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ABSTRACT. The Orange Carotenoid Protein (OCP), which is essential in cyanobacterial photoprotection, is 

the first photoactive protein containing a carotenoid as an active chromophore. Static and time-resolved 

FTIR difference spectroscopy under continuous illumination at different temperatures was applied to 

investigate its photoactivation mechanism. Here we demonstrate that in the OCP, the photo-induced 

conformational change involves at least two different steps, both in the second timescale at 277 K. Each step 

involves partial reorganization of α-helix domains.  At early illumination times the disappearance of a non-

solvent exposed α-helix (negative 1651 cm-1 band) is observed. At longer times, a 1644 cm-1 negative band 

starts to bleach, showing the disappearance of a solvent-exposed α-helix, either the N-terminal extension or 

the C-terminal tail. A kinetic analysis clearly shows that these two events are asynchronous. Minor 

modifications in the overall FTIR difference spectra confirm that the global protein conformational change 

consists of - at least - two asynchronous contributions. Comparison of spectra recorded in H2O and D2O 

suggests that internal water molecules may contribute to the photoactivation mechanism. 
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Introduction 

The Orange Carotenoid Protein (OCP) is a water-soluble carotenoprotein found in cyanobacteria1 . OCP 

plays a key role in photoprotection, acting both as a promoting agent of thermal dissipation of excess 

excitation energy absorbed by the phycobilisome, the cyanobacterial light harvesting antenna, and as a 

scavenger of singlet oxygen2. Most of OCPs (including that from Synechocystis PCC6803 studied in this 

work) belong to a big sub-family called OCP1 but recently bioinformatics studies revealed the existence of 

at least two other sub-families OCP2 and OCPX presenting slightly different characteristics3. OCP consists 

of two discrete domains: an all helical N-terminal domain (NTD), made up of two discontinuous four-helix 

bundles, and a C-terminal domain, with a mixed α-helix/β-sheet fold4 (see Fig. 1).  
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Figure 1. The crystal structure of the Synechocystis PCC 6803  OCP. (Protein Data Bank identifier: 3MG1). 

The OCP monomer is shown in the orange closed state. The N-terminal domain (NTD, residues 1–165) is 

magenta . The C-terminal domain (CTD, residues 196-315) is light blue-green. The N-terminal extension 

(NTE) is represented in red, the C-terminal tail (CTT) in grey and the linker loop in blue. The carotenoid is 

represented as orange sticks.  
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A linker of 25 amino acids connects the two domain. The carotenoid –3’-hydroxyechinenone (hECN) – 

spans the two domains, and is almost entirely embedded in the protein matrix.  The keto group of hECN is 

hydrogen bonded to the Y201 and W288 of the CTD 4. A salt bridge between the R155 side chain of the 

NTD and the E244 side chain of the CTD 4 stabilizes the structure shown in Fig. 1. 

When absorbing strong blue-green light the OCP converts from a dark-adapted orange form (OCPO) to a 

light-activated red form (OCPR)5.  OCPR binds to the phycobilisome  and facilitates thermal dissipation of 

excess light energy5,6, 7. 

In the OCPO to OCPR transition the domains (NTD and CTD) of the protein dissociate; as a result, the OCPR 

seems to be more elongated and less hydrophobic than the starting form OCPO  8,9,10,11 . During this 

transformation, the carotenoid undergoes a 12 Å translocation, from its original position, spanning the two 

domains of OCPO, to a new one, inside the NTD 12. The binding of a keto carotenoid is essential for 

photoactivation. Echinenone and canthaxantin binding OCPs are also photoactive 13,14. The overall structure 

of NTD and CTD domains do not strongly change upon the OCPO→ OCPR transition, apart the N-terminal 

extension (NTE) which unfolds8,12, 15 . The quantum yield of the OCPO → OCPR photoconversion is very 

low5, and the details of the process have not been clarified. Whereas femtosecond time-resolved UV-Vis 

spectroscopy has been used to study the initial events concerning the carotenoid5,16,17,18, these studies were 

focusing on changes taking place in the pigment and not in the protein matrix. Recently, the photocycle has 

been followed (by time-resolved UV-Vis and fluorescence spectroscopy) at a much larger time scale, 

spanning from 100 ns to 10 s9, revealing a red intermediate state OCPRI preceding the red signalling state 

OCPR. In addition, a novel orange intermediate state has been identified in the relaxation from OCPR to 

OCPO 9.  

A recent dynamic crystallography study made possible to look at the early photo-induced changes at an 

atomic level15. Bandara et al. proposed that the early photochemical event triggering the photoactivation 

takes place in the CTD. More precisely, light induced breakage of hydrogen bonds between Y201 and W288 

(both acting as hydrogen bond donors) and the 4-keto group of hECN.  Conversely, Gurchiek et al., used 

fluorescence spectroscopy to propose that the initial photochemistry takes place in the NTD by a large 

motion of the carotenoid β2 cyclohexene ring and of the conjugated polyene chain19.  
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Light-induced FTIR difference spectroscopy (DS), especially in the time-resolved mode, is a widely used 

technique in order to investigate, the mechanism of photo-induced reactions in proteins at an atomic level  

20,21. Differently from time-resolved single wavelength IR techniques, time-resolved FTIR-DS make it 

possible to follow the time evolution of the system simultaneously in a whole spectral region. It has been 

applied to dozens of different photo-reactions, including light-induced CO dissociation in heme proteins22, 

photosynthetic reaction centers23, light harvesting complexes24 and photoreceptors21.  

Also OCP has been the object of light-induced FTIR-DS studies5, 25, mainly in the static mode. A recent 

time-resolved IR investigation at several different wavelength aimed to better understand the early steps of 

the photoactivation mechanism (between 1 ps and 500 µs)26. 

The very low quantum yield of OCP makes flash-induced rapid-scan FTIR DS27 , the most straightforward 

time-resolved FTIR DS approach, inconvenient. Furthermore, the very slow recovery time OCPR→ OCPO 

hampers proper cycle averaging in the flash-induced rapid-scan FTIR mode and makes the other flash-

induced technique, step-scan FTIR DS28, virtually impossible. 

Intermediate trapping at low temperature22 and time-resolved FTIR DS under continuous illumination29 are 

valid alternative approaches. They allow to put in evidence the presence of several different kinetic 

components. We have applied both approaches; the synergic combination of the two resulting particularly 

powerful in order to show that the photoactivation mechanism consists of (at least) two asynchronous 

structural changes. 
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Experimental Section 

The OCP was isolated from Synechocystis cells overexpressing the OCP gene as described previously6  or 

from E. coli cells producing holo-WT and mutant OCPs as described in ref. 14. The construction of OCP 

mutants and OCP purification has been reported previously30. 

FTIR spectra were recorded in the rapid-scan mode (mirror speed 2,54 cm/s) on a Bruker IFS 88 FTIR 

spectrometer equipped with OPUS software and an Oxford instruments N2- flux cryostat. The use of a 

cryostat is necessary as previous results from UV-Vis spectroscopy strongly suggest that the photoactivation 

mechanism is temperature-dependent25. Furthermore, recording of FTIR difference spectra at temperatures 

lower than 298 K has already proven very efficient to put in evidence intermediate states of photoactive 

proteins, for instance in phototropin 1 31.  

Time-resolved FTIR experiments were performed as follows: after background recording, and switching on 

of a blue LED, 500 interferograms were recorded (corresponding to a time interval of ~13 s). Different 

recording were performed at increasing times during 6-12 minutes (according to the temperature). At 298 K, 

interferograms were also recorded after switching off the LED.  

Time-resolved FTIR difference spectra were obtained after Fourier Transform and after subtraction of the 

background, as described in ref. 29. 

 

 

 

Results 

A preliminary step in the present work has been the recording of static FTIR difference spectra after 

illumination of the echinenone containing wild-type Synechocystis OCP in H2O and D2O, as well as on a 

mutated Synechocystis OCP (named ∆2-20) lacking the NTE helix (Fig. 2A and 2B).  
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Figure 2. (A) Static light-minus-dark spectra in H2O (red) and D2O (black). In blue, the calculated double 

difference spectrum D2O-minus-H2O is shown. Before subtraction, spectra in H2O and D2O were 

normalized using the 1391 (-) cm-1 (common feature to both spectra; by comparison with literature data32,33 

most probably an echinenone vibration) as a reference. Spectra were recorded on WT OCP from 

Synechocystis. 

(B) FTIR difference spectra recorded after illumination for WT OCP from Synechocystis (blue), WT  OCP 

from E. coli (black) and ∆2-20 mutant OCP from E. coli (red). 
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The molecular details of the light-induced structural reorganization in OCP have already been investigated 

by static FTIR DS5 , allowing to pinpoint the differential signals in the amide I band region (1690-1610 cm-

1), with a broad bleaching in the 1660-1635 cm-1 region, centred at ~1643-1644 cm-1. A subsequent 

investigation has shown that in a series of site-directed mutants the signals in the amide I region are 

unchanged in frequency, size and shape25. 

In Fig. 2A static light-minus-dark FTIR difference spectra on WT OCP in H2O and D2O are shown. The 

1644 cm-1 negative band (in H2O) and the 1651 cm-1 negative shoulder are of particular interest as they lie in 

the region characteristic of α-helices34.  It is worth noticing that the position and the shape of the signals in 

H2O are strikingly similar to those observed in the LOV photoreceptor (in that case, 1656 and 1643 cm-1) 

and attributed to two α-helices21.  

The 1644 cm-1 negative band downshifts to 1639 cm-1 in D2O, whereas no appreciable shift is observed for 

the 1651 cm-1 shoulder. A slight downshift (2 cm-1) is observed for the positive 1663 cm-1 band. The 1632 

cm-1 negative shoulder (which can be interpreted also as a positive ~1634 cm-1 shoulder) disappears in D2O. 

The downshifts upon H/D exchange ensure that the shifting bands are not due to non-exchangeable 

molecular moieties, notably the carotenoid backbone or its C=O group. In addition, the shifting bands 

provide information on the solvent exposure of the corresponding molecular group, as only solvent-exposed 

secondary structure elements will exchange protons. As it will be discussed more in detail later, previous 

attribution5 of the 1619 (+) cm-1 band to a β-sheet is to be considered uncertain, as the band neither remains 

unchanged (as expected for a non-solvent exposed secondary structure element) nor downshifts its position 

(as expected for solvent exposed secondary structure elements).The band instead apparently upshifts to 1624 

cm-1 in D2O. 

In the whole 1640-1580 cm-1 region the spectral differences between the H2O and the D2O spectra are 

difficult to interpret in term of simple H/D substitution in clearly identifiable exchangeable moieties; for 

instance the ~1632-34 cm-1 shoulder observed in H2O completely disappears in D2O. Indeed, it should be 

kept in mind that in the difference spectra positive and negative features are actually the result of the overlap 

of several positive and negative spectral contributions. Some further hints may be derived from the double 

difference spectra D2O-minus-H2O (see Fig. 2A, blue trace), which possibly suggests that the 1624 (+) cm-1 
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band in D2O (1626 cm-1 in the double difference spectrum) may be associated to a “hidden” ~1637 (+) cm-1 

band in H2O, which could be responsible for the possible positive shoulder observed at ~1634 cm-1 in the 

H2O spectrum. 

Fig. 2B shows the light-minus dark FTIR difference spectra obtained on OCPs from WT and ∆2-20 mutant 

isolated from E. coli. For comparison, a light-minus dark FTIR difference spectrum obtained on WT isolated 

from Synechocystis is included. Whereas the spectra obtained on the two WT OCPs are virtually 

indistinguishable, the ∆2-20 mutant shows strong differences compared to them. The most striking feature is 

the absence of the negative band at 1644 cm-1, which is the most intense negative band in spectra from WT 

OCPs. This strongly suggests that this band can be attributed (at least partially) to the solvent-exposed NTE 

α-helix, in agreement with the shift observed in D2O (see Fig. 2A) and with data obtained from other 

techniques8 (see “Discussion” section). Another striking spectral difference is the absence of the positive 

band at 1619 cm-1 in the mutant (a small positive peak at 1614 cm-1 is observed instead). This strongly 

suggests that, in WT OCPs, the disappearance of the solvent-exposed NTE helix – monitored by the 

bleaching of the 1644 cm-1 band - is somehow associated with the appearance of the positive 1619 cm-1 

band. Other differences include the absence, in the mutant, of the broad negative band at around 1670-1680 

cm-1, and of the negative shoulder at ~1632 cm-1 present in WT spectra (a small differential signal at 1635 

(+)/1628 (-) cm-1 is observed in the mutant). 

Relying on the information gathered from static spectra at 298 K, it is possible to better interpret the changes 

observed in static spectra after illumination at lower temperatures. The spectrum recorded at 268 K (upper 

trace, Fig. 3A) differ from that recorded at 298 K (lower trace, Fig. 3A), especially in the relative intensity 

of the 1644 and 1651 cm-1 negative bands.  
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Figure 3. (A) Middles traces: time resolved FTIR difference spectra recorded during illumination at 277 K, 

following the scheme shown in the lower right panel. For comparison, spectra recorded after illumination at 

268 K and 298 K are shown at top and at the bottom of the Figure. Spectra were recorded on WT OCP from 

Synechocystis at the following times after onset of light: blue, 7 s; light green, 33 s; magenta, 101 s; dark 

green, 129 s; yellow, 189 s; brown, 270 s.   

(B). Enlarged time-resolved spectra at 277 K showing the evolution of the 1619 (+) cm-1 band.  Same timing 

as in (A). See text for further details.  

(C) Scheme of the experiment under illumination. Background spectra are recorded in the dark and, after 

onset of light, at increasing times. Difference spectra are obtained subtracting the background from spectra 

recorded at different times. 
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At 268 K the two bands have roughly the same amplitude, whereas at 298 K the 1644 cm-1 is definitely more 

intense and the 1651 cm-1 appears as a shoulder. Small differences are also present in the 1700-1665 cm-1 

region. Spectra recorded after illumination at 275 and 277 K are shown in Fig. S1 in Supplementary 

information. 

Fig. 3A reports – along with the two static spectra at 298 K and 268 K recorded after illumination– some of 

the time-resolved FTIR difference spectra recorded during illumination at 277 K. At this temperature, 

differently from 298 K (see Fig S2 in Supplementary Information), a clear evolution in the shape of the 

spectra is observed. From the relative intensity of  the 1651 (–) cm-1 and 1644 (–) cm-1 bands in the spectra 

recorded 7, 33, and 101 s after onset of the light it is possible to deduce that these bands follow a slightly 

different kinetics (see also Fig. 4B).  
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Figure 4. Analysis of time-resolved FTIR spectra at 277 K. (A) Kinetics under illumination at 277 K for key 

IR bands. 1619 cm-1, 1644 cm-1,  1651 cm-1. (B) The asynchronicity of the 1644 and 1651 cm-1 bands can be 

put in evidence by looking at the time evolution in the 0-100 sec time interval (see also Fig 3) or by 

comparison of spectra at different times. (C). FTIR difference spectra recorded during illumination at 

different times after light onset. The size of each spectra is adjusted in order to show how the 1619 (+) cm-1 

is not associated with any clear negative feature. More precisely, the 7 s spectrum (black) has been enlarged, 

so that the size of the 1619 cm-1 positive band is the same of the 1619 cm-1 band of the 189 s (red) spectrum. 

Similarly, the 33 s spectrum (blue) has been enlarged so that the 1619 cm-1 positive band is of the same size 

as in the 270 s spectrum (yellow). Comparison of spectra recorded 7 s (black) and 189 s (red) after the 

beginning of illumination clearly show that the 1644 cm-1 negative band cannot be the dark corresponding of 

the 1619 (+) cm-1 band. This is also evident by the comparison of the spectra recorded 33 s (blue) and 270 s 

(orange) after the beginning of illumination. Finally, it should be noticed that the shape of the 1619 (+) cm-1 

band changes with time (as shown also in Fig. 3B). Notably, in the spectrum recorded 7 s after onset of the 

light, the band is narrower and shifted to 1618 cm-1. Spectra were recorded on WT OCP from Synechocystis. 
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In particular, in the spectrum recorded 7 s after the onset of light shows a 1651 cm-1 band clearly more 

intense than the 1644 cm-1 band (see Fig. 3A and Fig. 4B and 4C). This still holds true for the second 

spectrum (33 s after the onset of light), whereas in the third one (62 s) the intensity of the two bands is the 

same. Starting from the fourth spectrum (101 s) the 1644 cm-1 becomes more intense.  

The 1619 (+) cm-1 band seems particularly difficult to interpret as arising from a simple secondary structure 

element. Beside the already mentioned apparent upshift (observed at 298 K) upon H/D exchange, its shape 

seems to change with time, notably by increasing its width (see Fig. 3B and Fig. 4C). In addition, 

comparison of spectra recorded at different times and normalized with respect to the 1619 cm-1 band, show 

that no clear negative feature can be directly associated with it, in particular the 1644 cm-1 negative band 

(Fig. 4C).  

To summarize a) the unusual apparent upshift upon H/D exchange; b) the lack of a clear negative band 

associated to it; c) the different growth kinetics compared to those of the 1644 and 1651 cm-1 bands; and d) 

the change in its shape during time, show that it is most likely misleading to interpret the 1619 cm-1 band as 

due to a simple chemical event. In fact, in the 1690-1610 cm-1 region not only amide I contributions from 

different secondary structure elements are expected, but also contributions from echinenone vibrations31,35 , 

notably the C=O 32, from amino acid side chains34, and especially from water bending vibrations36. Indeed, it 

is reasonable to assume that H2O molecules rearrange around and possibly inside the protein, and even 

participate to localized protonation/deprotonation events; some authors8 have also proposed that internal 

water molecules may play a crucial role in the photoactivation mechanism (see “Discussion” section).   

Thus, all these elements demonstrates that the previously proposed simple interpretation of the  

1619 (+) cm -1 band as an indication of the compaction of the β-sheet domain5 concomitant with a decrease 

of α-helices content in the red form of OCP, is most probably an oversimplified model. 

It is interesting to compare the first spectrum recorded 7 s after the onset of illumination at 277 K (“early 

spectrum”), and the static one recorded on the ∆2-20 mutant (see Fig. 5).  
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Figure 5. Comparison between the FTIR difference spectrum recorded after 7 s of illumination (blue trace) 

and the static FTIR difference spectrum of the ∆2-20 mutant (black trace). The upper spectrum was recorded 

on OCP from Synechocystis, the lower spectrum on the ∆2-20 mutant obtained from E. coli. 

 

 

 

  



 16 

The 1663 (+) / 1651 (-) cm-1 differential feature is essentially identical, both in position and relative 

intensity. This strongly suggests that the α-helix responsible of the 1651 cm-1 negative band convert itself in 

a secondary structure element responsible of the 1663 (+) cm-1 band, which lie in the spectral region for 

turns34. It cannot however be excluded that it remains in a strongly modified α-helix structure (for instance, 

by a shortening of the length of the helical part34). The ∆2-20 mutant spectrum shows no intense positive 

band at ~1618 cm-1. Conversely, the “early spectrum” at 277 K shows a narrow intense positive band at 

1618 cm-1, but interestingly no clear intense negative band can be associated to it in the 1645-1625 cm-1 

region. One possibility is that the 1618 (+) cm-1 band reflects, at least in part, the bending of one or more 

internal water molecules. Another possibility is that it could arise from a secondary structure element. 

Further experiments (e.g. exploring the water stretching region, 3700-3000 cm-1 37,38, and/or performing 

experiments in H2 
18O 38,39, and/or at different hydration level39 ) will be required to clarify this issue.  

 

Discussion 

In this work, we have used time-resolved FTIR difference spectroscopy under continuous illumination at 

different temperatures in order to better characterize the photoactivation mechanism of OCP. As mentioned 

in the introduction, the low quantum yield and the long relaxation time of OCPR to the initial OCPO state has 

prevented a normal flash-induced time-resolved FTIR investigation, using either the step or the rapid-scan 

technique. These approaches would have required the use of a FTIR microscope equipped with a moving 

plate40 or other strategies to study slowly reversible photoreactions (ref 41 and refs. therein) as well as a 

pulsed laser equipped with an OPO for excitation in the blue. Such instrumentation is – for the time being – 

not available in our laboratories. It should also be noticed that a continuous illumination approach better 

mimics the condition of OCP under physiological conditions (i.e. under continuous strong solar irradiance). 

Recently, a flash-induced time-resolved IR study of OCP in the femtosecond to submillisecond time domain 

has been reported26. Konold et al. used a  pump-probe approach and were able to record spectra at 30 

different wavenumbers (spaced by 6 cm-1). They were able to bypass the problem of the slow relaxation time 

by using a moving plate where the sample was placed (Lissajous sample scanner42), with a return time of 2 
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min. The spot of the probe was ~150 µm in dimeter. The approach has however some drawbacks, such as 

the strict requirement of D2O as a solvent 42.  

Interestingly, the results of Konold et al. 26 are in agreement with our results. Whereas they were able to 

explore the initial photophysics of the carotenoid, they were also able to follow the bleaching of a non-

solvent exposed α-helix at 1655 cm-1. Within the limits imposed by their spectral resolution, this is 

reasonable agreement with the negative band we observed at early times (at later on) at 1651 cm-1 (it should 

be recalled that amide I bands arising from non-solvent exposed α-helices do not downshift upon H/D 

exchange). Unfortunately, due to technical reasons, they could only explore the time evolution of the system 

up to ~500 µs, so they were not able to observe the rise of the 1619 cm-1 band (whose identity is still 

unclear, and which probably reflects more than a simple spectral contribution) and the bleaching of the 1644 

cm-1  (1638-39 cm-1 in D2O) band, due to a solvent exposed α-helix.  It is also interesting to note that Konold 

et al. recorded (in D2O and H2O) static light-minus-dark FTIR difference spectra of a mutant OCP lacking 

the C-terminal tail (CTT; see also Fig. 1)26. By comparison with the WT OCP, they found that also this 

solvent-exposed α-helix absorbs at 1638 cm-1 in D2O and at 1644 cm-1 in H2O, like the NTE solvent-

exposed α-helix.  This suggests that the band at 1644 cm-1 that bleaches with a slower kinetics in our 

experiments may also, in part or totally, arise from the CTT part of the protein, and not only from the NTE.  

It is useful to compare our results with those obtained from other techniques. Gupta et al.8 have shown that  

the OCPO → OCPR photoconversion involves complete dissociation of CTD and NTD.  They proposed that 

the alteration of the OCP secondary structure was confined only to the NTE of the OCP. Our results 

demonstrate that this is an over-simplified picture, as time-resolved FTIR shows that two different signals 

involving α-helix disappearance (with different kinetics) are present. From our results and those of Konold 

et al.26, it is clear that protein changes involving at least one non-solvent exposed alpha helix occurs before 

opening of the protein and changes in the NTE and CTT. Amino acids in the helices C, E and G (reference is 

made to the nomenclature used in ref. 4, where helices are named progressively A, B, C… starting from the 

N-term) are not in the same position in the NTD of OCPo and the isolated red holo-NTD suggesting 

movement and rotation of these helices during the photoactivation8,26. Also the translocation of the 

carotenoid into the NTD needs the rotation and movement of these helices. The tri-dimensional structure of 
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the CTD in OCPR lacking the carotenoid was still not resolved. However, comparison of the CTD in OCP 

with an holo-CTDH suggest that in the CTD the mayor change is related to the movement of the CTT. 

Nevertheless, small changes (smaller than those observed in the NTD) in the position of two α-helices 

including the one carrying the Tyr 201 can be observed 43. These changes could be related to the empty 

carotenoid binding pocket or to differences in primary sequence between the CTD and the CTDH. Our 

results do not allow us to decide if the changes on the non-solvent exposed a helix occurs in the NTD or the 

CTD. Konold et al.26 , based on their results, proposed that these changes occur in the NTD since they occur 

in the 0.5-1 µs while the breakage of the H-bonds between the carotenoid and the CTD occurs in ps.  This 

leads to a second intermediary carotenoid state in 50 ns. In this intermediary state the carotenoid was not 

translocated but slightly moves away from Tyr 201 and Trp288. This slight movement breaks the π-π 

stacking interactions between the β2-ring of the carotenoid and Tyr44 and W110 in the NTD triggering the 

changes in the α-helices in the NTD26.  

Our FTIR spectra show also strong spectral changes in the 1690-1610 cm-1 region, which, as already 

underlined, cannot be interpreted as simple secondary structure changes. Likely spectral contributors are 

bending of H2O molecules. Gupta et al.8 put forward the hypothesis that the signal propagation for the 

protein conformational change “occurs from the light-activated carotenoid to the protein surface via internal 

hydrogen bonding networks and involves bound water molecules”. Our results – showing likely light-

induced response of (a) water molecule(s) signal, are consistent with this hypothesis.  

Putting together all the pieces of information from different techniques, a working hypothesis can be put 

forward. Assuming that the 1644 cm-1 band is due (at least partially) to the NTE α-helix, and  that the 1651 

cm-1 band arise from a non-solvent exposed α-helix, we can interpret the time-resolved data at 277 K under 

illumination as follows. At early times, a 1651 cm-1 band, due to partial unfolding or modification of a non-

solvent exposed α-helix of the OCP (most probably in the NTD) appears. Later, the NTE and/or the CTT 

(responsible for the 1644 cm-1 band) unfold (or modify their structure) with a slower kinetics than the helix 

corresponding to the 1651 cm-1 band. It should be noticed that temperature has a stronger slowing effect for 

the 1644 cm-1 band than for the 1651 cm-1 band. 

At 298 K the two bands have roughly the same kinetics under illumination since the (relatively) low 
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viscosity of water does not hamper significantly fast α-helix unfolding for the NTE. At 277 K the higher 

viscosity of water becomes a problem and hampers fast unfolding of the NTE α-helix. At 268 K the 

unfolding is even completely blocked at half-way.  This effect does not affect the 1651 cm-1 band and the 

corresponding α-helix, as this is not solvent-exposed. 

 

Conclusions 

Time-resolved FTIR difference spectroscopy under continuous illumination was successfully applied to 

investigate the photoactivation mechanism of OCP. The photo-induced conformational change involves at 

least two different steps, both in the second timescale at 277 K. The first step involves partial reorganization 

of non-solvent exposed α-helix , whereas the second step involves a solvent-exposed α-helix. A positive 

band at ~1619 cm-1 (whose identity is still unclear) is also present at early times under illumination at 277 K.  

An analysis of difference spectra recorded in H2O and D2O has shown that most probably several spectral 

contributions are superimposed in the 1600-1640 cm-1 region, suggesting also that water molecules may play 

a key role in the photoactivation mechanism. 

 

Supporting Information 

Static FTIR difference spectra after illumination at different temperatures; time-resolved FTIR difference 

spectra under illumination at 298 K. 
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