snow temperature in equation (4) exceeds the freezing point,
snow temperature is set to freezing point, and liquid water
content (LQWj) is then deduced from the following equation:

Hj ¼ csjDj Tj � Tf
� �� Lf Wj � LQWj

� �
(7)

where Wj is the snow water equivalent at the jth layer. Lf is
the latent heat fusion for ice (J kg�1). Tf is the triple point
temperature for water. csj is snow heat capacity at jth layer,
which is defined as a function of snow density (rj, kgm

�3)
and intrinsic density of ice (ri= 920 kgm

�3) following
Verseghy [1991]:

csj ¼ 1:9� 106
rj
ri

(8)

[10] If the calculated snow temperature in equation (4)
goes below freezing, liquid water in the jth layer partially
or totally refreezes, and the energy released due to phase
change is used to limit the cooling of this layer.
2.2.4. Mass Balance and Transfer
[11] Mass balance equations describe the change in total

snow water equivalent in each layer, which is the sum of
liquid water and ice content. The contribution of water vapor
is neglected because of its unimportant role in the mass
balance equation [Sun et al., 1999]. The mass balance of
each snow layer can be expressed by the following equation.

@Wj

@t
¼ Ps þ Pr � IFj � Rj � En j ¼ 1ð Þ

IFj�1 � IFj � Rj j ¼ 2; 3Þð
�

(9)

[12] In equation (9), Wj is the snow water equivalent
(SWE) in the jth layer (m), Ps and Pr are snowfall and rain-
fall (kgm�2 s�1) upon the first snow layer, Rj is runoff rate
leaving the jth layer (kgm�2 s�1), and En is the sum of evap-
oration and sublimation rate (kgm�2 s�1). IFj is the actual
infiltration rate (m s�1) at the interface between the jth and
(j + 1)th layer. Infiltration of liquid water into the next lower
layer is controlled by maximum liquid water holding capac-
ity. As such, melt water generated in a layer will remain in
that layer if the liquid water content does not exceed the
layer holding capacity. Otherwise, it will infiltrate down to
the next lower layer where it may refreeze, remain in the
layer in the liquid state, or pass through. The maximum
liquid water holding capacity is taken as a function of the
snow layer density following Anderson [1976].

LQWjmax¼ Wj rwmin þ rwmax � rwminð Þmax 0;rt � rj
	 


=rt
h i

(10)

where LQWjmax is the maximum water holding capacity at the
jth layer, rwmax = 0.10, rwmin = 0.03, and rt=200 kgm

�3.
2.2.5. Snow Compaction
[13] The compaction process is critically important for

the evolution of the snow density and depth of each layer.

Snow depth is decreased by compaction, but it is increased
by snowfall. The local rate of change of density (increase)
due to the weight of the overlying snow and settling (primar-
ily of new snowfall) is parameterized following Anderson
[1976] as

1

rj

@rj
@t

¼ sj

�j Tj; ;rj
	 


þacexp �bc Tf � Tj
� �� ccmax 0;rj � rc

	 
h i
ð11Þ

where the first term on the right-hand side of equation (11)
represents overburden (the compactive viscosity term, see
equation (12)). The pressure of the overlying snow is repre-
sented by s (Pa), and � is the snow viscosity (Pa s), which is
an exponential function of snow temperature and density
(equation 12) [Mellor, 1964; Kojima, 1967]. The second
term represents the metamorphism [Anderson, 1976] which
can be significant for fresh relatively low-density snowfall.
The values fromAnderson [1976] are used: ac=2.8� 10�6 s�1,
bc=4.2� 10�2K�1, cc=460m

3kg�1, and rc=150kgm
�3.

The compaction constants can be treated as site-dependent
calibration parameters, but they are held constant for all condi-
tions and locations in the current model.
[14] The snow Newtonian viscosity is formulated as a

function of snow density [Kojima, 1967] and temperature
[Mellor, 1964] as

�j ¼ �0 exp a� Tf � Tj
� �þ b�rj

h i
(12)

where �0 = 3.7� 107 Pa s, a� = 8.1� 10�2 K�1, and
b� = 1.8� 10�2 m3 kg�1.
2.2.6. Snow Albedo
[15] In ORCHIDEE-ES, for bare soil and short vegetation,

snow albedo is parameterized using the following equation
[Boone and Etchevers, 2001]:

atþ1
gs

¼ PsΔt=Wcrnð Þ amax � aminð Þ þ 1� oað Þ atgs � taΔt
h i

þoa atgs � amin

	 

exp tf Δt

� �þ amin

h i
amin ≤ ags ≤ amax

� � (13)

Where atþ1
gs and atgs denote the albedo of next and current time

steps, and amin and amax minimum (0.50) and maximum
snow albedo (0.85) values. Δt is the time step that is
expressed in days, and Ps is snow fall amount (mm). A linear
decrease rate is used for dry snow (ta = 0.008 s) [Baker et al.,
1990], and an exponential decrease rate (tf= 0.24 s) is used
to model the wet metamorphism [Verseghy, 1991]. The
weight oa is defined as the degree of saturation, which is
the ratio of snow liquid content to snow water equivalent
in the surface snow layer. The snow albedo increases at a
rate proportional to snowfall. A snowfall of at least 10 cm
water equivalent (Wcrn = 10 cm) resets the snow albedo back
to its maximum value. The total surface albedo on short
vegetations or bare soil (asurf) is then computed as the sum
of the snow-free vegetation or bare-soil albedo (agns) [Chalita
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and Le Treut, 1994] and snow-covered albedo (ags), which is
weighted by the snow cover fraction (fsg).

asurf ¼ fsgags þ 1� fsg
� �

agns (14)

[16] The snow cover fraction on each grid box (fsg) is a
function of total SWE (the sum of Wj from each layer), as
given by the following:

fsg ¼ SWE= SWEþ 10ð Þ (15)

In this study, for site simulations focusing on snow physics,
we force fsg to 1 as soon as the snowpack reaches the low
user-defined SWE threshold (10 kgm�2).
[17] To test the impacts of the albedo parameterization on

snow simulations, the default snow albedo scheme in
ORCHIDEE has been replaced by equation (13) (called
ORCHIDEE-ALB hereafter). In equation (13), the fraction
of liquid water in the surface layer is used to denote the snow
state (wet versus dry), because the wet snow is parameter-
ized to have a larger snow albedo decay rate than the dry
snow. Given that liquid water is not accounted for in
ORCHIDEE-ALB, instead of using the fraction of liquid
water in the surface layer, skin layer temperature in
ORCHIDEE-ALB is used as a proxy for snow state
(wet versus dry), e.g., snow is diagnosed as wet when skin
layer temperature is above 0�C.
2.2.7. Snow Effects on Roughness Length
[18] In ORCHIDEE-ES, the impact of snow cover on sur-

face roughness has been added. Snow cover is assumed to
reduce the gridbox effective roughness length following
the averaging method from Noilhan and Lacarrère [1995].

1

ln zr=z0t½ �2 ¼
fsg

ln zr=z0n½ �2 þ
1� fsg

ln zr=z0½ �2 (16)

where fsg is snow cover fraction, z0t is surface roughness
length after considering snow cover, z0 is the vegetation or
surface roughness length (m), z0n is the snow surface rough-
ness length baseline value (0.001m), and zr is the blending
height (10m in ORCHIDEE-ES).

3. Model Performance

[19] The model performances are evaluated with several
metrics. The temporal correlations between observed and
modeled snow variables make use of correlation coefficient r.

r ¼
X

Pi � �Pð Þ Oi � �Oð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
Pi � �Pð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
Oi � �Oð Þ2

q (17)

where Oi is observed variable, Pi is modeled variable, and �O
and �P denote means of observed and modeled variables,
respectively. The correlation coefficient is a direct measure
of how well the observations and simulations vary jointly
in time. The mean bias error (MBE) and the root mean
square error (RMSE) have also been calculated. On the
one hand, MBE calculation provides an estimate of whether
the model has the tendency to overpredict (e.g., positive
bias) or underpredict (e.g., negative bias) snow variables
with respect to observations. On the other hand, the RMSE

is a measure of the deviation between the model and the
observations. MBE is given by the following:

MBE ¼ 1

N

Xn
i¼1

Pi � Oið Þ (18)

where N is the number of observations,Oi is observed variable,
and Pi is modeled variable. RMSE, which is used to quantify
the accuracy of the simulations, has been computed as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xn
i¼1

Pi � Oið Þ2
s

(19)

where Oi is observed data, Pi is modeled data, and �O is mean
of observed data.
[20] In addition, RMSE reduction ratio (RMSE-RR) is

calculated as the following equation,

RMSE-RR ¼ RMSEORCHIDEE � RMSEORCHIDEE-ES
RMSEORCHIDEE þ RMSEORCHIDEE-ES

� 2:0 (20)

where RMSEORCHIDEE (RMSEORCHIDEE-ES) are the RMSEs
between modeled and observed target variables, calculated
for the two models, respectively. Positive RMSE-RR indi-
cates that ORCHIDEE-ES improves target variable simula-
tion, and negative RMSE-RR represents that ORCHIDEE-
ES degrades the simulation.

4. Model Evaluation at the Col de Porte Site
(1993–2011)

4.1. Site Description

[21] The Col de Porte (CDP) experimental site (1325m
altitude, 45�170N, 05�450E) is situated in the Chartreuse
mountain range near Grenoble, France. It is located in a
grassy meadow surrounded by a coniferous forest and has
been used for over 50 years as an experimental field site
devoted to the study of snow in mountains. The snow often
begins in November and ends at the beginning of May. The
air temperature can intermittently exceed the freezing point
throughout the winter, and rainfall episodes are common
during the snow season. The soil generally does not freeze.
This site has been widely used to evaluate snow schemes
[e.g., Brun et al., 1992; Sun et al., 1999; Essery et al., 1999,
2013; Boone and Etchevers, 2001; Essery and Etchevers, 2004;
Etchevers et al., 2004; Brown et al., 2006; Vionnet et al., 2012].
[22] The CDP meteorological data are quality controlled

only for the periods when snowfall happens. Outside this
time interval, the meteorological data are replaced by the
output of the SAFRAN analysis system [Durand et al.,
1993]. A forcing data set at hourly timescale covering the
period from 1 August 1993 to 31 July 2011 has then been
built for the purpose of simulations spanning the entire year
[Morin et al., 2012]. For model simulations, we perform an
18 year spin-up starting on 1 August 1993 and then use the
state variables from 31 July 2011 as the initial state for a
new set of simulations starting on 1 August 1993.
[23] The in situ hourly snow surface temperature from a

downward-looking radiometer, hourly snow depth from an
ultrasonic sensor, and daily bottom runoff from snowpack
measured by a 5m2 lysimeter are used for model evaluation.
We also use daily SWE measured using a ground-based
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cosmic rays counter [Kodama et al., 1979; Paquet and
Laval, 2006]. Note that this instrument is calibrated using
manual measurements of SWE, which are carried out on a
weekly basis. The resulting uncertainty is of the order of
10% [Morin et al., 2012]. In addition, the total snow density
obtained by dividing the observed SWE with snow depth on
weekly timescale is also used. Full details regarding the data
set are given in Morin et al. [2012].

4.2. Evaluation of Snow Variables and Temperatures

[24] This section provides the evaluation results using five
snow variables (snow depth, SWE, snow density, snow
albedo, and snowmelt runoff) and the two temperatures
(surface temperature and 10 cm soil temperature). All data
are averaged over pentads in order to display seasonal evolu-
tion of snow albedo, snowmelt runoff, and the two tempera-
tures. For error statistics (MBE and RMSE), both snow
albedo and snowmelt runoff are calculated on a daily basis,
and the two temperatures are computed on an hourly basis.

4.2.1. Snow Depth and SWE
[25] As shown in Figures 2 and 3, ORCHIDEE-ES

improves daily snow depth and daily SWE simulations at
CDP. The daily MBE from December to May has been
reduced from ORCHIDEE (snow depth: �0.19� 0.12m;
SWE: �91� 39 kgm�2) to ORCHIDEE-ES (snow depth:
0.09� 0.12m; SWE: �17� 37 kgm�2). The daily RMSE
from December to May has also been reduced from
ORCHIDEE (snow depth: 0.30� 0.11m; SWE: 132� 39kgm�2) to
ORCHIDEE-ES (snow depth: 0.17� 0.10m; SWE: 41� 22kgm�2).
The values behind the sign � are standard deviation
across years. Our results are comparable to those of the
Vionnet et al. [2012] study, which reports that the MBE
(RMSE) values in ISBA-ES are 0.06 (0.12m) and �12
(41 kgm�2) for snow depth and SWE over the period
2000–2011, respectively.
4.2.2. Snow Density
[26] Figure 4 shows that observed snow density on a

weekly basis is well captured by ORCHIDEE-ES (r = 0.83,
MBE=�18 kgm�3, RMSE= 48 kgm�3) from all samples

Figure 2. Daily snow depth comparisons between observation and simulations at CDP during the period
1993–2011. The daily MBE and RMSE during the period from December to May across years are shown
in box plot. The bottom and the top of the box denote the 25th and 75th percentiles, respectively, and the
band near the middle of the box is the 50th percentile (the median).

Figure 3. Daily SWE comparisons between observation and simulations at CDP during the period
1993–2011. The meaning of box plot is the same with Figure 2.
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during the period 1993–2011. By contrast, snow density is
prescribed constant in ORCHIDEE (330kgm�3). A more
realistic snow density simulation in ORCHIDEE-ES is critical
because it impacts snow thermal conductivity [e.g., Sturm
et al., 1997, Calonne et al., 2011]. However, snow density
and snow thermal conductivity in ORCHIDEE are indepen-
dently prescribed as constants. Utilizing ORCHIDEE with an
added permafrost module [Koven et al., 2009], Gouttevin
et al. [2012a] prescribed observed snow density (and snow
thermal conductivity) for two contrasted snow classes (tundra
and taiga in their case) over the pan-arctic region and found
soil carbon stocks to be 8% lower than with uniform snow
density and thermal conductivity. This highlights the necessity
to model the spatial distribution of snow density and thermal
conductivity. The Gouttevin et al. [2012a] study was rather
idealized, because only two snow classes were distinguished

for the pan-arctic region. Further details can be brought by
ORCHIDEE-ES, in which snow density is calculated and
snow thermal conductivity is parameterized as a function of
snow density [e.g., Yen, 1981; Sturm et al., 1997; Calonne
et al., 2011]. However, snow density may also be governed
by other drivers (e.g., wind speed, vegetation types), which
are not currently considered.
4.2.3. Snow Albedo
[27] As shown in Figure 5, the seasonal evolution of snow

albedo from December to May in pentads is captured by
both ORCHIDEE and ORCHIDEE-ES. One can observe
that ORCHIDEE-ES (MBE= 0.04� 0.06; RMSE= 0.11
� 0.03) better simulates daily snow albedo compared to
ORCHIDEE (MBE=�0.18� 0.04; RMSE= 0.22� 0.03).
During the early winter and spring seasons, a residual bias
is seen in simulated snow albedo from ORCHIDEE-ES
(Figure 5). This is related to a shortcoming of the model in
reproducing the start and end of snow season. In addition,
accurate representation of snow albedo is very important
since our following results (section 4.3.1) indicate that the
bias in the simulated snow depth and SWE by ORCHIDEE
is partly explained from the snow albedo underestimation.
4.2.4. Snowmelt Runoff
[28] Figure 6 compares observed and modeled snowmelt

runoff between ORCHIDEE and ORCHIDEE-ES. The timing
and total amount of snowmelt runoff is better simulated by
ORCHIDEE-ES which has a lower RMSE (9.3� 1.7mm)
and a smaller MBE (underestimation) (�0.7� 1.7mm) than
ORCHIDEE (RMSE: 11.2� 2.2mm; MBE:�0.9� 1.8mm).
Although ORCHIDEE shows a similar runoff behavior than
the observations, ORCHIDEE-ES is found to track more
closely the changes in snowmelt runoff during the mid-
ablation season and final melting season.Moreover, the timing
of snowmelt runoff peak in ORCHIDEE occurs much earlier
than that from ORCHIDEE-ES and the observations.
4.2.5. Snow Surface Temperature
[29] Both models are capable of simulating the seasonal

dynamics of snow surface temperature (Figure 7). Besides
the snow season (December–May), hourly error statistics
(RMSE and MBE) are calculated for the two models during
the “common snow period” where models and data have
at least 5 cm snow depth. Figure 7 shows that the difference

Figure 4. Scatter plot of weekly snow density between
observation and simulations across all points from 1993 to 2011.

Figure 5. Comparison of multiyear averaged (1993–2011) snow albedo in pentads between observation
and simulations during the period fromDecember toMay at CDP. For each pentad, the error bar denotes stan-
dard deviation of albedo values from all available years. The meaning of box plot is the same with Figure 2.
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between hourly error statistics of the two models is smaller
during common snow period than during the whole period
(December–May). This can be expected because ORCHIDEE
predicts an earlier snow disappearance, and then, the tempera-
ture resulting from the surface energy budget is not the true
snow surface temperature. When a common snow period is
considered, ORCHIDEE-ES has a cold bias (�0.8� 0.6�C),
but ORCHIDEE has a warm bias (0.4� 0.5�C). The warm
bias in ORCHIDEE is related to the underestimated snow
albedo (section 4.3.1). The cold bias of ORCHIDEE-ES is also
found in other intermediate complexity snow models [e.g.,
Essery and Etchevers, 2004; Brown et al., 2006] and may
reflect the fact that the Monin-Obukhov similarity theory
implemented in these land surface models is unable to explain
turbulent energy exchanges over snow and ice under stable

atmospheric conditions [Martin and Lejeune, 1998]. Even
under stable atmospheric conditions, turbulence still exists
and is characterized by intermittent bursts. As explored in
detail by Brown et al. [2006], an inclusion of windless transfer
coefficient in the sensible heat flux calculation may partly
rectify the cold bias in surface temperature.
4.2.6. Soil Temperature
[30] The simulation for soil temperature at the depth of

10 cm is improved in ORCHIDEE-ES in comparison to
ORCHIDEE, as shown in Figure 8. For example, during the
common snow period, hourly MBE and hourly RMSE are
reduced from �4.3� 1.1�C and 5.5� 1.2�C in ORCHIDEE
to �1.0� 0.9�C and 1.7� 0.9�C in ORCHIDEE-ES, respec-
tively. A parameterization of snow thermal conductivity based
on snow density in ORCHIDEE-ES contributes to enhanced

Figure 6. Comparison of multiyear averaged (1993–2011) snowmelt runoff in pentads between observa-
tion and simulations at CDP. For each pentad, the error bar denotes standard deviation of snowmelt runoff
from all available years. The meaning of box plot is the same with Figure 2.

Figure 7. Comparison of multiyear averaged (1993–2011) snow surface temperature in pentads between
observation and simulations during the period from December to May at CDP. For each pentad, the error
bar denotes standard deviation of snow surface temperature from all available years. The meaning of box plot
is the same with Figure 2, but MBE and RMSE are computed on the hourly basis. A, B, and C denote error
statistics calculation that is performed on the whole period (December–May) for ORCHIDEE-ES,
ORCHIDEE-ALB, and ORCHIDEE, respectively; D, E, and F denote error statistics calculation that is
performed on the common snow period (see text for explanation) for ORCHIDEE-ES, ORCHIDEE-ALB,
and ORCHIDEE, respectively.
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behaviors in soil temperature simulation. This might be
implied from the results of a sensitivity analysis based on
Morris method for parameter ranking, which shows that
parameters related to snow thermal conductivity are the
second highest sensitive (important) in ORCHIDEE-ES soil
temperature simulations (see details in section 4.3.2). In addi-
tion, ORCHIDEE has only one single snow layer, not
allowing the temperature gradients within the snowpack,
which produces a bias in the ground heat flux and soil temper-
ature, because temperature at the bottom of the snow pack is
less variable than that near the snow surface (large diurnal
cycle). ORCHIDEE-ES better accounts for the vertical propa-
gation of the surface heat wave into the snowpack through the
soil, since it represents vertical gradients of snow thermal
conductivity with snow density. Finally, ORCHIDEE has a
mixed soil-snow structure, where the snow temperature is
assumed to be equal to the temperature of the first soil layer.
The separation of bottom snow layer from first soil layer in
ORCHIDEE-ES allows distinguished thermal conductivity
between them, which can also contribute to improve soil tem-
perature simulation. However, we should emphasize that snow
albedo parameterizations in ORCHIDEE-ES do not really
benefit soil temperature simulation (see details in section
4.3.1). The cold bias in simulated soil temperature still persists
in ORCHIDEE-ES, which is possibly related to other missing
processes (e.g., inaccurate settings of CDP soil thermal param-
eters, soil freezing/thawing processes, soil thermal insulation
by soil carbon).

4.3. Sensitivity Tests

4.3.1. Sensitivity to Snow Albedo

[31] In order to investigate how snow albedo alone
changes the other snow variables, we replaced the snow
albedo scheme in ORCHIDEE with a modified one
from ORCHIDEE-ES (named as ORCHIDEE-ALB, section
2.2.6). In ORCHIDEE-ALB, snow albedo simulation has been
largely improved, for example, daily RMSE has been reduced
from 0.22� 0.03 to 0.12� 0.03. Moreover, RMSEs
concerned with simulated snow depth, SWE, and snowmelt
runoff are smaller with ORCHIDEE-ALB than those from
ORCHIDEE (Table 1). However, the improvement of snow
depth brought by a better albedo scheme alone is not as large
as that observed in SWE and snowmelt runoff. This could be
expected since constant snow density is still adopted in
ORCHIDEE-ALB. This result confirms that the representation
of snowpack internal processes is necessary [Essery et al.,
2013]. Moreover, soil temperature underlying the snow pack
in ORCHIDEE-ALB still stays colder than the observations.
Instead, soil temperature simulation in ORCHIDEE-ALB
is degraded (Table 1 and Figure 8). This is because
ORCHIDEE-ALB simulates a higher snow albedo and a
colder surface temperature (then soil temperature) than
ORCHIDEE (Table 1). Both hourly MBE and hourly RMSE
are very high in ORCHIDEE-ALB (Table 1). In addition, in
contrast to ORCHIDEE (0.4� 0.5�C), MBE in snow surface
temperature is negative in ORCHIDEE-ALB (�0.5� 0.6�C),

Figure 8. Comparison of multiyear averaged (1993–2011) soil temperature at the depth of 10 cm in
pentads between observation and simulations during the period from December to May at CDP. The
explanation on error bar, boxplot and letters (A, B, C, D, E and F) is referenced to Figure 7.

Table 1. Summary of MBE and RMSE for Different Snow Variables and the Two Temperatures at Col de Portea

MBE RMSE

ORCHIDEE ORCHIDEE-ALB ORCHIDEE-ES ORCHIDEE ORCHIDEE-ALB ORCHIDEE-ES

Snow Depth (m) �0.19 (0.12) 0.12 (0.17) 0.09 (0.12) 0.29 (0.11) 0.26 (0.14) 0.17 (0.10)
SWE (kgm�2) �91 (39) �11 (38) �17 (37) 132 (39) 41 (22) 42 (20)
Snow Albedo �0.18 (0.04) 0.05 (0.05) 0.04 (0.06) 0.22 (0.03) 0.12 (0.03) 0.11 (0.03)
Surface Temp. (�C) 0.4 (0.5) �0.5 (0.6) �0.8 (0.6) 2.7 (0.6) 3.0 (0.9) 3.0 (0.7)
10 cm Soil Temp. (�C) �4.3 (1.1) �5.5 (1.2) �1.0 (0.9) 5.5 (1.2) 6.7 (1.3) 1.7 (0.9)
Snowmelt Runoff (mm) �0.9 (1.8) �0.7 (1.8) �0.7 (1.8) 11.2 (2.2) 9.1 (1.9) 9.3 (1.7)

aThe values in parenthesis denote the standard deviation across years. The error statistics for snow depth, SWE, and snow albedo are calculated during the
period from October to May. The error statistics for surface temperature and 10 cm soil temperature are calculated during the common snow period. The
error statistics for snowmelt runoff are calculated during the full year.
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which is also found in ORCHIDEE-ES (�0.8� 0.6�C). This
implies that the warm bias of snow surface temperature found
in ORCHIDEE is predominantly related to snow albedo
underestimation (Figure 5).
[32] This sensitivity analysis emphasizes the predominant

sensitivity of snow albedo in the simulation of other snow
variables, which implies that both snowpack and hydrologi-
cal variables could benefit from realistic snow albedo, e.g.,
that could be assimilated from satellite measurements [e.g.,
Malik et al., 2012]. This is particularly relevant since other
contributing factors (e.g., black carbon, wind-driven surface
microtopography) on snow albedo may be implicitly
included in satellite-derived albedo observations.
4.3.2. Parameter Sensitivity Tests in ORCHIDEE-ES
[33] Understanding the relative importance of parameters

when implementing new parameterizations can give insights
into the uncertainty in simulations and provide guidelines
for further model refinements. In order to better understand
the relative importance of the new processes represented,
the Morris method [Morris, 1991] is adopted to rank the
parameters of the ORCHIDEE-ES snow model. This method
is based on a screening approach which consists in analyzing
the behavior of output variables when varying the parameter
values in a predefined parameter space. Its implementation is
fully described in Appendix A. The 20 parameters are
grouped in five categories (snow albedo, roughness length,

snow thermal properties, snow water holding capacity, and
snow compaction) which were found to have influences on
snow simulations in previous studies [e.g., Essery et al.,
1999, 2013; Boone and Etchevers, 2001; Essery and
Etchevers, 2004; Etchevers et al., 2004; Brown et al., 2006].
[34] Figure 9 displays the parameter ranking in

ORCHIDEE-ES at CDP when studying snow depth, SWE,
and 10 cm soil temperature variables (the larger the bar, the
more important the parameter). The results confirm that the
parameters related to snow albedo parameterization (mini-
mum and maximum snow albedo values and albedo decay
rate for melting snow) play important roles on the simulation
of these output variables. This was also found in previous
studies [Essery and Etchevers, 2004]. The parameter tf used
to describe snow albedo decay rate during melting season,
which plays an important role when studying snow water
equivalent in the model, can be understood as a proxy
variable for snow grain size and impurity content and their
evolution. Indeed, the most physical way to approach the con-
struction of a snow albedo parameterization is to incorporate
snow grain size prognostically and relate snow albedo to grain
size evolution [e.g., Brun et al., 1989; Kuipers Munneke et al.,
2011]. However, our snow albedo parameterization is still
empirical, and the parameter tf as a proxy of grain size evolu-
tion is very sensitive. Our study thus highlights the necessity
of considering snow grain size in further developments.
[35] Our results also reveal the dominance of the parame-

ters (�0 and b�) controlling compaction rate over the others,
especially with respect to snow depth. In fact, the compac-
tion rate for a given overburden pressure mainly depends
on the thermal state of snow pack, which varies locally but
mainly as a function of local meteorological conditions.
The large sensitivities found in parameters related to com-
paction rate lead us to suggest that the uncertainty of snow
depth simulations can be greatly constrained if snow com-
paction rates can be physically approached in the model.
[36] The parameters (al and bl) controlling snow ice

thermal conductivity are also identified as important regula-
tors able to outcompete some parameters especially in soil
temperature simulation (Figure 9). In contrast, the parame-
ters (alv and blv) related to heat transfer through snow by
interstitial air conduction are less sensitive in the model.
Previous studies justify the application of simple regression
curves between snow ice thermal conductivity and snow
density in snow models [e.g., Yen, 1981; Sturm et al.,
1997; Calonne et al., 2011]. However, such regression
curves differ widely, and there is up to a factor of 2 between
different studies [Yen, 1981; Sturm et al., 1997]. Our
sensitivity analysis highlights that the regression parameters
(al and bl) linking these two variables should be further
constrained in future experimental studies by considering a
wide range of snow types and a common experimental
design [e.g., Calonne et al., 2011].
[37] However, we should keep in mind that the parameter

ranking obtained for snow simulation in CDP site might not
be directly transferred to other sites. This needs further
verification in future studies mainly designed for parameter
sensitivity analysis. Moreover, the Morris method is indeed a
screening method to identify influential and non-influential pa-
rameters in the model without any quantitative information.
This means that the quantitative measure of the influence of
specific parameter cannot be identified. The current analysis

Figure 9. Ranking of the parameters in ORCHIDEE-ES
based on the Morris method at CDP when studying snow
depth (m), SWE (kgm�2), and 10 cm soil temperature (�C).
The importance of the parameter is represented by the bar
length (the larger the bar, the more importance the parameter).
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can still provide valuable information on the importance of
parameters in ORCHIDEE-ES snow simulations, which can
prepare future model calibration only using the identified most
sensitive parameters.

5. Model Evaluation in Northern Eurasia

5.1. Data Description

[38] In order to evaluate the snow model performances on
the large spatial scale, we use ground snow observations
from both Historical Soviet Daily Snow Depth (HSDSD)
[Armstrong, 2001] and Former Soviet Union Hydrological
Snow Surveys (FSUHSS) [Krenke, 2004] data sets. HSDSD
includes quality controlled daily snow depth data that have
been collected in open areas or clearings in forest regions.
We consider 263 stations located in a northern Eurasian
domain extending from 30.5�W to 180�W and from 35.5
to 73.5�N, with daily snow depth observations, half of them
without any missing data. FSUHSS includes additional
snow density, snow depth, and SWE observations [Brun
et al., 2013]. The data source for evaluating model perfor-
mance in near-surface soil temperature simulations comes
from monthly soil temperature at 20 cm depth, which is
available in the Russia Historical Soil Temperature Data
TMD2 data set [Zhang et al., 2001]. For this comparison,
we use only stations that are collocated with the HSDSD
or FSUHSS snow observations.

5.2. Model Forcing and Simulations

[39] The meteorological variables for driving ORCHIDEE
are extracted from the ERA-Interim [Dee et al., 2011]
reanalysis at the grid point of each station. ERA-Interim
reanalysis has a good quality of snowfall chronology since
cold season precipitation over northern Eurasia is mainly
caused by synoptic-scale systems with mostly stratiform
type precipitation, which are well captured by this product
[Brun et al., 2013]. Global Precipitation Climate Center
(GPCC) gridded monthly precipitation (Full Data Product
V5) is employed as a scaling factor for monthly ERA-Interim
precipitation. This data set is chosen given that the best snow
model performance when blowing snow is not represented
has been obtained using GPCC-scaling ERA-Interim precipi-
tation [Brun et al., 2013]. We choose the period extending
from 1 July 1979 to 30 June 1993, which combines the avail-
ability of ERA-Interim data sets together with a large number
of stations’ snow depth records. The elevation difference
between each station and the corresponding grid box from
ERA-Interim has been considered in generating meteorologi-
cal variables used for driving ORCHIDEE (see Brun et al.
[2013] for details). In addition, we adopt a snow-rain
partitioning threshold equal to 1�C. At each station, the vege-
tation type is prescribed as grassland in the model. We first
perform a 14 year spin-up starting on 1 July 1979 and then
use the soil temperature profile on 30 June 1993 as the initial
state for a new set of simulations starting on 1 July 1979.

5.3. Statistical Analysis

[40] To evaluate model performance in snow depth simu-
lation, more than 1,100,000 daily snow depth observations
from all station years have been employed to calculate the
error statistics (MBE, RMSE, and r). For SWE, more than
100,000 observations have been used. In addition, we only

consider the stations which have at least 10 years of near com-
plete (at least 360 days) year-round snow depth observations
(165 stations satisfy this criterion). They are used to evaluate
the model performance in capturing spatio-temporal variabil-
ity of snow depth in northern Eurasia. Moreover, these obser-
vations are also used to define start and end dates of the longest
period with continuous snow on the ground (defined as
snow depth higher than 0.5 cm), which are then compared to
modeled values.
[41] The monthly observed soil temperature from the

TMD2 data set is recorded at the depth of 20 cm, which does
not correspond to the modeled soil discretization. Thus, we
linearly interpolate soil temperature between 12.9 and
30.1 cm model depths. This simple linear interpolation might
result in a cold bias [e.g., Gouttevin et al., 2012b, Figure 3].
Comparison betweenmonthly observed andmodeled soil tem-
perature is conducted during three winter months (December
throughout February). In order to investigate whether the per-
formance of ORCHIDEE-ES compared to ORCHIDEE for
soil temperature simulation depends on snow depth, the
RMSE reduction ratio (RMSE-RR, equation (20)) is regressed
against mean snow depth across stations each winter month. In
equation (20), RMSEORCHIDEE (RMSEORCHIDEE-ES) is the
RMSEbetweenmodeled and observedmonthly soil temperature
at 20 cm depth across at least 10 years for each winter month.

5.4. Evaluation of Snow Variables

[42] Over all stations, snow depth, SWE, and snow den-
sity are simulated more accurately in ORCHIDEE-ES (lower
RMSE and higher r) than ORCHIDEE (Table 2). The
RMSE between modeled and observed daily snow depth
(m) decreases from 0.12 in ORCHIDEE to 0.10 in
ORCHIDEE-ES, and the RMSE for daily SWE (kgm�2) de-
creases from 49.8 in ORCHIDEE to 44.2 in ORCHIDEE-ES.
The largest RMSE reduction (RMSE-RR) and the highest r
increment from ORCHIDEE to ORCHIDEE-ES are obtained
for snow density that is prescribed constant (330 kgm�3) in
ORCHIDEE. In addition, snow depth has a higher RMSE-
RR (18%) than SWE (12%), which is in support of our previ-
ous analysis at CDP site.
[43] Across the 165 northern Eurasian stations with near

complete year-round snow depth observations (Figure 10a),
both models could capture interannual variability in annual
snow depth well, in terms of r (ORCHIDEE-ES: r ranges
from 0.57 to 0.89 versus ORCHIDEE: r ranges from 0.56
to 0.88) (Figure 10b). The range values in parenthesis denote
the 25th and 75th percentiles. In terms of RMSE and MBE,
ORCHIDEE (0.11� 0.08m and �0.10� 0.08m) displays
worse performances than ORCHIDEE-ES (0.07� 0.07m
and �0.003� 0.08m) in snow depth. The values behind
the sign � are standard deviation across stations. This is also
found if we compare the two models in the simulation of
spatial variation of multiyear averaged annual snow depth
across 165 stations (Figure 10c). These spatio-temporal
model evaluations indicate that ORCHIDEE has a systematic
underestimation of snow depth because of unrealistic snow
albedo representation and absent prognostic snow density
(section 4.2.1). Furthermore, ORCHIDEE-ES has a more real-
istic representation of start and end dates of continuous snow
cover than ORCHIDEE when confronting the model output
against the observation across all station years (Table 2). For
example, the mean bias for end date of snow cover is of 3 days
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in ORCHIDEE-ES, which is smaller than the �10 days
obtained in ORCHIDEE. This indicates that ORCHIDEE-ES
better represents the presence/absence of snow on the surface,
which is critical for snow-climate feedbacks.
[44] ORCHIDEE-EShas a negative bias inSWE(�4.9kgm�2)

and a near zero bias in snow depth (0.001m) simulations
(Table 2). This is comparable to the result (SWE: 2.3 kgm�2;
snow depth: 0.008m) from Brun et al. [2013], using
the same data sets but a more complex physical snow
model Crocus. Note that the sources of simulation bias
in ORCHIDEE-ES might stem from the fixed snowfall
threshold air temperature (1�C) and/or the inaccuracy
of ERA-Interim precipitation in mountainous regions as
already noted by Brun et al. [2013].

5.5. Evaluation of Near-Surface Soil Temperature

[45] Figure 11b shows the scatter plot between observed and
modeled monthly soil temperature at the depth of 20 cm. Each
point denotes a monthly averaged value. ORCHIDEE-ES
generally improves monthly 20 cm soil temperature simula-
tions during the winter season (December throughout
February) in terms of the statistics used for measuring the
model performance. For example, the RMSE decreases
from 10.5�C to 7.9�C, and MBE changes from �9.4�C to
�6.3�C. This could be attributed to the fact that thermo-
insulation effect of snow on soil could be more realistically
approached by ORCHIDEE-ES than ORCHIDEE. The better
simulation of soil temperature in ORCHIDEE-ES provides

Table 2. The Summary of Statistics (MBE, RMSE, and r) for Snow Variables Simulated by Two Snow Models (ORCHIDEE and
ORCHIDEE-ES) Over Northern Eurasia Stationsa

Variable N Statistics ORCHIDEE ORCHIDEE-ES

Snow depth (m) 1,016,981 MBE �0.05 �0.00
RMSE 0.12 0.10

r 0.78 0.83
Snow water equivalent (kgm�2) 113,113 MBE �22.7 �4.9

RMSE 49.8 44.2
r 0.60 0.66

Snow density (kgm�3) 41,852 MBE 76.0 �24.3
RMSE 92.8 53.6

r 0.00 0.55
Start of continuous snow cover (days) 2,141 MBE 7 1

RMSE 18 15
r 0.87 0.89

End of continuous snow cover (days) 2,141 MBE �10 3
RMSE 20 18

r 0.85 0.86

aFor the onset date, the end date, and density, the statistical computation over each station and each year requires that both observations and simulations
show a snow depth larger than a prescribed threshold (0.005m for onset and end dates at least once in the year, 0.1m for density).

Figure 10. (a) Spatial distribution of stations (n= 165) having at least 10 years with near complete (>360
days) year-round continuous snow cover; (b) mean daily snow depth comparison between observation and
simulations across stations over the period 1979–1992. The gray region represents� 1 standard deviation
of mean daily observation. The dashed blue (or red) line represents� 1 standard deviation of mean daily
ORCHIDEE (or ORCHIDEE-ES) values; (c) the scatter plot of multiyear averaged (1979–1992) annual
snow depth between observation and simulations across stations.
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evidence of the importance of snow thermal conductivity
parameterizations. It is interesting to note that the RMSE
reduction decreases as mean snow depth increases across
sites (Figure 11c), suggesting that the relative advantage of
ORCHIDEE-ES over ORCHIDEE in the simulation of
20 cm soil temperature gets reduced if a site was covered by
deep snowpack. This implies that the benefits of a physical
snowmodel could be more important for soil temperature sim-
ulations at shallow snow regions (or conditions) experiencing,
e.g., continued global warming [IPCC, 2007]. In other words,
the sensitivity of the surface temperature to snow pack could
be higher for shallow snow depth.
[46] The ORCHIDEE-ES cold bias is reduced but not

eliminated by the use of the improved snow model
(Figure 11b). We therefore suspect that part of the bias could
originate from other causes. Firstly, it relates to the possibil-
ity that soil freezing processes are not considered in
ORCHIDEE-ES. The latent heat released by soil freezing
in the autumn or early winter delays the soil cooling [Boike,
et al., 1998]. This freezing-induced heat release might en-
dure over the winter if the uppermost soil is effectively insu-
lated by the snow cover. Based on ORCHIDEE, Gouttevin
et al. [2012b] showed that the cold bias in soil temperature
simulations have been partly removed after adding the soil
freezing processes. Moreover, they pointed out that the
remained cold biases in soil temperature simulations were as-
cribed to the deficient snow representation in ORCHIDEE
using default snow scheme. In addition, soil thermal insulation
by soil carbon can also contribute to the cold bias [Koven
et al., 2009]. Thus, future studies can further investigate this is-
sue based on ORCHIDEE-ES including soil freezing/thawing
processes [Gouttevin et al., 2012b] and soil thermal insulation

by soil carbon [Koven et al., 2009] developed indepen-
dently. However, we should inform that this study is not
designed for fully bridging the gap in soil temperature sim-
ulations but more for understanding the contributing effect
of improved snow physics to soil temperature simulations
in high-latitude regions.

6. Summary and Outlook

[47] The mechanistic intermediate complexity snow
scheme ISBA-ES has been adapted and implemented into
ORCHIDEE LSM. This three-layered snow module adds
more features (e.g., varying snow density and snow thermal
conductivity, thawing and refreezing of liquid water within
the snowpack) into the original one to simulate the snow
processes more accurately. The improved snow scheme
shows remarkable performances on snow depth and snow
water equivalent simulations over CDP and the sites span-
ning a large spatial and temporal pattern in northern Eurasia.
The enhancements can also be found in daily runoff simula-
tions. As exemplified using CDP data, the snow albedo is
shown to be a main determinant for model discrepancy in
simulations of main snow variables. This possibly opens
new perspectives to improve snow model behaviors in the
future through nudging the time evolution of snow albedo
from satellite images into ORCHIDEE. But soil temperature
simulation cannot truly be benefited if only snow albedo is
better modeled. This justifies the necessity of discarding
constant snow thermal conductivity but introducing a
parameterized one using varying snow density and other
factors (e.g., snow temperature and vapor transfer) in the
improved snow scheme. ORCHIDEE-ES can then be

Figure 11. (a) Spatial distribution of stations having monthly soil temperature; (b) the scatter plot of
monthly soil temperature between observation and simulations from all winter months, years and stations;
(c) the relationship between RMSE-RR (see equation (20)) in monthly soil temperature and multiyear
averaged monthly snow depth across stations. The stations having at least 10 years of monthly soil
temperature are included in this analysis. The month here is only referenced to the winter month (December
throughout February).
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adopted to investigate how soil carbon stocks respond to
spatio-temporal change of snow thermal conductivity.
[48] We also perform a parameter sensitivity analysis on

ORCHIDEE-ES in order to assess the relative importance
of physical snow processes influencing snow accumula-
tion/melt and soil temperature. The Morris method used
for parameter ranking highlights the processes that should
be better characterized (such as wet snow metamorphism,
snow compaction rate) in order to constrain model
uncertainties.
[49] Finally, the present study focuses only on snow

simulation over short vegetation or bare ground. The snow
processes in forested areas present different features that
cannot easily be implemented into a single-layer energy
budget model like ORCHIDEE, since separate layers are
needed to resolve energy exchanges between above canopy
and atmosphere and between under-canopy atmosphere and
snow surface [Harding and Pomeroy, 1996; Link and Marks,
1999; Ellis et al., 2010]. A multilayer representation of the
energy balance (under development in the ORCHIDEE team,
J. Ryder, personal communication) combined with the multi-
layer snow scheme presently under development will permit
us in the near future to better explore impacts of snow on
climate, carbon, and hydrological cycling in a coupled
atmosphere-land/snow model.

Appendix A: Morris Global Sensitivity
Analysis Method
[50] In order to assess the influence of parameters, a

common method is the analysis of the influence of the
parameters on model output one by one. However, this
method does not take into account interactions between
model parameters [e.g., Saltelli et al., 2008; Campolongo
et al., 2011]. Global sensitivity analysis aims to fill this gap
by considering entire model parameter space as well as
parameter interactions. The method used in this work is the
Morris method that consists in randomly choosing a series of
parameter combinations that best represent the model
parameter space (see details in Morris [1991]; Campolongo
et al. [2007]).
[51] In a randomly selected parameter space (or trajec-

tory), the Morris method consists of repetitions of sensitivity

analysis whereby the derivatives are calculated for each
parameter Pi by adding a small change (Δ). The change in
model output Y(. . .,Pi+Δ, . . .) can then be attributed to such
a modification by means of an elementary effect, eei(Y)
defined by equation (A1).

eei Yð Þ ¼ Y . . . ;Pi þ Δ; . . .ð Þ � Y . . . ;Pi; . . .ð Þ
Δ

(A1)

[52] Where Δ is a predefined perturbation factor of Pi.
Each input parameter, Pi, can only take values correspond-
ing to (a predefined set of evenly spaced) p levels within
its range. The calculation of these elementary effects, eei
(Y), is performed in r trajectories. The Morris method design
only requires r*(k+ 1) model simulations to determine a eei
(Y) for each of the total k parameters.
[53] Sensitivity indices m* from eei(Y) (the average of

elementary effects’ absolute values) is adopted to rank the
parameters according to their influence on the modeled
variable. The value of m* provides information about the im-
portance of each parameter; the larger the value of m*, the
more important the parameter, which defines a ranking for
multiple parameters. The Morris method provides qualitative
sensitivity analysis measures that allow ranking the parame-
ters in order of importance but do not quantify exactly the
relative importance of the parameters.
[54] In this study, we chose 20 parameters that are related

to snow simulations in ORCHIDEE-ES. Among them, five
parameters related to snow albedo, one to snow roughness
length, five to snow thermal properties, three to snow water
holding capacity, and six to snow compaction (Table A1).
The selection of value ranges for each parameter is of impor-
tance because it can impact the results of Morris global
sensitivity analysis. The parameter ranges are based on liter-
ature survey and expert opinions. If both are not available,
the input parameter uncertainty is fixed at 50% of the default
value. Here the target variables used to rank the parameters are
the root mean square error (RMSE) of snow depth, SWE, and
soil temperature at the depth of 10 cm (equation (A1)). The
Morris settings of the parameter space (the number of levels,
p, and the number of trajectories, r) are left to the user choice.
In our analysis, the Morris global sensitivity analysis is carried
out for CDP site withMorris settings of p=8 and r=40, there-
fore requiring 840 model runs.

Table A1. Characteristics of the 20 Selected Model Parameters and Their Associated Default Value and Value Ranges for the
Morris Method

Parameter Abbreviation Parameter Description (Units) Default Value Value Ranges

Snow albedo
amax Maximum snow albedo (�) 0.85 0.70 ~ 1.0
amin Minimum snow albedo (�) 0.50 0.30 ~ 0.60
tf Wet snow albedo decay rate (s) 0.24 0.12 ~ 0.36
ta Dry snow albedo decay rate (s) 0.008 0.004 ~ 0.012
Wcrn Snow amount for refresh (mm) 10 5 ~ 15
Snow roughness
Z0n Snow surface roughness length (mm) 1 0.1 ~ 10

Snow thermal properties
al Snow thermal conductivity parameter (Wm�1) 0.02 0 ~ 0.10
bl Snow thermal conductivity parameter (Wm5K�1 kg�2) 2.5� 10�6 1.0� 10�7 ~ 5.0� 10�6

alv Snow thermal conductivity (vapor) parameter (Wm�1K�1) �0.06 �0.09 ~�0.03
blv Snow thermal conductivity (vapor) parameter (Wm�1) �2.54 �3.81 ~�1.27
clv Snow thermal conductivity (vapor) parameter (K) �289.99 �300.0 ~�280.0
Liquid water
rwmin Maximum snow liquid water content parameter (�) 0.03 0.015 ~ 0.045
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