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A B S T R A C T

The mapping of human brain connections is still an on going task. Unlike deep white matter (DWM), which has
been extensively studied and well documented, superficial white matter (SWM) has been often left aside.
Improving our understanding of the SWM is an important goal for a better understanding of the brain network and
its relation to several pathologies. The shape and localization of these short bundles present a high variability
across subjects. Furthermore, the small diameter of most superficial bundles and partial volume effects induced by
their proximity to the cortex leads to complex tratography issues. Therefore, the mapping of SWM bundles and the
use of the resulting atlases for clinical studies requiere dedicated methodologies that are reviewed in this paper.
1. Introduction

The cartography of the macroscopic connection of the human brain is
still incomplete. Mapping this network called human brain structural
connectome is essential for a better understanding of the brain function
and pathologies (Sporns et al., 2005). In the past, white matter (WM) has
been mainly studied by means of postmortem dissections, in order to
document the main pathways. This kind of studies allowed a rough
classification of the WM into projection, commissural and association
connections. The last ones are the pathways connecting different areas
within a same brain hemisphere, and are often subdivided into long and
short connections. Long fibers connect distant areas of the same hemi-
sphere by leaving the cortex and traversing the depth of the hemisphere
white matter, reason why they are also known as deep white matter
(DWM). They organize into large well-defined bundles that are stable
across subjects. These features have facilitated their study, by means of
postmortem dissections and diffusion MRI (dMRI), and therefore their
description is well documented. On the other hand, short connections
hook-up close-by areas (often neighboring gyri) surrounding the cortex
sulci, and they are also known as superficial white matter (SWM) or
U-fibers. Unlike DWM, little is known about SWM fasciculi since their
small size and their proximity to the cortex pose a challenge to their
study. In terms of postmortem studies, those features make difficult their
dissection by removing the cortex without interfering with the fibers
configuration. These structures are among the last parts of the brain to
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myelinate, process which may extend into the fourth decade of life,
making these bundles more vulnerable to damage during the brain
maturation (Wu et al., 2014). Although their general function is still
unknown, their relationship with different pathologies has been
described in some studies. For instance an overconnectivity of some SWM
bundles was found in autism spectrum disorder (Zikopoulos and Barbas,
2013). Other studies have described a lower connectivity in the frontal
region for diseases as schizophrenia, attention deficit disorder, dyslexia,
down syndrome, depression and HIV/AIDS (Fr€ohlich, 2016).

One of the first anatomists that mentioned the existence of the SWM
was Henry Gray in 1858 (Gray, 1878). He vaguely described short as-
sociation fibers as those placed immediately underneath the gray matter
of the cortex and that they connect adjacent gyri. Later on, in 1885
Theodor Meynert described archiform fibers or fibræ propiæ of the cortex,
as those right next to the cortical substance, separating it from its
adjoining white matter (Meynert, 1885). He reports that these fiber
bundles have different sizes, as they do not only connect adjacent gyri but
also can skip one, two or more series of convolutions. The shortest ones
are the nearest to the cortex and present the characteristic U-shape, due
to their closeness to the walls of the convolution depression. The emer-
gence of dMRI in the early 1990s enabled the study of WM tracts, and in
particular, SWM in vivo. One of the first works that analyzed SWM
appearance in diffusion images was the study performed by Pierpaoli
et al., in 1996 (Pierpaoli et al., 1996), describing them as structures with
high hyperintensity due to the highly ordered fiber tracts. Next, in 1999,
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Conturo et al. proposed one of the earliest works using tractography to
identify WM bundles, including some U-fibers (Conturo et al., 1999).
They exposed the feasibility of tracking these complex structures, where
the anisotropy is lower than in DWM. One of the first studies describing
SWM bundles was carried out by Catani et al., in 2003 (Catani et al.,
2003), that identified a chain of U-shaped fibers running laterally to the
inferior longitudinal fasciculus, that connect adjacent gyri of the lateral
occipito-temporal region. For years, few studies of SWM were conducted
since dMRI techniques did not allow a good reconstruction of superficial
fibers, due to low acquisition quality and poor methodology to deal with
fiber crossing. Nowadays, for both postmortem or dMRI-based virtual
dissections new techniques are available, that allow a better description
of these complex short fasciculi.

Diffusion-weighted imaging (dMRI) allows the study of brain white
matter in vivo and in a noninvasive way, by measuring the perturbations
of water diffusion induced by the cellular microstructures and their an-
isotropies (Basser, 1995; Le Bihan et al., 2001). Therefore dMRI is the
preferred method to perform white matter studies. Furthermore, this
technique is a very valuable tool for the study of neuropathologies. Many
of the brain diseases and disorders present changes in water diffusion,
which can be simply established through dMRI-based indices. The water
diffusion anisotropy can lead to fiber orientation models used to perform
fiber tractography, namely step by step reconstruction of the putative 3D
trajectory of the fiber bundles (Mori and Van Zijl, 2002). These models
range from the simplest historical one, that allows only the representa-
tion of the main diffusion direction in each voxel (Le Bihan et al., 2001),
to highly sophisticated ones allowing a better representation of complex
geometries like fiber crossing or kissing (Johansen-Berg and Behrens,
2013). Using these modern local diffusion models, tractography can
target not only large bundles but also the trajectories of small fasciculi,
also called fibers for the sake of simplicity.

Because of numerous ambiguities, using the water diffusion signal as
a proxy to fiber orientation is not prone to error, which leads to spurious
trajectories at the stage of tractography. To overcome this difficulty, a
wide variety of tractography algorithms have been designed, each
yielding different results, which can impact qualitatively the recon-
structed representations of the white matter geometry (Chung et al.,
2011). The two main classes of algorithms are deterministic and proba-
bilistic methods. Deterministic approaches follow the most likely fiber
path given by the main local maxima of the fiber orientation model to
reconstruct the fiber trajectories. On the other hand, for probabilistic
tractography algorithms, besides this orientation estimation, there is also
an estimation of the distribution of the directions around the maxima (i.
e. how likely each other orientation is to lie along a fiber). Then, the
connections are traced several times, each time using slightly different
orientations. The set of all these different pathways are called a measure
of the connection likelihood or probability (HCP). Hence probabilistic
approaches yield a much greater amount of trajectories, increasing both
the chances to catch all the actual bundles and the risk to detect spurious
ones.

White matter fibers can be grouped into bundles of similar fibers (i.e.
fibers with similar shape, size and position) connecting the same
anatomical and/or functional areas. The identification of fiber bundles
from tractograms, namely the whole set of trajectories resulting from
tractography, is not an easy task because of the high risk of false positive.
Anatomical knowledge is needed in order to identify actual anatomical
structures. Many research groups have focused on developing methods to
extract those bundles, either by manual identification, or using semi-
automatic or automatic approaches. Whatever the tractography algo-
rithm, the tractogram contains a large amount of spurious fibers that
need to be filtered out. However, most of the existing methods developed
to identify WM bundles have been designed for large DWM bundles
stable across subjects. Therefore, they do not transfer well to the complex
SWM fasciculi, which partly explain the low interest in their study for
many years.

Nowadays, new equipment (tools) and software have been introduced
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into the field of diffusion imaging. Refined acquisition methods, diffusion
models and tractography algorithms have been developed, yielding
improved tractograms. For instance, high angular resolution diffusion
imaging (HARDI) has overcome to some extent the challenge raised by
fiber crossing geometries, while keeping the acquisition time reasonable
(Descoteaux et al., 2009). Therefore, during the last years, several studies
have focused successfully on the study of SWM fasciculi, including ap-
plications to clinical research. Furthermore, the relationship between
DWM and SWM has taken special relevance lately, as some studies have
demonstrated that in many brain pathologies or disorders, the changes
might not only occur in DWM but also in specific regions of the SWM.
Furthermore, some developmental disorders are supposed to stem from a
wrong balance between short and long connections.

In this paper we present a review of the main advances in the study of
SWM using dMRI. We summarize the main methods utilized and how
they relate SWM structures with clinical studies.

2. Superficial white matter analysis methods

The improvements in the last decade of dMRI acquisition and the
whole processing pipeline lead to a better reconstruction of fibers, in
particular short association fibers. These fibers have been studied using
tools mostly developed for DWM analysis. For example a group of
methods allow the grouping of fibers into anatomically meaningful fiber
bundles, given specific criteria (Catani et al., 2002; Wakana et al., 2004;
Wassermann et al., 2010; Zhang et al., 2008; Guevara et al., 2012;
O’Donnell et al., 2006). As the anatomy of DWM bundles is well-known,
algorithms lead to similar results, which has been shown in comparative
studies (Zhang et al., 2019). However, the consistency across approaches
raise more concerns in the case for SWM bundles. Different studies have
different definitions of short association fibers (fiber length restrictions,
closeness of the regions they connect, closeness to the brain cortex, etc),
therefore comparisons are difficult. Depending on the type of analysis
used for identifying the bundles, these methods can be divided into: (i)
placement of regions of interest (ROI), which allow the extraction of fi-
bers that fulfill a given condition; (ii) clustering of fibers, that group fi-
bers given a fiber similarity measure; and (iii) hybrid methods which
combine both of the previously mentioned approaches.

2.1. ROI placement methods

The ROI placement methods define brain areas to be used as guides
for identifying specific bundles or to isolate fibers connecting a pair of
specific regions. This approach provides anatomical information to the
analysis, since the ROIs often define known anatomical structures or
functional areas. The ROIs are used as a guide to select fibers that satisfy a
given condition i.e if fibers end in a ROI, pass through a ROI, or do not
pass through a ROI (O’donnell et al., 2013). The conditions can be
combined using logical operations. For the definition of the areas,
manual, automatic or a mix of both strategies have been used.

2.1.1. Manual placement
Manual ROI placement consists in meticulous delineation of

anatomical regions (in a subject or group of subjects), which are often
small enough to isolate a specific group of fibers, yielding precisely
defined bundles. This kind of approach is highly time consuming,
limiting its application to only a few subjects and a reduced amount of
regions. Also, this approach depends on the expertise of the operator,
which limits its reproducibility. One of the first works of this kind was the
one developed by Catani et al. (2003). The fiber segmentation was per-
formed from a DTI dataset averaged across 11 subjects, and only for the
occipital and temporal regions. This work was not specifically focused on
the short fibers and therefore no detailed description about them was
given, just the mention of their existence within the data and a rough
description of their position. In the same spirit, the work of (Wakana
et al., 2004) also studied long and short fibers but in the whole brain,



M. Guevara et al. NeuroImage 212 (2020) 116673
from DTI data of 4 subjects. In this work the authors mention the exis-
tence of short fibers in the frontal region which might be part of the
frontal superior longitudinal fasciculus, and in the occipital region. Some
years later, and following the idea of their first work (Catani et al., 2003),
in (Catani et al., 2012) the authors performed this time a study focused in
short fibers. They performed a detailed segmentation and analysis of the
short connections of the frontal and parietal lobe for a single subject with
high quality HARDI data. The method was also applied to 12 subjects for
lateralization analysis. This was the first study of this kind only focused
on short association fibers with a strong anatomical emphasis. The
bundles obtained were well characterized in terms of the specific regions
they connect and the course they follow. Although this study was limited
only to a specific region of the brain, the precise delineation of small ROIs
allowed the authors to obtain very well-defined bundles. Also, the study
of the relation of the ROIs with known functional areas provided some
insights on their role in brain function. In addition, the authors per-
formed a postmortem dissection of the tracts, providing a good valida-
tion. The bundles described in this work were later replicated in (Rojkova
et al., 2016) in order to build a statistical atlas from HARDI data of 47
subjects and study their variability in terms of age and education. The
creation of an atlas provides a mean to perform the segmentation of the
bundles composing it in new subjects, enabling clinical (or functional)
connectivity studies.

Another example of manual segmentation of short fibers is the work
by Wu et al. (2016). The authors utilized regions of avoidance (ROA) (i.e.
region used to exclude fibers passing through it) drawn in DSI studio
software1 in order to extract SWM connections. They focused in the
temporal, parietal and occipital lobes. The segmentation was performed
over the DSI data of 10 subjects and a publicly available template
composed by 90 subjects (NTU-90 Atlas, composed by the averaged DSI
data from 45males and 45 female subjects) (Yeh and Tseng, 2011). These
results were compared with previous DTI reports, evidencing that higher
resolution images allow a better description of the connectivity patterns.
Postmortem dissections were also performed showing high agreement
with the tractography results.

Another example is exposed in (Burks et al., 2017), where the authors
used 10 subjects from the HCP database to study the connections in the
inferior parietal lobe. They applied user-defined seed ROIs, based on
expert knowledge, in DSI studio software for tracking the fibers and
isolate the tracts. These fiber tracking were also validated by postmortem
dissection. The fact that this study was only focused in a specific region of
the brain, allowed a good anatomical and functional description of the
fiber bundles connecting the analyzed areas. The authors found short
fibers connecting the supramarginal and angular gyri, and connecting
both of these gyri to the superior parietal lobule. Finally, in a
region-specific study of the parietal lobe (Catani et al., 2017), the authors
studied short connections in human and monkey brain. This is one of the
few works that compare short fiber bundles across different species. They
performed the analysis over the data of 21 alive humans and 11 ex vivo
datasets, 5 vervet and 6 macaque monkeys. As in most of manual seg-
mentations, only few regions were considered in the study: postcentral
gyrus, superior parietal lobule and inferior parietal lobule. The results
show a close correspondence between the connections in human brains
and in monkey brains (these connections in monkey brains have also
been described by axonal tracing methods), showing the evolutionary
link between these species and their implication in human functions. The
authors also performed a postmortem dissection in order to keep only the
bundles found both in tractography and in the actual brain. The post-
mortem dissection was performed based on the Klingler method (Ludwig
and Karger, 1957), using the brain of a male donor. Thanks to the water
crystallization process, the brain cortex can be easily removed, exposing
the underlying white matter. Fiber bundles were then dissected by
peeling off the white matter.
1 http://dsi-studio.labsolver.org.
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2.1.2. Automatic placement
Automatic ROI placement usually relies on templates containing the

ROIs already defined, generally brain parcellations which are then
automatically warped to the subject image. This kind of ROI delineation,
in contrast to the manual one, can be easily extended to the whole brain
and to a larger amount of subjects. One of the first SWM studies con-
ducted using this kind of approach is described in (Oishi et al., 2008). The
authors created a ROI atlas of gray and white matter, constructed from
the average of 81 subjects. Then, they applied this atlas to segment the
fibers from the DTI data of 10 subjects. Using their white matter par-
cellation as ROIs, they isolated the fibers traversing them. Although the
whole brain was analyzed, only a few bundles were successfully
segmented, mainly because of the type of data utilized. As mentioned
before, due to SWM configuration their tractography streamlines are
difficult to successfully reconstruct, especially using DTI data which does
not provide enough information about the different directions present in
a voxel. Also, the size of the ROIs employed only allowed a rough
delineation of the bundles. The authors later expanded their work by
creating a single-subject WM atlas containing 46 SWM structures (based
on the previous averaged atlas) (Oishi et al., 2009). The difference with
the previous work is that this time no fibers were segmented, only the
voxels contained in the desired areas. The advantage of a single-subject
atlas is that it contains sharper definitions of the delineated structures,
unlike averaged atlas where these structures are blurred. This sharpness
is specially useful for the delineation of the SWM, as it is highly variable.
However, the downside of these kind of atlas is that they might contain
subject-specific structures, which are not common to the rest of the
population. Following this idea, another SWM study was performed for
the whole brain (Zhang et al., 2010). It was conducted by first warping
the same ROI atlas of (Oishi et al., 2008) into the DTI data of 20 subjects
by non-linear registration. The authors looked for all possible connec-
tions between different pairs of cortical regions. These segmentations
were then labeled based on the pair of ROIs they connected. The auto-
mated placement of ROIs and fibers segmentation allowed this work to be
the first describing a large amount of fiber bundles. However, as in
previous works, no detailed description of the bundles was given and
only a rough delineation of them was presented as average density maps,
due to the size of the ROIs. The existence of the connections was reported
for a minimum of one fiber per connection.

Another whole brain study was the one performed in (Ouyang et al.,
2016) in order to analyze the maturation index of the developmental
brain. The authors segmented the brain cortex into 34 gyri per hemi-
sphere using FreeSurfer2 and the Desikan-Killiany atlas (Desikan et al.,
2006) (see Table A.7) for the DTI data of 21 subjects. The fibers con-
necting two gyri were extracted for the whole brain, and categorized as
short fibers only those that connect adjacent gyri. Although this work
describes the presence of a high amount of short fibers, it does not pre-
sent a classification of them into bundles. Only the fibers connecting two,
rather large, regions are given and therefore there is no specific definition
of the different SWM configurations (i.e. different fibers shapes and po-
sitions) within them. Although automatic placement of ROIs can ease the
extraction of fibers in the whole brain, some works have also utilized this
approach to study specific brain regions. This kind of studies can benefit
from atlases already defined and available, and obtain a higher ROI
reproducibility across subjects. For instance, in (Bozkurt et al., 2016) the
authors focused in the anatomy of the supplementary motor area com-
plex. Although the main idea of the work was to segment fibers in
postmortem brains, the authors were also able to segment SWM in the
pre-SMA and SMA from the tractograms of 2 subjects from the HCP
database. The findings regarding the SWM unveiled a short fiber network
within this functional areas, however only information about the regions
they connect was given, lacking a proper bundle-based description of
these fibers.
2 https://surfer.nmr.mgh.harvard.edu/.
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Even if automatic ROI definition facilitates group analysis in a pop-
ulation, the utilized templates often contain large ROIs (e.g. cortex main
gyri), making difficult a fine description of the bundles. Another factor
that has an impact on the results is the high cortex shape variability of the
subjects (Mangin et al., 2016). Different alignment methods vary the
results from the subject-template registration, and therefore the ROI
delineation. Hence, this kind of approach has the disadvantage of not
being as precise as the manual one, altering the definition of the bundles,
especially in their perimeter.

2.1.3. Semi-automatic placement
Finally, combining manual and automatic ROI placement leads to

semi-automatic definition of ROIs. There are some works that use this
approach to get good results in a reasonable time. For instance, in
(Vergani et al., 2014a) the authors utilized the Desikan-Killiany Free-
Surfer brain parcellation (Desikan et al., 2006) for the study of the SWM
fibers connecting the supplementary motor area with the precentral
gyrus and Broca’s area in 10 subjects from the HCP dataset. The authors
manually added some exclusion regions in order to remove spurious fi-
bers. Since this cortical parcellation is based on major gyri, the ROIs were
too large, so these kind of filters allowed the authors to better delineate
the bundles. They described five connections within the supplementary
motor area. This study also proved the existence of fibers connecting
these regions by comparing the tractography results with postmortem
dissections. Another example is the work presented in (Magro et al.,
2012) where the authors manually positioned 2D patches that were
automatically extended to 3D patches. The 2D patches were manually
drawn, based on the external traces of the pre and postcentral sulci. From
them the 3D patches were constructed to cover the gray and white matter
enclosed by the 2D patches. These delineations lead to a subdivision of
fibers based on the combinations of different pairs of ROIs. With this
processing the authors segmented 9 bundles connecting the pre and
postcentral gyri. These bundle definitions are consistent with known
functional areas.

Either automatic or semi-automatic approaches have the downside
that, fibers connecting two ROIs often present complex configurations
and different shapes. Also, large amount of outliers are segmented,
especially if the regions utilized are large. These irregularities can reduce
the usability of the bundles in segmentation analyses.
2.2. Fiber clustering methods

A completely different approach from ROI-based segmentation is the
fiber clustering method. This class of approach is based on a fiber simi-
larity measure. They take into account the shape and position of the fi-
bers in order to group them into bundles, providing a disentanglement of
the fibers and outliers removal. Results depend on the type of clustering
and the fiber similarity measure employed. Although these approaches
yield anatomically coherent bundles, they do not provide a direct refer-
ence to the cortical regions they connect (O’donnell et al., 2013) and
often they have to be labeled after the grouping.

In general, fiber clustering has been widely used for the study of
DWM. Thanks to their large size and low variability, those fibers can be
easily analyzed. On the other hand SWM presents more complex con-
figurations and overlapping, which makes them more difficult to recon-
struct and variable across subjects. Their entanglement hinders the
identification of homogeneous groups and outlier removal even with
clustering methods. Despite this difficulty, in the past few years there
have been some clustering-based studies focused in SWM. For instance,
in (Guevara et al., 2012) the authors used an agglomerative average-link
hierarchical clustering and a fiber Euclidean distance measure to group
short fibers in the whole brain. The analysis was performed using a
HARDI database of 12 subjects, and resulted in an atlas of 47 SWM
bundles in the left hemisphere, that were then manually labeled in
4

function of the connected regions. The underlying study was focused in
DWM, therefore the clustering was not tuned for SWM fibers. Only pre-
liminary results and no further analyses were exposed regarding obtained
short fiber bundles. A posterior refinement of this method was presented
in (Rom�an et al., 2017), adapting the clustering specifically to short fibers
and removing from the analysis the long white matter bundles already
identified in the same work (Guevara et al., 2012). The method was
applied to the HARDI data of 74 subjects. In order to dispense with the
manual labeling step, the resulting bundles were named automatically
using the Desikan-Killiany FreeSurfer cortical parcellation (Desikan et al.,
2006). This work described a large number of short bundles in the whole
brain, which connect close gyri and also regions within the gyri.

Another work verified by means of a clustering the presence of short
fibers connecting the precentral, postcentral, temporal and frontal lobes
(Zhang et al., 2014). This work included into the analysis different types
of diffusion-weighted data (DTI, HARDI, DSI) in order to look further
how the resolution and quality of the data affects the SWM delineation.
Also, they included data from human fetus and monkeys (chimpanzee
and macaque) looking for the correspondence of these structures across
species. In order to identify the bundles, the fibers from a subsample of
the tracts were first grouped by an affinity propagation algorithm, clus-
tering them based on their shape: close U, open U, curved line and
straight line. Then to propagate this results across the rest of the tracts a
k-means clustering was employed. Finally, the bundles were labeled ac-
cording to the sulcal fundus they pass through. Data resolution com-
parison showed that DSI and HARDI data present more fibers connecting
the same gyri, as well as a higher short-range connectivity. This could be
due to the shape of the fibers, only able to be reconstructed using high
quality data because of high curvature. Also, they found that humans
present a higher amount of short fibers, which they presume might be
due to their relation with the gyrification of the cortex.

In (Yeh et al., 2018) the authors clustered by means of single-link
clustering both long and short fibers reconstructed from the HCP-842
SDF template using DSI studio. This template was construced from the
average of the spin distribution function of 842 subjects (in ICBM-152
standard space) from the HCP dataset, and represents an average diffu-
sion pattern within a normal population. The clusters obtained were then
labeled by neuroanatomist experts. However, the association fibers were
only included into a generic category and no further information of
bundle shape or the regions they connect was given. Another work,
presented in (Zhang et al., 2018a), also performed a clustering for the
whole brain over the data of 100 subjects from the HCP database. The
aim of this study was to create a curated bundle atlas. First, the tracto-
grams were directly aligned across subjects. Then the authors applied a
group-wise spectral clustering and labeled the clusters (bundles) ac-
cording to a FreeSurfer ROI atlas (Desikan et al., 2006). A second dataset
composed of 584 subjects coming from different databases was
conceived for segmentations purposes. Different type of subjects were
considered, including data from newborn babies, autism spectrum dis-
order, neuropsychiatric disorders (schizophrenia, bipolar disorder and
attention deficit), Parkinson disease, brain tumors and healthy subjects.
The atlas results were therefore projected to the 584 subjects of the
second dataset, showing a high reproducibility of the bundles. This work
also described a high amount of bundles which are present in both
hemispheres. Specifically regarding short fibers, 198 clusters were
labeled as superficial connections in the whole brain. Although a high
number of clusters was found, no specific description or validation of
them was performed (this was done only for some DWM bundles).

Another work aimed at clustering the short fibers connecting the pre
and postcentral gyri, using the gyri crest line (Pron et al., 2018). These
are used to define the fibers that are going to be clustered. In order to do
that, each line is parametrized to obtain a 1-D coordinate system as
reference. The parametrization is done isometrically from the ventral to
the dorsal extremity. The correspondence between the two crest lines is
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ensured by aligning the hand-knob structure, which is a well-known
landmark of the central sulcus. Based on the fiber extremities, those
who start or end in one of the crest lines are selected. Then, these fibers
were clustered by means of a k-medoids algorithm, leading to sub-
divisions that are functionally coherent with the homunculus.

Although fiber clustering methods are automatic and can be extended
to the whole brain and a population of subjects, the parameters are
difficult to tune and calculations are expensive. Some reductions of
complexity can be made, for example applying the analysis to only one
hemisphere, a given number of lobes, or after some filtering.

Different clustering algorithms result in a different grouping of the
fibers, and for a same algorithm different parameters yield as well
different bundle configurations. Usually, a fiber distance measure (e.g.
Euclidean distance) is used to calculate a similarity index between fibers.
A bundle can be defined for instance by choosing a maximum distance
threshold (Guevara et al., 2012, 2017; Rom�an et al., 2017; Yeh et al.,
2018), or a fixed number of clusters (Zhang et al., 2018b; Guevara et al.,
2017; Pron et al., 2018). However, as SWM runs continuously along the
sulci and anatomy is very different from one subject to another, it is
difficult to define where a bundle starts or ends. Additional difficulties
stem from the fact that there are areas of the SWM that are not well
reconstructed due to partial volume effect and small size. Hence, the
parameters must be adapted to each data, to extract as much information
as possible.

2.3. Hybrid methods

As described above, both ROI placement and fiber clustering have
their advantages and disadvantages. In an attempt to bring together the
advantages of both methods, hybrid approaches can help to identify
anatomically meaningful bundles with well-defined shapes and present
in a large population of subjects. This kind of methods in general utilize
the ROIs to extract and label the fibers connecting two different
anatomically meaningful regions, and to diminish the amount of fibers to
be clustered, simplifying and speeding up the process. Then a clustering
is applied to each group of previously extracted fibers to get bundles
containing only fibers with similar shape and position within a given pair
of ROIs. Clustering also helps to filtering off outliers and artifacts. Hence,
the analysis takes into account the morphological information from the
cortical folding patterns, and the shape and density of the fibers once
they leave the cortex. Following this idea, in (Guevara et al., 2017) a
FreeSurfer parcellation (Desikan et al., 2006) is applied to the tractog-
raphy data of 79 subjects of a HARDI database. This parcellation was
used to extract fibers with length 20–80 mm, connecting two cortical
ROIs (adjacent or not). To overcome the entanglement of the fibers
connecting two ROIs that are often large, a first intra-subject hierarchical
clustering was applied to group fibers. This yielded groups of fibers with
similar shape and position within each pair of regions (bundles). A sec-
ond clustering was then performed across subjects, for keeping only the
bundles present in most of the population. These results were validated
by applying the method to two different groups and by automatically
projecting the bundles into a third group. This was the first work using a
fully automatic approach describing well-defined bundles in the whole
brain, based on HARDI data.

All the methods exposed in this section, are summarized in Table 1,
along with their main findings.

3. Postmortem dissections

Although tractography is the preferred method for the study of brain
connections in vivo, it is susceptible to artifacts which results in many
false positive and false negative fibers. A way to validate the tractography
results is postmortem dissections (Catani et al., 2012, 2017; Vergani
et al., 2014a, 2014b; Bozkurt et al., 2016; Burks et al., 2017; Maier-Hein
et al., 2017). DWM bundles have been widely validated using this tech-
nique, as thanks to their size, position and known trajectory, they are
5

relatively easy to dissect. However this is not the case for SWM, since
their proximity to the gray matter, variety of shapes and small size, make
them more difficult to extract. Also, as mentioned before, since this kind
of fibers connect two neighbor gyri (or even regions within the same gyri)
by running continuously along the sulci, it is complex to identify the
bundle limits regarding its neighbors. Nevertheless some validations
have been made for specific brain regions as the fronto-parietal region
(Catani et al., 2012), occipital lobe (Vergani et al., 2014b), and supple-
mentary motor area (Vergani et al., 2014a; Bozkurt et al., 2016), etc.
Those works showed the existence of the short association bundles in the
regions they studied. These results present a great correspondence with
those obtained by means of tractography, independently of the virtual
dissection technique employed. Therefore, although these bundles have
no specific names, the fact of being found by two different techniques
gives some degree of validation of their existence, that also allows results
from new works to be compared against them.

4. Registration

Group analyzes are necessary to validate the reproducibility of the
results, hence subjects normalization to some common space is required.
The closeness of short association fibers to the brain cortex makes them
more susceptible than DWM to errors derived from brain normalization.
Cortical variability across subjects is still a challenge when group ana-
lyses are to be performed, since no perfect matching can be done across
them (Mangin et al., 2016). Due to the intimate relation of the U-fibers
with the cortical folding pattern, the possibility of a miss alignment is
always present, especially when a simple linear transformation is used.
This problem affects the fiber reproducibility studies, as they might be
shifted across subjects. In (Guevara et al., 2017) a linear transformation
was used to warp each subject data into Talairach space in order to
perform the inter-subject analysis. Although this transformation roughly
matched their data, it allowed the identification of a non-negligible
number of bundles, meaning that even when they are not perfectly
aligned there is a high correspondence between them, and therefore we
might assume they correspond to the most stable connections. Different
approaches have been used to tackle this problem, either by means of
transformations over the images or direct tractogram alignment. In
(Rom�an et al., 2017) the authors performed a comparison between the
results obtained from a linear and a non-linear normalization, using
DTI-TK.3 Non-linear registration yielded a greater number of similar
bundles, which were more homogeneous even when more restrictive
similarity measures were applied. This means that non-linear registration
makes possible a better matching between fibers that otherwise would be
considered different. A different approach is the one performed in (Zhang
et al., 2018a), where the registration method used by the authors is
applied directly over the tractograms (O’Donnell et al., 2012). This kind
of alignment allowed the authors not only to identify clusters belonging
to known DWM bundles, but also a large number of short cortical clus-
ters. Better alignment methods are certainly needed, ideally based on
sulci and/or gyri anatomy, especially for the bundles with smaller fibers
that are often the more entangled.

5. Comparison of atlases

As already mentioned before, most of the short fibers studies have
been restricted to specific areas or bundles. Bundles are often represented
in image volumes as probability maps, or tractography datasets. In order
to compare the bundle output generated from different methods, we
compared the publicly available atlases described in (Guevara et al.,
2017) (atlas1) (Rom�an et al., 2017), (atlas2) and (Zhang et al., 2018a)
(atlas3). Some bundle examples can be seen in Fig. 1. The bundles from
atlas1 can be interactively visualized online as volumes andmeshes along

http://dti-tk.sourceforge.net/


Table 1
Superficial white matter studies and their main findings.

Paper Data type Regions Main analysis Type of analysis Number of subjects Connections found Validation/Comparison

Catani at al. (2003)
(Catani et al.,
2003)

Tractography Occipital and
temporal gyri

Virtual dissection of
the tracts
connecting two
ROIs

Manual ROI
placement

11 DTI (averaged) Chain of U-shaped fibers running laterally to the inferior longitudinal
fasciculus that connect adjacent gyri of the lateral occipito-temporal
region

Wakana et al.
(2004) (Wakana
et al., 2004)

Tractography Whole brain Virtual dissection of
the tracts

Manual ROI
placement

4 DTI Tracts in the frontal area, close to the SLF, a tract in the occipital lobe
(VOF)

Oishi et al. (2008)
(Oishi et al.,
2008)

Tractography Whole brain Virtual dissection of
the tracts
connecting two
ROIs (from atlas
average of 81
subjects)

Automatic based
on ROI atlas

10 DTI SF-IF, MF-PrC, PrC-PoC, SP-parieto/temporal regions (SM and An)

Zhang et al. (2010)
(Zhang et al.,
2010)

Tractography Whole brain Multi-ROI approach
to reconstruct tracts
of interest

Automatic ROI
warping

20 DTI SP-PoC, SP-An, SP-PrCu, SP-SO, SP-MO, SP-SM, Ci-SF, Ci-PrCu, SF-
MF, SF-IF, SF-PrC, MF-IF, MF-PrC, IF-PrC, PrC-PoC, PoC-SM, An-MO,
An-SM, Cu-Li, Cu-SO, Cu-MO, Fu-IO, FU-MO, SO-MO, IO-MO, ST-MT,
ST-SM, IT-MT, LOF-MOF

Comparison between
manual and automated ROI
placement

Catani et al. (2012)
(Catani et al.,
2012)

Tractography Left frontal lobe,
central, pre-central,
perinsular and fronto-
marginal sulci

Virtual dissection of
the tracts
connecting two
ROIs

Manual ROI
placement

1 and 12 HARDI Frontal lobe: SF-IF (FAT), SF-MF, PrC-MF, Posterior/anterior
orbitofrontal-polar cortex (FOP), posterior precentral cortex - anterior
prefrontal cortex (FSL, FIL), FMT. PrC-PoC: paracentral, hand
superior, hand middle, hand inferior, face superior and face inferior.
Ins-Or/Tr/Op/PrC/SuC.

Postmortem dissections

Magro et al. (2012)
(Magro et al.,
2012)

Tractography Pre and post-central
gyri

Each region
subdivided into 3
ROIs, used as seed
regions

Semi-automatic
ROI placement

20 DTI PrC-PoC: 9 bundles per hermisphere (resulting from the combination
of the 6 ROIs)

Guevara et al.
(2012) (Guevara
et al., 2012)

Tractography Left hemisphere
(symmetrized to the
right hemisphere)

Clustering
(hierarchical) and
manual labeling
using gyral
parcellation

Semi-automatic,
clustering and
manual labeling

12 HARDI SF-IF (ant, mid and post), SF-MF (ant, mid and post), MF-IF, MF (mid,
mid2, post, post2), IF-Ins, IF (post, inf), LFO (inf, sup), MFO, MFO-Ci,
SF-Ci (mid), MF-PrC (sup, mid), PrC-PoC (sup, inf), PrC-Ins, PrC-SM,
PaC-PrCu, PoC-SM, SM, SP, An (sup, inf), ST-An, MT-An, ST (post),
MT-Ins, ST-Ins, IT-MO, Cu, Cu-Li, Li, Fu (ant, mid, post), PrCu-Ci,
PrCu-SF, Ci (ant, mid, post)

Vergani et al.
(2014) (Vergani
et al., 2014a)

Tractography SMA, IF gyrus,
caudate nucleus, PrC
y Ci gyri

Whole brain
tractography
segmented into
tracts connecting
two ROIs

Semi-automatic
ROI placement

10 from HCP 12 for
dissection

SMA-PrC, SMA-Ci, SMA-Op (FAT), SMA-Striatum, SMA callosal fibers Postmortem dissections

Zhang et al. (2014)
(Zhang et al.,
2014)

Tractography Neighboring gyri
coursed around by
cortical major sulci
(CS, PrS, PoS, STS,
IFS, IPS, ITS, SFS,
LOS, TOS)

Fiber clustering,
fiber extraction and
labeling based on
sulci

Semi-automatic,
expert manual
labeling
(Connecting
ROIs)

18 human DTI 10
human HARDI 68
from HCP 2 human
DSI 21 human fetus
DTI 15 chimpanzee
DTI 12 macaque DTI

In the three modalities: SF-MF, MF-IF, PrC-PoC, left SP-IF and right
PoC-SP. DSI: MF-IP left SF-IP, MF-SM, IF-MT, PoC-IP, SP-SM, SM-MT,
MT-IT, IP-MO; right SF-SP, MF-MT, IF-SP, PrC-SP, SP-IP, SP-SO, SP-
MT, ST-MT. HARDI: SP-SM, MF-MT, SF-IF, SO-MO, MF-PrC; left PoC-
SM,SP-MT, ST-MT; right SP-IP, SM-PrC, IP-SM, IP-MT. DTI: SF-IF, MF-
PrC, IF-PrC, SM-MT, PrC-SP; left SF-PrC, SF-PoC, SF-SP, PrC-MT, SP-
SO, IP-MT, IF-ST, PoC-IP; right PrC-IP, PoC-IP, IP-MO, SM-MO, ST-
SM.

Co-localization patterns
over DTI, HARDI and DSI
data of human, chimpanzee
(DTI) and macaque (DTI)
brains. Verification of the
existence of fibers, and
preservation of U-shape

Vergani et al.
(2014) (Vergani
et al., 2014b)

Postmortem Right hemisphere
occipital lobe

Postmortem
dissection

Manual ROI
placement

3 Cu-PrCu, upper-lower edges of calcarine cortex (Cu-Li), upper-lower
parts of Cu, sup/mid/inf occipital sulcus, sup-ant occipital lobe, Fu-Li

Is a Postmortem study

Rojkova et al.
(2015) (Rojkova
et al., 2016)

Tractography Frontal lobe Virtual dissection of
the tracts
connecting two
ROIs

Manual ROI
placement

47 HARDI PrC-PoC: Paracentral, hand superior, middle and inferior, face. FAT, 5
fronto-insular bundles, FSL, FIL, FOP, FMT

Verified by Catani et al.
(2012)

Wu et al. (2016)
(Wu et al., 2016)

Tractography Temporo-parieto-
occipital region

Virtual dissection of
the tracts

Manual ROI
placement

10 DSI Posterior part of MT and IF with An and SM (Posterior segment of the
FSL), IP with lower temporal and occipital lobe (VOF); IT,MT, Fu and
IO with SP

Postmortem dissections

(continued on next page)
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Table 1 (continued )

Paper Data type Regions Main analysis Type of analysis Number of subjects Connections found Validation/Comparison

connecting two
ROIs

Bozkurt et al.
(2016) (Bozkurt
et al., 2016)

Tractography
and postmortem

SMA in both
hemispheres

Virtual dissection of
the tracts using ROIs
(DSI studio)

Automatic ROI
placement

10 postmortem 1
cadaveric head 2
from HCP

Connections of the pre-SMA with the prefrontal cortex, pre-SMA with
the SMA proper, the SMA proper with the precentral region (motor
cortex) and the pre-SMA/SMA proper with the pars Opercularis/
Traingualaris (frontal aslant tract)

Postmortem dissections

Burks et al. (2016)
(Burks et al.,
2017)

Tractography Parietal lobule of
both hemispheres

Virtual dissection of
the tracts using ROIs
(DSI studio)

Automatic ROI
placement

10 from HCP 10 post-
mortem

SM-An, SM-SP, SM-Primary sensory cortex, An-SP Post-mortem dissections

Ouyang et al.
(2016) (Ouyang
et al., 2017)

Tractography Whole brain Virtual dissection of
fibers connecting
two gyri

Automatic ROI
placement

21 healthy DTI No specific bundles, short fibers are grouped depending on the two
adjacent gyri they connect.

Catani et al. (2017)
(Catani et al.,
2017)

Tractography Parietal lobe Virtual dissection of
the tracts
connecting two
ROIs (startrack and
trackvis)

Manual ROI
placement

21 human

6 macaque SP-SM, SP-An,
PoC-SM, PoC-
An, SP-PoC, SM-
An

Intra-parietal U-
fibers: Anterior
SM-Posterior SM,
anterior-
intermediate-
posterior PrCu,

Regions of the SP Postmortem
dissections

Guevara et al.
(2017) (Guevara
et al., 2017)

Tractography Whole brain Fiber extraction and
labeling from ROIs,
followed by a
clustering

Automatic ROI
placement and
fiber clustering

79 HARDI Both hemispheres: CAC-PrCU_0, CMF-PrC_0, CMF-PrC_1, CMF-
RMF_0, CMF-SF_0, IC-PrCu_0, IP-IT_0 IP-MT_0, IP-SM_0, IP-SP_0, LOF-
RMF_0, LOF-RMF_1, LOF-ST_0, MOF-ST_0, MT-SM_0, MT-ST_0, Op-
Ins_0, Op-PrC_0, Op-SF_0, Or-Ins_0, PoCi-PrCu_1, PoCi-RAC_0, PoC-
PrC_0, PoC-PrC_1, PoC-PrC_2, PoC-SM_0, PrC-Ins_0, PrC-SM_0, RMF-
SF_0, RMF-SF_1, SM-Ins_0, SP-SM_0, ST-TT_0, Tr-Ins_0, Tr-SF_0. Left
Hemisphere: CMF-Op_0, CMF-PoC_0, Fu-LO_0, IP-LO_1, IP-SP_1, IT-
MT_0, LOF-Or_0, PoC-Ins_0, PoCi-PrCu_0, PoCi-SF_0, PoC-PrC_3, PoC-
SM_1, PrC-SF_0, RAC-SF_1, ST-Ins_0. Right hemisphere: CAC-PoCi_0,
CMF-SF_1, Cu-Li_0, Fu-LO_1, IP-LO_0, IT-MT_1, IT-MT_2, LOF-MOF_0,
LO-SP_0, Op-Tr_0, PoCi-PrCu_2, PoC-SP_0, PrC-SP_0, RAC-SF_0.

Between group atlas
comparison, bundle
segmentation and
comparison with the
literature

Rom�an et al.
(2017) (Rom�an
et al., 2017)

Tractography Whole brain Clustering
(hierarchical) and
automatic labeling
based on gyri

Automatic
clustering and
ROI labeling

74 HARDI Both hemispheres: SP_SP_0i, PreC_SF_0i, PoC_PreC_3i, Op_SF_0i,
CMF_PreC_0i, PoC_PreC_1i, MT_MT_0i, PreC_SM_1i, CMF_CMF_0i,
Fu_IT_0i, IP_SP_0i, MT_ST_0i, LorF_LorF_0i, LO_LO_0i, CMF_Op_0i,
RoMF_SF_1i, Tr_SF_0i, SM_SM_2i, SM_SM_0i, RoMF_RoMF_1i,
PoC_SM_0i, PoC_PreC_2i, PoC_PreC_0i, MT_MT_1i, CMF_PreC_1i,
Fu_Fu_0i, PreC_SM_0i, ST_ST_0i, Tr_RoMF_0i, LO_LO_1i, RoMF_SF_0i,
RoMF_RoMF_0i, SM_SM_1i
Left: IT_IT_1l, SF_SF_0l, Fu_Fu_1l, IT_IT_0l, PreC_PreC_0l, ST_ST_1l,
Cu_Lg_0l, PreCu_PreCu_0l, MT_MT_1l, LO_LO_2l, PreC_Ins_0l
Right: Tr_Tr_0r, Tr_Ins_0r, MT_MT_0r, SF_SF_2r, RoMF_SF_0r,
RoMF_RoMF_0r, RoMF_RoMF_1r, PoC_PoC_1r, PoC_PreC_1r,
SP_SP_0r, PreCu_PreCu_0r, SF_SF_1r, IP_LO_0r, IP_IP_0r, LorF_LorF_1r,
Tr_SF_1r.

Bootstrap strategy, bundles
segmentation and
comparison against another
atlas

Jung et al. (2017)
(Jung et al.,
2017)

Tractography Frontal lobe, parietal
and temporal lobes

Virtual dissection of
the tracts

Automatic and
manual

24 subjects Extratemporal lobe: PHa�SP7m , STm � IPpfcm , MTm�IPpf ;pfcm ,
PHm�SP7m , STp�IPpfop;pf ;pfcm, MTp � SP�
7pc=IPSips1=IPpfop;pft;pf ;pfm;pfcm;pga;pgp , ITp�SP7pc=IPpfcm.

(continued on next page)
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Table 2
Matching of bundles across atlases.

Left right

atlas1
atlas2

atlas1
atlas3

atlas2
atlas3

atlas1
atlas2

atlas1
atlas1

atlas2
atlas3

atlasX Nbundles 20 25 37 27 30 45
P� std 0,985

�
0,038

0952
�
0,053

0909
�
0,058

0,99 �
0,032

0946
� 0,06

0,907
�
0,057

atlasY Nbundles 22 44 65 30 62 88
P� std 0,928

�
0,067

0918
�
0,064

0924
�
0,066

0944
�
0,055

0909
�
0,065

0954 �
0,052
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brain anatomical references in the HBP website.4 Their probability maps
can also be downloaded.5 Atlas2 is available upon request from the au-
thors,6 and atlas3 is available at: https://dmri.slicer.org/atlases/.

These atlases were constructed using two different datasets and three
different approaches. Though our comparison we intend to evaluate the
consequences of the method and input data utilized for the inference of
the atlases, as well as the consistency of the bundles obtained across
them. Both atlas1 and atlas2 were constructed from a HARDI database
(ARCHI) (Schmitt et al., 2012), and for atlas3 the HCP database was used.
Atlas1 (50 bundles in each hemisphere) and atlas2 (44 bundles in the left
hemisphere and 49 in the left hemishpere) are composed only of short
bundles, therefore each bundle in one atlas is compared against the ones
from the other. For both of these atlases, the bundles composing them are
named based on the cortical regions (major gyri) they connect, using the
Desikan-Killiany atlas (Desikan et al., 2006). Atlas3 is composed of long
and short fiber clusters, therefore only those under the superficial tracts
category are considered (396 clusters). These bundles are labeled based
on the large areas they are within, such as: temporal, parietal-temporal,
parietal-occipital, parietal, occipital-temporal, occipital, frontal-parietal
and frontal. All the clusters within these sub-categories were compared
to the bundles in the other two atlases. The three atlas were transformed
to MNI space. The bundle similarity was measured as presented in
(Guevara et al., 2017), by computing the maximum Euclidean distance
between corresponding points for each fiber in a bundle to all the fibers
in another bundle. This is done for all bundles in the pair of atlases being
compared. Two fibers are considered to be similar if their distance is
under 8 mm. Then, a bundle is considered to be similar or contained in
another one, if its percentage of similar fibers is at least of 80%. Notice
that when one bundle fulfills this amount of similarity to the fibers of
another bundle, it does not mean that the reverse property is true. In
some cases a bundle in one atlas is over-segmented into a group of
bundles in another atlas. This could be due the better spatial resolution in
the underlying dataset or the clustering algorithm. Then in order to
perform a strict comparison, the equivalence between two bundles re-
quires the threshold to be reached in the two directions. The results for
this experiment are presented in Table 2, where atlasX

atlasY presents the results
of the comparison between two atlases, including the number of similar
bundles in each atlas and their average similarity percentage. Table 3
also lists separately those bundles that are common to the three atlases,
so we can observe the correspondence between them(Fig. 2). In general,
we can see that most of the similar bundles are located in the frontal and
parietal regions, being the most dense and reproducible SWM bundles in
tractography datasets.

Bundle similarity between pair of atlases. Nbundles indicates the num-
ber of bundles in an atlas that have a similar one in the other atlas. P� std
4 https://interactive-viewer.apps.hbp.eu/, under ICBM 2009c Nonlinear
Asymmetric.
5 https://kg.ebrains.eu/search/?facet_type[0]¼Dataset&amp;q¼BUNDLE%

20SUPERFICIAL.
6 pamela.guevara@gmail.com

https://dmri.slicer.org/atlases/
https://interactive-viewer.apps.hbp.eu/
https://kg.ebrains.eu/search/?facet_type[0]=Dataset&amp;q=BUNDLE%20SUPERFICIAL
https://kg.ebrains.eu/search/?facet_type[0]=Dataset&amp;q=BUNDLE%20SUPERFICIAL
https://kg.ebrains.eu/search/?facet_type[0]=Dataset&amp;q=BUNDLE%20SUPERFICIAL
https://kg.ebrains.eu/search/?facet_type[0]=Dataset&amp;q=BUNDLE%20SUPERFICIAL
https://kg.ebrains.eu/search/?facet_type[0]=Dataset&amp;q=BUNDLE%20SUPERFICIAL
mailto:pamela.guevara@gmail.com


Table 3
Bundles common to the three atlases.

ID left ID right

A1 A2 A3 A1/
A2

A2/
A1

A1/
A3

A3/
A1

A2/
A3

A3/
A2

A1 A2 A3 A1/
A2

A2/
A1

A1/
A3

A3/
A1

A2/
A3

A3/
A2

L1 lh_CMF-
Op_0

lh_CMF_Op_0i c_00298_lh 1,00 0,97 0,99 0,96 0,84 0,95 R1 rh_CMF-
PrC_0

rh_CMF_PreC_0i c_00293_rh 1,00 0,88 1,00 0,98 0,99 1,00

c_00205_lh 0,99 0,90 0,84 0,89 R2 rh_CMF-
PrC_1

rh_CMF_PreC_1i c_00338_rh 1,00 0,89 0,87 0,91 0,92 0,98

c_00375_lh 1,00 0,99 1,00 1,00 R3 rh_CMF-SF_1 rh_CMF_CMF_0i c_00259_rh 0,99 0,98 1,00 0,97 0,82 1,00
L2 lh_Op-SF_0 0,96 1,00 0,83 0,99 1,00 1,00 c_00401_rh 0,97 0,95 0,90 0,99

lh_Op_SF_0i c_00300_lh 1,00 1,00 0,93 1,00 0,97 1,00 R4 rh_Fu-LO_1 rh_Fu_Fu_0i c_00553_rh 1,00 0,92 1,00 0,95 0,98 0,95
c_00359_lh 0,90 0,92 0,99 0,98 R5 rh_IP-LO_0 rh_LO_LO_0i c_00076_rh 1,00 0,92 1,00 0,82 0,97 1,00
c_00322_lh 0,86 1,00 0,82 1,00 R6 rh_IP-SM_0 rh_SM_SM_0i c_00430_rh 1,00 0,92 1,00 0,93 0,93 0,94

L3 lh_CMF-
SF_0

lh_CMF_PreC_0i c_00293_lh 1,00 0,82 0,99 0,83 0,93 1,00 R7 rh_SP-SM_0 rh_SP_SP_0i 0,99 0,90 0,95 0,98

c_00278_lh 0,99 0,84 0,94 0,97 c_00458_rh 1,00 0,99 0,99 0,93 0,99 0,98
L4 lh_IP-LO_1 lh_LO_LO_0i c_00076_lh 1,00 0,90 1,00 0,98 0,95 0,99 c_00362_rh 0,88 0,84 0,80 0,99
L5 lh_IP-SP_1 lh_IP_SP_0i c_00450_lh 1,00 0,93 1,00 0,88 0,93 0,98 rh_IP-SP_0 rh_IP_SP_0i c_00017_rh 1,00 1,00 0,98 0,84 0,91 0,88
L6 lh_MT-ST_0 lh_MT_ST_0i c_00119_lh 1,00 0,83 1,00 0,87 0,93 0,89 R8 c_00042_rh 0,95 0,92 0,96 0,92

lh_ST_ST_0i 1,00 0,85 0,96 0,91 c_00059_rh 0,91 0,91 0,85 0,91
L7 lh_PoC-

SM_1
lh_SP_SP_0i c_00362_lh 1,00 0,84 1,00 0,98 0,86 0,98 rh_SP_SP_0r c_00046_rh 0,98 0,86 0,90 0,92 0,97 0,94

L8 lh_SP-SM_0 c_00458_lh 1,00 1,00 1,00 0,85 0,96 0,93 R9 rh_IT-MT_1 rh_MT_MT_1i c_00744_rh 1,00 0,93 1,00 0,95 1,00 0,98
L9 lh_PoC-

PrC_2
lh_PoC_PreC_2i c_00303_lh 1,00 0,92 1,00 0,99 0,85 1,00 R10 rh_LO-SP_0 rh_IP_LO_0r c_00084_rh 1,00 0,91 1,00 0,87 0,85 1,00

L10 lh_PoC-
SM_0

lh_SM_SM_2i c_00337_lh 0,99 0,99 0,88 0,80 0,94 0,94 c_00064_rh 1,00 0,99 0,82 0,99

lh_PreC_SM_0i 1,00 0,97 0,82 0,87 c_00062_rh 0,96 1,00 0,85 1,00
c_00201_lh 0,92 0,85 0,91 1,00 c_00036_rh 0,99 0,85 0,87 1,00

lh_PoC_SM_0i 0,99 1,00 0,96 0,95 R11 rh_MT-SM_0 rh_MT_ST_0i c_00455_rh 0,96 0,83 1,00 0,86 1,00 0,97
L11 lh_Tr-SF_0 lh_Tr_SF_0i c_00591_lh 0,89 0,99 0,86 0,94 0,92 0,94 c_00440_rh 1,00 0,91 0,94 0,95
L12 lh_RMF-

SF_0
c_00607_lh 1,00 1,00 0,93 0,82 0,95 0,87 R12 rh_MT-ST_0 rh_ST_ST_0i c_00119_rh 1,00 0,98 1,00 0,97 0,95 0,98

lh_RoMF_SF_0i 1,00 0,99 0,87 0,89 R13 rh_Op-SF_0 rh_Op_SF_0i c_00322_rh 0,99 1,00 0,93 1,00 0,96 1,00
c_00642_lh 0,81 0,97 0,97 1,00 c_00359_rh 0,92 0,99 0,94 0,96

c_00300_rh 0,98 1,00 0,97 1,00
rh_CMF_Op_0i 1,00 1,00 0,86 1,00

c_00375_rh 0,91 0,99 0,99 1,00
c_00267_rh 0,85 1,00 0,93 1,00

R14 rh_PoC-
PrC_1

rh_PoC_PreC_2i c_00412_rh 1,00 0,97 1,00 0,93 0,97 0,95

R15 rh_PoC-
PrC_2

rh_PoC_PreC_3i c_00296_rh 1,00 0,96 1,00 0,82 0,97 0,93

c_00391_rh 1,00 0,95 0,97 1,00
c_00398_rh 1,00 0,95 0,90 0,97

R16 rh_PrC-SM_0 rh_PreC_SM_0i c_00201_rh 1,00 0,96 0,99 0,94 0,92 1,00
R17 rh_PoC-SM_0 1,00 0,87 0,99 0,82 0,92 1,00

rh_PoC_SM_0i 1,00 0,98 0,93 1,00
R18 rh_PoC-SP_0 rh_PoC_PoC_1r c_00458_rh 1,00 0,99 0,99 0,86 0,91 0,85

c_00422_rh 0,95 0,88 0,81 0,94
R19 rh_RMF-SF_0 rh_RoMF_SF_1i c_00589_rh 1,00 0,99 0,95 0,81 0,96 0,98

c_00661_rh 0,93 0,96 0,80 0,95
rh_Tr_SF_0i 1,00 0,99 0,92 0,92

c_00629_rh 0,81 0,84 0,87 0,94
c_00607_rh 0,88 0,86 0,95 0,92

R20 rh_RMF-SF_1 rh_RoMF_SF_0r c_00368_rh 1,00 0,98 1,00 1,00 0,97 1,00
c_00405_rh 1,00 1,00 0,91 1,00

R21 rh_Tr-SF_0 rh_Tr_SF_1r c_00645_rh 0,99 1,00 0,87 0,95 0,94 0,98
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Fig. 2. Bundles common to the three analyzed atlases. In red the bundles belonging to atlas1, in blue the bundles belonging to atlas2 and in green the bundles of atlas3.

Fig. 1. SWM bundles of fibers connecting different gyri of the left frontal region. These structures can connect adjacent gyri (showing their characteristic close U-
shape) or skip one or more sulci (open U-shape). (a) SWM bundle from atlas1 connecting pre and postcentral gyri, (b) SWM bundle from atlas2 connecting rostral
middle frontal and superior frontal gyri and (c) SWM cluster from atlas3 connecting pars opercularis and superior frontal gyri.
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present the average percentage of all the similar bundles in the atlas and
its standard deviation.

In most cases, several bundles from atlas3 correspond to one from
atlas1 and atlas2. These two last atlases present a one to one
10
relationship between them for most of the bundles, most likely because
they come from the same database. Both atlases (atlas1 and atlas2)
present some gaps in the brain less covered by short bundles, specially
in temporal and occipital regions, since most of the bundles are present



Fig. 3. Compilation of distinctive SWM bundles from the three analyzed atlases. (a) all the bundles from atlas1, (b) bundles from atlas2 that are not present in atlas1,
and (c) bundles from atlas3 that are not in atlas1 or atlas2.

Fig. 4. A: Bundles connecting pre and postcentral gyri in the atlas1 (PoC-PrC 0,1,2 and 3). B, C and D present the segmentations from one subject tractography data
generated using DTI, GQI and MRtrix, respectively.
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in the fronto-parietal region. We provide a compilation of the distinc-
tive bundles from the three atlases. The selection was based on the
connectivity criteria used to define the bundles for each atlas. Atlas1
used the most restrictive method, since the bundles were constructed
with fibers connecting pairs of specific regions, i. e. 100% of the fibers
of a bundle connected two regions of Desikan-Killiany atlas in all the
subjects. Hence, all the bundles of this atlas were selected and are
displayed in Fig. 3a (100 bundles). Next, atlas2 used a minimum con-
nectivity criterion of 50% of the fibers connecting a pair of defined
regions (also based on Desikan-Killiany atlas). Hence, we selected the
11
bundles present in atlas2 that were not identified in atlas1, displayed in
Fig. 3b (17 bundles). A main difference between atlas1 and atlas2 is
that atlas2 includes intra-gyri bundles which are not detected by atlas1
method. Also, as atlas2 method used non-linear registration, some extra
bundles were detected connecting adjacent gyri. On the other hand,
atlas3 was constructed from a superior quality database (HCP) (HCP
Young Adult, 1200), with higher spatial resolution and a multi-shell
acquisition, which increases the amount of tractable short fibers and
the possibility to disentangle large U-fiber bundles into smaller clusters.
Besides, this allowed the authors to find a big amount of fiber clusters
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all over the brain. Fig. 3c shows the clusters in atlas3 that are not
present in atlas1 or atlas2 (96 bundles). We can observe that a large
amount of SWM bundles are obtained, covering all locations within the
brain (Fig. 3c). Note that clusters in atlas3 are smaller than clusters in
atlas1 and atlas2. Also, as mentioned above, among the bundles of
atlas3, we can found bundles covering the regions covered by the other
atlases, but, in general, with smaller clusters, and different degree of
overlapping. Indeed, as our criterion for comparing clusters was very
restrictive (with a minimum of 80% of similarity between fibers),
several clusters in Fig. 3c presents a degree of overlapping with bundles
in atlas1 and atlas2. Hence, the set of bundles shown in Fig. 3a, b and
3c is a representative compilation of SWM bundles present in the most
recent SWM bundle atlases (in MNI space).7 Table A.8 lists all the
bundles for the left hemisphere (109 bundles) and Table A.9 lists all the
bundles for the right hemisphere (104 bundles). The regions connected
by bundles selected from atlas3 were determined using the
Desikan-Killiany cortex parcellation in MNI space, calculated from the
ICBM152 template.(see Fig. 1 and Fig. 2)

6. SWM bundle reproducibility and dMRI parameter
configuration

Few studies have evaluated the sensitivity of superficial white matter
bundle segmentation to diffusion local model and tractography methods.
Several aspects in the dMRI processing pipeline can affect the SWM
reconstruction. For example, the white matter propagation mask used by
the tractography algorithms to define the fiber space. The voxels in the
periphery of the white matter mask are affected by partial volume effect,
and can be erroneously excluded from the mask, producing a reduction of
the reconstructed SWM fibers (Guevara et al., 2011). Hence a very low FA
threshold is recommended, or a mask based on T1 image. A recent work
performed a study of the effect of the number of fibers in tractography
reconstruction of white matter bundles (Rom�an et al., 2019). Using a
subject of the HCP database (HCP Young Adult, 1200) the authors found
that probabilistic tractography, based on constrained spherical decon-
volution (Tournier et al., 2007), calculated using MRtrix software8 lead
to a better reconstruction of some SWM bundles than deterministic
tractography based on Generalized Q-sampling Imaging (GQI) (Yeh et al.,
2010) using DSI Studio software. The study also found that SWM bundles
are more sensitive to the number of fibers used in tractography than
DWM bundles. A value of 1:5M fibers was found to be adequate for DSI
Studio and 3M fibers for MRtrix. The sensitivity to other parameters was
not quantitatively evaluated, but a set of parameters for both softwares
was empirically tuned for SWM reconstruction (listed below).

We extended this evaluation to the compilation of SWM bundles from
the three atlases, described in section 5 and listed in Tables A.8 and A.9
(Fig. 3). For the analysis, we used multi-shell diffusion MRI of 50 subjects
of the Human Connectome Project (HCP) database (HCP Young Adult,
1200), from the 1200 Subjects Data Release (S1200 Data). The dMRI data
was collected over three b-values (1000, 2000, 3000 s= mm2), with an
isotropic voxel size of 1:25mm. We worked with the HCP pre-processed
data (Glasser et al., 2013), where diffusion imaging distortion correc-
tions were applied (Andersson et al., 2003; Andersson and Sotiropoulos,
2015). Diffusion data is aligned to the native structural space.

We calculated whole brain tractography in the subject space, for
different numbers of fibers, using DSI Studio, based on the Generalized Q-
sampling Imaging (GQI) (Yeh et al., 2010) method. Deterministic trac-
tography algorithm (Yeh et al., 2013) was applied using the following
parameters: angular threshold ¼ 90∘, step size ¼ 0:25mm, minimum
length ¼ 30mm, maximum length ¼ 250mm, smoothing ¼ 0.5, and QA
threshold ¼ 0. Datasets were calculated for 500k, 1M, 1:5M and 2M
streamlines. Furthermore, using the same parameters, the tractographies
7 available upon request to. mguevara.bme@gmail.com
8 http://www.mrtrix.org/.
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were also calculated based on DTI model, using DSI Studio.
We also calculated tractographies using MRtrix, based on constrained

spherical deconvolution model (Tournier et al., 2007) (IFOD2). Proba-
bilistic tractography (Christiaens et al., 2015) with
Anatomically-Constrained Tractography (ACT) (Smith et al., 2012) was
calculated, using a step size ¼ 0:1*voxelsize, angle threshold ¼ 90∘,
minimum length ¼ 30mm, maximum length ¼ 250mm and cutoff value
¼ 0.06. Finally, a Spherical-deconvolution Informed Filtering of Tracto-
grams (SIFT) (Smith et al., 2013) was applied, keeping the 10% of the
fibers. Final datasets of 1M, 2M, 3M, and 5M streamlines were
calculated.

Then, an automatic WM bundle segmentation algorithm (Labra et al.,
2017) was applied to each dataset to extract the bundles included in the
compilation of SWM atlas bundles described above and listed in
Tables A.8 and A.9. The algorithm calculates a distance between each
fiber of the atlas and each fiber of the subject’s tractography. It uses the
maximum Euclidean distance between corresponding points of the two
fibers, normalized by the difference between the length of the atlas fiber
and the fiber of the subject (d me). Before this processing, the fibers were
transformed to MNI space, by applying the non-linear transformation
from structural to MNI152 space, calculated with FNIRT software
(Andersson et al., 2007), provided with the HCP database. The seg-
mentation algorithm uses a distance threshold parameter, that was set
between 6 and 8mm for deterministic tractography, according to the
bundle length (Rom�an et al., 2017). In the case of MRtrix, with proba-
bilistic tractography, fibers have more irregular trajectories, hence
higher thresholds, between 8 and 10mm, were used.

A first analysis evaluated the difference between the segmentation
results using different number of fibers, based on a fiber similarity
measure, as described in (Rom�an et al., 2019). The tests were conducted
for the three local diffusion model/tractography configurations: DTI and
deterministic tractography with DSI Studio (called DTI), GQI and deter-
ministic tractography with DSI Studio (called GQI), and IFOD2 and
probabilistic tractography using ACTþ SIFT withMRtrix (calledMRtrix).
The comparison was performed between the dataset with more fibers and
the remaining datasets, separately for each configuration. We calculated
the percentage of fibers reconstructed for each smaller dataset, and
observed a saturation trend for the maximum number of fibers. The
comparison confirmed that 1:5M fibers for GQI and 3M fibers for MRtrix
are sufficient to obtain about a 95% of fiber similarity with respect to the
maximum tested value (2M and 5M fibers, respectively), without any
visual difference between the segmented bundles and also no significant
difference when comparing bundle masks with 1:25mm of resolution. For
DTI, a number of 1:5M was found to be appropriate, with a 97% of fiber
reconstruction with respecto to 2M fibers.

Next, we evaluated the reproducibility and variability of the SWM
bundles across the 50 subjects for the three local diffusion model/trac-
tography configurations (DTI, GQI and MRtrix). For that, we calculated
the percentage of bundles successfully reconstructed from the total of
subjects (R). A minimum of five fibers was considered to count a bundle
as reconstructed in a subject. Also, we calculated the relative standard
deviation of the number of fibers (RSD) to have an insight into the
variability of the bundles. Tables A.8 and A.9 list the reproducibility and
variability results for the left and right hemispheres respectively, asso-
ciated to the bundle name, the connected regions and the atlas the bundle
belongs to. The bundles are sorted in descending order of reproducibility
and increasing order of variability. That is, the bundles are listed ac-
cording to their stability, from highest to lowest. Note that bundle vari-
ability (standard deviation of the number of fibers RSD) is very similar in
DTI and GQI, but is lower for MRtrix. Bundle reproducibility is higher
and with a value of 100% in all the bundles for MRtrix and lower for the
other methods, being very low for some bundles using DTI. However,
there are about 40 bundles per hemisphere that are very stable for all the
methods, with a reproducibility superior to 95%. Another aspect to
consider is the coverage of the segmented bundles with respect to the
atlas bundle. Fig. 4 illustrates the segmentation results of one subject, for

mailto:mguevara.bme@gmail.com
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Table 4
SWM clinical studies using diffusion-weighted imaging.

Paper Data type Type of
application

type of analysis Regions Type of bundle
identification

Number of
subjects

Results found

Sundaram
et al.
(2008)

Tractography SWM in autism DTI-derived
metrics (ADC
and FA) and
fiber length

Frontal lobe Manual delineation of
50 ROIs

50 children
patients
16 controls

ADC significantly higher in ASD
group. FA significantly lower in
ASD.

Shukla
et al.
(2011)

Voxel SWM in autism DTI-derived
metrics (MD, RD
and FA)

Frontal, parietal and
temporal lobes in
both hemispheres

SWM mask from FA
skeleton

24 controls
26 patients DTI

Children with ASD presented and
increased MD and RD of SWM in
frontal, temporal and parietal
lobes of both hemispheres. FA
was reduced in bilateral frontal
lobes

Phillips
et al.
(2011)

WM mesh SWM and
schizophrenia

DTI-derived
metrics (FA)

Whole brain No bundle
identification

150 including
patients and
their relatives

Reduced FA in the left temporal
and bilateral occipital regions of
the patients

Malykhin
et al.
(2011)

Voxel SWM changes in
age

DTI-derived
metrics (AD,
RD)

Prefrontal white
matter

Manual parcellation of
WM using ROIs

69 aged 22-84 Increase in the AD and RD with
age starting from the 60s

Catani et al.
(2013)

Tractography Verbal fluency in
aphasia

Bundle
lateralization

Frontal Manual segmentation
of fibers connecting
two ROIs

35 patients
29 controls

FAT (connecting Broca’s region
with the anterior cingulate and
Pre-SMA) left lateralized in right-
handed. FAT correlated to verbal
fluency.

Nazeri et al.
(2013)

Voxel SWM in
schizophrenia

DTI-derived
metrics (FA)

Whole brain SWM mask and TBSS 44 patients
44 controls

Reduced FA in 5 SWM clusters
(cortex): Superior lateral
occipital, PrCu, PC, MF and IF,
Orbitofrontal cortex, precentral,
insula operculum, frontal
operculum.

Phillips
et al.
(2013)

WM mesh SWM relation
with age, sex and
hemisphere

DTI-derived
metrics (FA, RD
and AD)

Whole brain No bundle
identification

65 aged 18–74
years

Decrease of FA related to age, as
well as an increase of AD and RD,
and also a leftward asymmetry

Gao et al.
(2014)

Tractography
and fMRI

Relevance of
SWM in
Alzheimer

DTI-derived
metrics (AD)
and fMRI

Whole brain ROIs from regions
activated in
prospective memory
task (4 mm < fibers
<35 mm)

13 young
13 healthy
older
17 patients

Short fibers more vulnerable to
aging (less myelinated). MD
correlated (þ) with fMRI signal
change and (�) with efficiency in
prospective memory
performance.

Hatton
et al.
(2014)

Tractography SWM in early
Psychosis

DTI-derived
metrics (FA)

Insula-
temporoparietal
junction

13 SWM bundles
obtained by using ROIs
as seed

42 patients
45 controls

Reduced FA in the bundle
connecting the superior temporal
and middle temporal gyri

Wu et al.
(2014)

WM mesh SWM
development in
children and
adolescents

DTI-derived
metrics (FA, AD,
RD, MD)

Whole brain WM parcellation
template

133 aged
10–18 years

Increased FA and decreased MD
and RD beneath bilateral motor
sensory cortices and superior
temporal auditory cortex, as well
as an increase in FA and AD in
bilateral orbitofrontal regions
and insula

Nazeri et al.
(2015)

Tractography SWM in
Alzheimer

DTI-derived
metrics (FA)

Whole brain SWM SWM skeletonized
probabilistic map,
obtained from ROI
masks (MNI atlas of
cortical structures) and
TBSS (automatic)

141 healthy Inverse relationship of FA and
age decline in tracts: right
superior frontal sulcus tract, left
superior frontal sulcus tract, right
orbito-polar tract, right sub-
intra-occipital tract, right sub-
precuneal tract, left sub-parieto-
occipital tract, left sub-intra-
parietal tract

Ecker et al.
(2016)

Tractography SWM and
gyrification in
ASD

DTI-derived
metrics (AD)

Whole Brain 3D ROIs from clusters
of increased
gyrification (fibers
<30 mm)

51 patients
48 controls

Tracts originating/terminating in
clusters of increased gyrification
showed increased AD

Reginold
et al.
(2016)

Tractography SWM in
Alzheimer

DTI-derived
metrics (MD,
RD, AxD, FA)

Frontal and parietal,
temporal and
occipital lobes

Manual segmentation
of fibers

16 patients
24 controls

Increased MD, RD and AxD in
fibers in the temporal lobe

Phillips
et al.
(2016a)

WM mesh SWM
abnormalities in
Huntington’s
disease

DTI-derived
metrics (AD,
RD)

Whole brain No bundle
identification

25 pre-
symptomatic
24 patients
49 controls

Increase of the AD and RD
disperse in the brain for pre-
symptomatic subjects compared
to controls. This increase was
found in all the brain for patients
compared to controls

Phillips
et al.
(2016b)

WM mesh SWM in
Alzheimer

DTI-derived
metrics (AD,
RD)

Whole brain No bundle
identification

44 patients
47 controls

Increase of the AD and RD across
most of the SWM, specially in the
parahippocampal regions and the
temporal and frontal lobes

(continued on next page)
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Table 4 (continued )

Paper Data type Type of
application

type of analysis Regions Type of bundle
identification

Number of
subjects

Results found

Wen et al.
(2016)

Voxel SWM in Tourette
syndrome

DTI-derived
metrics (FA, RD,
AD and MD)

Whole brain White matter
parcellation by ROIs
atlas

27 patients
27 controls

Decrease of FA and increase of
RD beneath bilateral primary
somatosensory cortices in
Tourette syndrome children. This
changes were also underneath
bilateral precentral, postcentral,
fontro-orbital and superior
temporal auditory cortices

D’Albis
et al.
(2017)

Tractography SWM in autism DTI-derived
metrics (gFA,
MD, AD and RD)

Whole brain Automatic
segmentation using
tractography atlas (63
bundles)

30 patients
40 controls

Increase in short distance
connectivity. Decrease gFA in 6
bundles and increased in 1
bundle, increased MD in 6
bundles, increased RD in 5
bundles.

d’Albis
et al.
(2018)

Tractography SWM in autism DTI-derived
metrics (gFA)
and PCA

Whole brain Automatic
segmentation using
tractography atlas (63
bundles)

27 patients
31 controls

Deficit in anatomical
connectivity in component 3,
composed of 13 bundles, left:
SM-Ins, MT-SM, MT-ST, PrC-Ins,
PoC-PrC_0, IP-IT, POCi-SF, IT-
MT, right: SM-Ins, MOF-ST, PoC-
PrC_1, PrC-SM.

Ji et al.
(2018)

Tractography SWM in
schizophrenia

DTI-derived
metrics (FA) and
PCA

Frontal cortex Automatic
segmentation using
tractography atlas (100
bundles)

31 patients
54 controls

Mean score of the second
component lower in
schizophrenia for 13 bundles
connecting: Op, Ins; Tr, Or,
orbitofrontal cortex, anterior
cingulate, SF and MF.

Ji et al.
(2018)

Tractography SWM in
schizophrenia
and bipolar
disorder

DTI-derived
metrics (gFA)

Whole brain Automatic
segmentation using
tractography atlas (100
bundles)

31 SZ patients
32 BD patients
54 controls

Significant gFA differences in 17
out of 65 stable SMW bundles in
the frontal, parietal and temporal
cortices

Phillips
et al.
(2018)

WM mesh SWM damage in
anti-NMDA
receptor
encephalitis

DTI-derived
metrics (MD)

Whole brain No bundle
identification

46 patients
30 controls

MD revealed a microstructural
integrity impairment in non-
recovered patients versus
recovered, and non recovered
versus healthy controls. Increase
in MD principally distributed in
the frontal, temporal and parietal
lobes
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four bundles connecting pre and postcentral gyri from atlas1 (PoC-PrC 0,
1, 2 and 3) using the three model/tractography configurations, compared
to the original atlas bundles. We can observe that DTI reconstruction is
incomplete for some bundles, while MRtrix provides the best coverage.
However, depending on the analysis to be performed, DTI reconstruction
could be sufficient, e. g. for the calculation of the mean FA along the
bundles. Finally, the computational cost should also be considered,
where DSI Studio takes less than 5 min for DTI and GQI per subject, while
MRtrix takes about 48 h per subject, in the same desktop computer.

7. Applications

In the last few years, thanks to an increasing development of new
tools for the study of SWM, more clinical studies regarding these struc-
tures have been made. Those studies often aim to quantify differences in
pathologies like Alzheimer and dementia, autism spectrum disorders or
schizophrenia.

Either by segmenting specific bundles or doing a general inspection,
different studies intent to identify the relation of short connections to
specific diseases. This is in general achieved by measuring diffusion
values as: fractional anisotropy (FA), mean diffusivity (MD), axial
diffusivity (AD) and radial diffusivity (RD), and quantifying their changes
with the pathology (Alexander et al., 2007). In Table 4 a summary of
clinical studies focused on SWM is presented.

Among those studies, some have revealed that the loss of integrity of
the short fibers, quantified by an increased MD, contributes to a lower
cognitive efficiency in healthy old adults and even more in Alzheimer
patients (Gao et al., 2014). Here, the authors defined ROIs from fMRI
14
activations in prospective memory tasks, and then created a common ROI
for the three category of subjects: healthy young (13), healthy older
adults (13) and patients with mild Alzheimer disease (17). The ROI was
warped into the DTI map of each subject in order to reconstruct the fibers
passing through. Only short fibers measuring from 4 mm to 35 mm were
selected. Increased values of the MD, RD and AD in the SWM of the
temporal region have also been reported to be related to Alzheimer
disease (Reginold et al., 2016). The study utilized tractography datasets
calculated from the DTI data from 24 controls and 16 patients. Fibers of
interest were segmented by manually placing ROIs for each lobe.

Another study showed that the values of FA are inversely related with
age in the SWM for healthy individuals, especially in the fronto-parietal
and occipital regions (Nazeri et al., 2015). The study was carried out
using the DTI data of 141 healthy individuals, across the adult lifespan
(18–86 years old), from which fibers were later reconstructed using
probabilistic tractography. Only SWM fibers were selected by seeding
exclusively in the cortical gray/white matter boundary and excluding
DWM using exclusion masks. In order to perform the analysis, the SWM
tracts were then binarized and averaged across subjects, creating a SWM
probabilistic mask. The mask was used to obtain the mean FA, which was
then skeletonized to perform TBSS analysis. Additionally, a MNI proba-
bilistic atlas of cortical structures was employed to identify the SWM
from frontal, parietal, occipital and temporal areas. Another study
focused on age changes in SWM is presented in (Malykhin et al., 2011).
The authors utilized 69 DTI datasets from subjects aged 22–84 years for
studying the prefrontal white matter connections, since functions in this
lobe generally decline with age. In order to do that, they manually par-
cellated the prefrontal white matter by placing ROIs. The results showed
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that there is an increase in the AD and RD with age, starting from the 60s.
Other age-focused work studied the development of the SWM in children
and adolescents (Wu et al., 2014). The authors measured the FA, MD, RD
and AD in 133 healthy subjects aged 10–18 years. These diffusion mea-
sures were averaged along the direction normal to the WM surface and
projected into a WM template from FreeSurfer. The analysis results
showed an increasing FA and decreasing MD and RD as the age increases,
beneath bilateral motor sensory cortices and superior temporal auditory
cortex, as well as an increase in FA and AD in bilateral orbitofrontal re-
gions and insula.

Regarding the autism spectrum disorder (ASD), it is thought that it is
generated by changes in the overall brain connectivity. Therefore, a
special interest in this field has arisen not only for the study of DWM but
also of the SWM. Recently a study of ASD utilized a SWM atlas of 63
bundles (Guevara et al., 2017) to identify specific bundles implicated in
this pathology (d’Albis et al., 2018). These bundles were segmented from
the tractography datasets of 27 patients and 31 control subjects and the
mean generalized FA among them was used as a measure of integrity. It
was found that a deficit of the connectivity comprising 13 bundles,
mostly from frontal, temporal and parietal regions, is associated with the
severity of the disorder. Similar results were found in (Sundaram et al.,
2008), where the authors also found an FA significantly lower in ASD. In
this study the authors only focused in the temporal lobe. The analysis was
performed by manual delineation of ROIs in order to extract the fibers
from whole brain tractography datasets computed from the DTI data of
50 patients and 16 controls.

Studies relating schizophrenia with changes in SWM have also been
performed. A recent study used tractography datasets of 31 patients with
schizophrenia and 54 healthy controls, to segment SWM bundles using
the same atlas that in (d’Albis et al., Czechet al.). This analysis exposed
that there is a lower generalized FA in bundles connecting the frontal
gyri, in patients with schizophrenia (Ji et al., 2018). This relationship has
also been described previously by means of TBSS for the frontal and
parieto-occipital connections (no specific bundles) (Nazeri et al., 2013).
A different approach is the one adopted in (Phillips et al., 2011), where
the authors analyzed the diffusion values by using meshes of the WM.
The meshes of all subjects are aligned in terms of their sulcal lines and the
FA values are obtained from the DTI image using a 10 mm sphere to
average the values around each mesh vertex. The FA values were pre-
viously masked and thresholded in order to keep only those corre-
sponding to the SWM. The method was applied to the data of 150
subjects in total, including: schizophrenia patients and their relatives,
and community comparison subjects and their relatives. Results from this
analysis showed a reduced SWM FA in patients specially in the left
temporal and bilateral occipital regions.

The same approach described in (Phillips et al., 2011) was used in
later analyses in order to study the relation of SWM in a variety of topics.
In (Phillips et al., 2013) a study about the age, sex and hemispheres is
performed over the data of 65 subjects. They found a decrease of FA
related to age, as well as an increase of AD and RD, and also a leftward
asymmetry. Another study using the same approach as a base (Phillips
et al., 2011) was focused in studying the relation of SWM with Hun-
tington’s disease (Phillips et al., 2016a). The study was performed over
the data of 25 pre-symptomatic subjects, 24 patients and 49 healthy
controls. An increase of the AD and RD disperse in the brain was found for
pre-symptomatic subjects compared to controls. For patients this increase
was found in all the brain. Another work covered the relation of SWM
with Alzheimer’s disease (Phillips et al., 2016b). Forty-four patients and
forty-seven healthy controls were analyzed. Results showed an increase
of the AD and RD across most of the SWM, especially in the para-
hippocampal regions and the temporal and frontal lobes. Finally, in
(Phillips et al., 2018) the authors studied the SWMdamage in anti-NMDA
receptor in encephalitis. Forty-six subjects with encephalitis and thirty
controls were included in the study. The study of the MD revealed a
microstructural integrity impairment in non-recovered patients versus
recovered and non-recovered versus healthy controls. This increase in
15
MD is principally distributed in the frontal, temporal and parietal lobes.
Furthermore, some studies have been focused on the connections in

the motor area, in order to investigate related disfunctionalities. Among
these connections we can distinguish the bundle connecting the pre
supplementary motor area and Broca’s region, namely the frontal aslant
tract (FAT). A study performed by Catani et al. showed that damage in
this bundle has been related to progressive aphasia (Catani et al., 2013).
The analysis was performed using the DTI data of 35 patients and 29
controls. Using manually drawn ROIs, the authors segmented the fiber
bundles by setting them as seed regions.

Another pathology of interest in clinical studies is the bipolar disor-
der. In (Zhang et al., 2018c) the authors utilized DTI data from 37 bipolar
patients and 42 healthy controls and probabilistic tractography to
calculate population-based SWM masks. TBSS analysis was employed to
measure the FA of the SWM, as well as the MD, AD and RD. The clusters
found after this analysis were reported according to the atlas presented in
(Guevara et al., 2017) in order to identify the cortical regions connected
by them. This allowed them to find a reduced FA of the bipolar patients
compared to controls, in the dorsolateral prefrontal cortex, as well as an
increased MD and RD in the right frontal cortex.

The relation between SWM and psychosis has also been studied. A
study focused on the fibers in the insula-temporoparietal area used DTI
data from 42 patients and 45 controls to reconstruct 13 SWM bundles and
analyze their differences (Hatton et al., 2014). The fiber bundles were
obtained by using as seed regions ROIs from the Desikan-Killiany atlas
(Desikan et al., 2006). The authors found a reduced FA in the bundle
connecting the superior temporal and middle temporal gyrus, as well as
an increased white matter volume in the Heschl’s gyrus.

Finally, a study aimed to look for changes in the WM for children with
Tourette syndrome (Wen et al., 2016). The authors combined TBSS and
ROIs analyses for studying changes in FA, RD, AD and MD in DWM and
SWM. A ROI atlas (Oishi et al., 2009) was used to parcellate the white
matter and study the changes of DTI values locally, using the data of 27
patients and 27 controls. Regarding the SWM the results showed a
decrease of FA and increase of RD beneath bilateral primary somato-
sensory cortices in Tourette syndrome children. These changes were also
underneath bilateral precentral, postcentral, fronto-orbital and superior
temporal auditory cortices.

8. Discussion and conclusion

We have presented an extensive review of the state of the art
regarding the study of superficial white matter with diffusion MRI.
Although the interest in their study is rather recent, an important amount
of works have been published. SWM bundles are difficult to depict either
from postmortem brains or tractography, however some research groups
have managed to segment reliable bundles from both kind of data. Even if
these studies are often limited to reduced regions of the brain, they
provide a valuable source of comparison.

Different techniques and data yield different outputs. Of course none
approach is perfect and depending on the level of precision in the bundle
delineation, the reproducibility and variability of the bundles, the quality
of the data and the study goals, one can be preferred over the others. Also,
a point to consider in the decision is the study extension, in terms of the
amount of regions to be analyzed. While manual positioning of ROIs
offers a better delineation of the bundles extracted, it can only be applied
to a reduced amount of them and most likely those with some a priori
anatomical knowledge. On the other hand automatic methods allow the
study of reproducible connections within the whole brain, although with
a lower precision. The different types of automatic methods also have
their advantages and disadvantages if we compare between them. While
automatic ROI placement adds anatomical information from the cortex to
the segmented fibers, these do not necessarily conform exactly to a
bundle. Depending on the ROI sizes, connections between a pair of them
can be composed of fibers with different shapes, sizes and positions. In
contrast, clustering methods can group similar fibers, resulting in
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anatomically meaningful bundles, however often no correspondence
with the regions they connect is known a priori. Often these two ap-
proaches complement each other in order to obtain a better description of
well-defined bundles. An example of this are the hybrid methods where
the ROI extraction allows the labeling of fibers from known cortical
areas, which are then clustered into anatomically meaning groups. Also
this kind of method allows a restricted clustering within the regions,
preventing from adding to a cluster fibers that are very similar but with a
different ending. Even if no postmortem validations were performed,
reproducibility analyses based on the amount of subjects in which bun-
dles are present can be achieved.

One way or another, it is certain that most stable bundles can be
segmented no matter the input data resolution of the technique
employed. In an attempt to prove that, we compared three publicly
available atlases, which were conceived automatically by different ap-
proaches. Even though the methods used to create the atlases differ in
spatial normalization, tractography and the segmentation technique, and
are based on two different databases, there is a large number of similar
bundles among the three resulting atlases. We provide a compilation of
213 distinctive bundles from the three atlases, with useful information
such as reproducibility and variability across subjects for three different
configurations of diffusion local model and tractography methods.

Results prove that the development of more sophisticated methods is
leading to a better description of SWM bundles. The current increase of
available tools has allowed the inclusion of SWM in clinical studies. This
grants a better and more localized understanding of the changes in the
brain connectivity that trigger certain pathologies. In order to understand
how the brain works we must be aware of all its components and how
they relate to each other. That is the reason why it is so important to take
into account the less known structures and keep developing and
improving the tools for their identification and analysis. The study of
SWM is still a challenge, since intersubject variability makes difficult to
find patterns common to a population of subjects. As SWM is closely
16
related to cortical morphology, future progress will probably require a
more explicit modeling of the variability of the folding patterns.
Furthermore, while algorithmic progress now allow the manipulation of
huge tractograms including a million streamlines, exploring further the
short range connectivity may require to scale-up even further the amount
of streamlines of interest.

The different clinical studies included in this review reveal that SWM
is specially affected in different pathologies. These studies expose
changes in different diffusion indices which are driven most likely by
phenomena related to the myelination of the fibers. The SWM is specially
exposed during the brain maturation as its myelination occurs mostly
during the third and fourth decade of life, making the SWM more prone
to lesions. Their study is very sensitive to the dMRI data quality. The
advancement of dMRI equipment and methods makes it now possible to
acquire datasets that allow the study of a considerable set of short fibers,
ideally based on HARDI or multi-shell data. Also for a better SWM defi-
nition, more studies are required for the identification of SWM bundles
using high quality databases.
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Appendix A
Table A.7
Desikan-Atlas ROI abbreviations

Region (gyrus) Abb. Region (gyrus) Abb.
Caudal anterior cingulate
 CAC
 Pars orbitalis
 Or

Caudal middle frontal
 CMF
 Pars triangularis
 Tr

Cuneus
 Cu
 Pericalcarine
 PeCa

Entorhinal
 En
 Postcentral
 PoC

Fusiform
 Fu
 Posterior cingulate
 PoCi

Inferior parietal
 IP
 Precentral
 PrC

Inferior temporal
 IT
 Precuneus
 PrCu

Isthmus cingulate
 IC
 Rostral anterior cingulate
 RAC

Lateral occipital
 LO
 Rostral middle frontal
 RMF

Lateral orbitofrontal
 LOF
 Superior frontal
 SF

Lingual
 Li
 Superior parietal
 SP

Medial orbitofrontal
 MOF
 Superior temporal
 ST

Middle temporal
 MT
 Supramarginal
 SM

Parahippocampal
 PH
 Transverse temporal
 TT

Paracentral
 PC
 Insula
 In

Pars opercularis
 Op
Abbreviations of each region in the cortical parcellation, according to the Desikan-Killiany atlas (Desikan et al.,
2006). Both hemispheres contain the same regions.
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Table A.8
The set of representative SWM bundles selected from the three analyzed atlases for the left hemisphere, including the bundle name, the pair of connected regions and the
atlas to which the bundles belong. The reproducibility and variability of the bundles using DTI and deterministic tractography with DSI Studio (DTI), GQI and
deterministic tractography with DSI Studio (GQI) and IFOD2 and probabilistic tractography using ACT þ SIFT with MRtrix (MRtrix) configurations are also listed

Bundle Name Regions Atlas DTI (R%) GQI (R%) MRtrix (R%) DTI (RSD) GQI (RSD) MRtrix (RSD)
17
atlas_lh_MT_MT_1i
 MT-MT
 atlas2
 100
 100
 100
 96
 102
 33

atlas_lh_PrC-SM_0
 PrC-SM
 atlas1
 100
 100
 100
 77
 108
 37

atlas_lh_CMF-SF_0
 CMF-SF
 atlas1
 100
 100
 100
 79
 97
 44

atlas_lh_MT-SM_0
 MT-SM
 atlas1
 100
 100
 100
 86
 79
 49

atlas_lh_PoC-SM_0
 PoC-SM
 atlas1
 100
 100
 100
 85
 87
 31

atlas_lh_PrC-Ins_0
 PrC-Ins
 atlas1
 100
 100
 100
 67
 73
 59

atlas_lh_Op-PrC_0
 Op-PrC
 atlas1
 100
 100
 100
 71
 82
 45

atlas_lh_PoC-PrC_2
 PoC-PrC
 atlas1
 100
 100
 100
 76
 71
 41

atlas_lh_Fu_IT_0i
 Fu-IT
 atlas2
 100
 100
 100
 93
 61
 32

atlas_lh_CMF-PrC_1
 CMF-PrC
 atlas1
 100
 100
 100
 72
 75
 39

atlas_lh_IT_IT_1l
 IT-IT
 atlas2
 100
 100
 100
 78
 74
 30

atlas_lh_Fu_Fu_0i
 Fu-Fu
 atlas2
 100
 100
 100
 63
 72
 46

atlas_lh_PoC-SM_1
 PoC-SM
 atlas1
 100
 100
 100
 74
 66
 40

atlas_lh_SP-SM_0
 SP-SM
 atlas1
 100
 100
 100
 67
 69
 41

atlas_lh_PoCi-PrCu_1
 PoCi-PrCu
 atlas1
 100
 100
 100
 72
 60
 44

atlas_lh_RoMF_RoMF_0i
 RMF-RMF
 atlas2
 100
 100
 100
 69
 75
 31

atlas_lh_PoC-Ins_0
 PoC-Ins
 atlas1
 100
 100
 100
 64
 44
 64

atlas_lh_IP-SP_0
 IP-SP
 atlas1
 100
 100
 100
 67
 64
 39

atlas_lh_RoMF_RoMF_1i
 RMF-RMF
 atlas2
 100
 100
 100
 69
 68
 27

atlas_lh_RMF-SF_0
 RMF-SF
 atlas1
 100
 100
 100
 66
 70
 28

atlas_lh_IP-MT_0
 IP-MT
 atlas1
 100
 100
 100
 59
 62
 41

atlas_lh_CAC-PrCu_0
 CAC-PrCu
 atlas1
 100
 100
 100
 65
 63
 29

atlas_lh_PoC-PrC_0
 PoC-PrC
 atlas1
 100
 100
 100
 59
 59
 23

atlas_lh_PoC-PrC_3
 PoC-PrC
 atlas1
 100
 100
 100
 46
 47
 44

atlas_lh_Tr_RoMF_0i
 Tr-RMF
 atlas2
 100
 100
 100
 52
 53
 26

atlas_lh_SF_SF_0l
 SF-SF
 atlas2
 100
 100
 100
 44
 51
 29

atlas_lh_LO_LO_1i
 LO-LO
 atlas2
 100
 100
 100
 47
 49
 25

atlas_lh_RMF-SF_1
 RMF-SF
 atlas1
 98
 100
 100
 133
 98
 48

atlas_lh_IP-LO_1
 IP-LO
 atlas1
 98
 100
 100
 105
 95
 35

cluster_00346_left
 CMF-RMF
 atlas3
 98
 100
 100
 100
 81
 43

cluster_00667_left
 RMF-SF
 atlas3
 98
 100
 100
 83
 77
 33

atlas_lh_Op-SF_0
 Op-SF
 atlas1
 98
 100
 100
 80
 49
 30

atlas_lh_PoC-PrC_1
 PoC-PrC
 atlas1
 100
 98
 100
 79
 100
 44

atlas_lh_MT-ST_0
 MT-ST
 atlas1
 100
 98
 100
 70
 78
 48

cluster_00036_left
 IP-SP
 atlas3
 100
 98
 100
 83
 71
 33

atlas_lh_Op-Ins_0
 Op-Ins
 atlas1
 100
 98
 100
 55
 64
 46

atlas_lh_Tr-Ins_0
 Tr-Ins
 atlas1
 100
 98
 100
 66
 61
 30

cluster_00155_left
 MT-MT
 atlas3
 95
 100
 100
 150
 104
 34

atlas_lh_MT_MT_1l
 MT-MT
 atlas2
 95
 100
 100
 104
 85
 35

atlas_lh_MT_MT_0i
 MT-MT
 atlas2
 95
 100
 100
 91
 97
 32

atlas_lh_SM-Ins_0
 SM-Ins
 atlas1
 95
 100
 100
 75
 76
 61

atlas_lh_CMF-PrC_0
 CMF-PrC
 atlas1
 95
 100
 100
 72
 62
 52

cluster_00460_left
 PoC-PoC
 atlas3
 98
 98
 100
 103
 79
 35

cluster_00718_left
 ST-ST
 atlas3
 98
 98
 100
 105
 81
 26

cluster_00350_left
 RMF-SF
 atlas3
 98
 98
 100
 90
 84
 27

atlas_lh_Or-Ins_0
 Or-Ins
 atlas1
 98
 98
 100
 73
 71
 30

cluster_00337_left
 SM-SM
 atlas3
 93
 100
 100
 119
 111
 38

cluster_00635_left
 Op-RMF
 atlas3
 95
 98
 100
 121
 81
 30

cluster_00427_left
 SP-SP
 atlas3
 95
 98
 100
 85
 90
 43

cluster_00556_left
 IP-MT
 atlas3
 95
 98
 100
 73
 65
 33

atlas_lh_IP-IT_0
 IP-IT
 atlas1
 91
 100
 100
 108
 101
 60

atlas_lh_ST-Ins_0
 ST-Ins
 atlas1
 91
 100
 100
 91
 66
 82

cluster_00662_left
 CMF-RMF
 atlas3
 91
 100
 100
 100
 99
 35

atlas_lh_IC-PrCu_0
 IC-PrCu
 atlas1
 93
 98
 100
 109
 61
 39

atlas_lh_IP-SP_1
 IP-SP
 atlas1
 95
 95
 100
 95
 97
 56

cluster_00554_left
 IT-LO
 atlas3
 89
 100
 100
 114
 90
 46

atlas_lh_CMF-PoC_0
 CMF-PoC
 atlas1
 89
 100
 100
 109
 85
 41

cluster_00031_left
 IP-MT
 atlas3
 91
 98
 100
 109
 84
 43

atlas_lh_CMF-Op_0
 CMF-Op
 atlas1
 86
 100
 100
 134
 90
 37

atlas_lh_PoCi-RAC_0
 PoCi-RAC
 atlas1
 86
 100
 100
 106
 57
 32

cluster_00392_left
 PoC-PoC
 atlas3
 89
 98
 100
 119
 104
 43

cluster_00385_left
 CMF-RMF
 atlas3
 89
 98
 100
 112
 104
 42

atlas_lh_PoCi-PrCu_0
 PoCi-PrCu
 atlas1
 91
 95
 100
 83
 77
 39

atlas_lh_PrC-SF_0
 PrC-SF
 atlas1
 93
 93
 100
 105
 123
 74

atlas_lh_LOF-RMF_0
 LOF-RMF
 atlas1
 93
 93
 100
 122
 138
 25

cluster_00107_left
 Fu-IP
 atlas3
 86
 98
 100
 126
 92
 50

cluster_00276_left
 Op-SF
 atlas3
 86
 98
 100
 105
 83
 36

cluster_00296_left
 PoC-PrC
 atlas3
 86
 98
 100
 147
 109
 50

atlas_lh_IT-MT_0
 IT-MT
 atlas1
 93
 90
 100
 112
 111
 52

cluster_00484_left
 SM-SM
 atlas3
 82
 100
 100
 142
 91
 38

atlas_lh_Tr-SF_0
 Tr-SF
 atlas1
 84
 98
 100
 116
 82
 41

cluster_00067_left
 Cu-LO
 atlas3
 84
 95
 100
 136
 85
 33
(continued on next column)
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Table A.8 (continued )
Bundle Name
 Regions
 Atlas
 DTI (R%)
 GQI (R%)
18
MRtrix (R%)
 DTI (RSD)
 GQI (RSD)
 MRtrix (RSD)
cluster_00299_left
 RMF-SF
 atlas3
 82
 95
 100
 125
 117
 54

atlas_lh_CMF-RMF_0
 CMF-RMF
 atlas1
 86
 90
 100
 99
 110
 56

atlas_lh_PoCi-SF_0
 PoCi-SF
 atlas1
 91
 85
 100
 115
 101
 56

cluster_00569_left
 Fu-LO
 atlas3
 77
 98
 100
 167
 79
 59

cluster_00414_left
 PrCu-SP
 atlas3
 73
 100
 100
 143
 59
 34

atlas_lh_MOF-ST_0
 MOF-ST
 atlas1
 100
 100
 73
 56
 51
 91

cluster_00308_left
 SP-SM
 atlas3
 75
 98
 100
 134
 123
 47

cluster_00361_left
 Op-SF
 atlas3
 75
 98
 100
 154
 104
 39

cluster_00473_left
 SF-SF
 atlas3
 75
 98
 100
 125
 122
 46

cluster_00073_left
 Fu-SP
 atlas3
 70
 98
 100
 209
 116
 58

atlas_lh_LOF-RMF_1
 LOF-RMF
 atlas1
 82
 85
 100
 168
 107
 28

atlas_lh_LOF-ST_0
 LOF-ST
 atlas1
 93
 98
 75
 116
 79
 116

cluster_00467_left
 PoC-SP
 atlas3
 66
 98
 100
 213
 96
 57

atlas_lh_LOF-Or_0
 LOF-Or
 atlas1
 84
 76
 100
 105
 141
 22

cluster_00360_left
 PrC-SF
 atlas3
 61
 98
 100
 185
 100
 56

atlas_lh_ST-TT_0
 ST-TT
 atlas1
 61
 93
 100
 159
 91
 56

cluster_00477_left
 PrC-SP
 atlas3
 52
 93
 100
 177
 164
 42

cluster_00304_left
 PrC-PrC
 atlas3
 52
 90
 100
 228
 133
 84

cluster_00015_left
 IP-SM
 atlas3
 48
 93
 100
 200
 102
 57

cluster_00294_left
 PrC-SF
 atlas3
 59
 80
 100
 177
 134
 75

cluster_00725_left
 MT-ST
 atlas3
 41
 98
 100
 198
 66
 27

cluster_00585_left
 SF-SF
 atlas3
 41
 98
 100
 204
 109
 42

cluster_00388_left
 SF-SF
 atlas3
 45
 90
 100
 201
 106
 41

cluster_00619_left
 SF-SF
 atlas3
 34
 98
 100
 217
 133
 56

cluster_00400_left
 SF-SF
 atlas3
 55
 76
 100
 206
 105
 43

cluster_00653_left
 SF-SF
 atlas3
 36
 90
 100
 189
 103
 47

cluster_00637_left
 SF-SF
 atlas3
 32
 93
 100
 193
 124
 57

atlas_lh_RAC-SF_1
 RAC-SF
 atlas1
 43
 71
 100
 152
 124
 51

atlas_lh_IP-SM_0
 IP-SM
 atlas1
 64
 44
 100
 196
 240
 58

cluster_00407_left
 SF-SF
 atlas3
 30
 78
 100
 227
 144
 46

cluster_00409_left
 SF-SF
 atlas3
 16
 90
 100
 293
 192
 47

atlas_lh_Fu-LO_0
 Fu-LO
 atlas1
 55
 51
 100
 156
 137
 72

cluster_00604_left
 MOF-SF
 atlas3
 18
 85
 100
 254
 121
 52

cluster_00478_left
 PrC-SP
 atlas3
 18
 80
 100
 399
 128
 52

cluster_00320_left
 PoC-SF
 atlas3
 30
 61
 100
 371
 181
 59

cluster_00656_left
 MOF-SF
 atlas3
 7
 80
 100
 451
 143
 60

cluster_00415_left
 SF-SP
 atlas3
 5
 73
 100
 626
 233
 45
Table A.9
The set of representative SWM bundles selected from the three analyzed atlases for the right hemisphere, including the bundle name, the pair of connected regions and
the atlas to which the bundles belong. The reproducibility and variability of the bundles using DTI and deterministic tractography with DSI Studio (DTI), GQI and
deterministic tractography with DSI Studio (GQI) and IFOD2 and probabilistic tractography using ACT þ SIFT with MRtrix (MRtrix) configurations are also listed

Bundle Name Regions Atlas DTI (R%) GQI (R%) MRtrix (R%) DTI (RSD) GQI (RSD) MRtrix (RSD)
atlas_rh_Or-Ins_0
 Or-Ins
 atlas1
 100
 100
 100
 49
 48
 28

atlas_rh_PoC-PrC_0
 PoC-PrC
 atlas1
 100
 100
 100
 53
 47
 26

atlas_rh_PreCu_PreCu_0r
 PrCu-PrCu
 atlas2
 100
 100
 100
 52
 61
 22

atlas_rh_CAC-PrCu_0
 CAC-PrCu
 atlas1
 100
 100
 100
 54
 51
 31

atlas_rh_SF_SF_1r
 SF-SF
 atlas2
 100
 100
 100
 58
 54
 30

atlas_rh_SF_SF_2r
 SF-SF
 atlas2
 100
 100
 100
 63
 60
 23

atlas_rh_PoC-PrC_1
 PoC-PrC
 atlas1
 100
 100
 100
 56
 63
 35

atlas_rh_Op-PrC_0
 Op-PrC
 atlas1
 100
 100
 100
 54
 63
 38

atlas_rh_PoC-PrC_2
 PoC-PrC
 atlas1
 100
 100
 100
 50
 73
 46

atlas_rh_IP-IT_0
 IP-IT
 atlas1
 100
 100
 100
 74
 71
 28

atlas_rh_Fu_IT_0i
 Fu-IT
 atlas2
 100
 100
 100
 90
 55
 31

atlas_rh_SM_SM_1i
 SM-SM
 atlas2
 100
 100
 100
 72
 76
 28

atlas_rh_IP-MT_0
 IP-MT
 atlas1
 100
 100
 100
 70
 74
 32

atlas_rh_CMF-SF_1
 CMF-SF
 atlas1
 100
 100
 100
 67
 81
 37

atlas_rh_IP-SP_0
 IP-SP
 atlas1
 100
 100
 100
 68
 75
 44

atlas_rh_MT-ST_0
 MT-ST
 atlas1
 100
 100
 100
 79
 77
 34

atlas_rh_CMF-PrC_0
 CMF-PrC
 atlas1
 100
 100
 100
 69
 84
 38

atlas_rh_LOF-ST_0
 LOF-ST
 atlas1
 100
 100
 100
 79
 47
 72

atlas_rh_RMF-SF_0
 RMF-SF
 atlas1
 100
 100
 100
 87
 94
 30

atlas_rh_PrC-SM_0
 PrC-SM
 atlas1
 100
 100
 100
 81
 96
 44

atlas_rh_Op-Ins_0
 Op-Ins
 atlas1
 98
 100
 100
 53
 56
 46

atlas_rh_Tr-Ins_0
 Tr-Ins
 atlas1
 98
 100
 100
 82
 73
 32

atlas_rh_SP-SM_0
 SP-SM
 atlas1
 98
 100
 100
 72
 81
 35

atlas_rh_MT-SM_0
 MT-SM
 atlas1
 98
 100
 100
 67
 80
 44

atlas_rh_LO-SP_0
 LO-SP
 atlas1
 98
 100
 100
 90
 75
 52

atlas_rh_PoCi-PrCu_2
 PoCi-PrCu
 atlas1
 98
 100
 100
 111
 112
 41

atlas_rh_PoC-SM_0
 PoC-SM
 atlas1
 100
 98
 100
 73
 83
 40

atlas_rh_PoCi-PrCu_1
 PoCi-PrCu
 atlas1
 100
 98
 100
 76
 89
 47

atlas_rh_PrC-Ins_0
 PrC-Ins
 atlas1
 100
 98
 100
 97
 78
 63

atlas_rh_SM-Ins_0
 SM-Ins
 atlas1
 100
 98
 100
 87
 95
 72
(continued on next column)
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Table A.9 (continued )
Bundle Name
 Regions
 Atlas
 DTI (R%)
 GQI (R%)
19
MRtrix (R%)
 DTI (RSD)
 GQI (RSD)
 MRtrix (RSD)
cluster_00557_right
 Fu-IT
 atlas3
 100
 98
 100
 60
 66
 33

cluster_00593_right
 RMF-RMF
 atlas3
 100
 98
 100
 77
 66
 27

cluster_00319_right
 CMF-SF
 atlas3
 100
 98
 100
 67
 75
 29

cluster_00554_right
 IT-LO
 atlas3
 100
 98
 100
 90
 77
 38

atlas_rh_Op-SF_0
 Op-SF
 atlas1
 95
 100
 100
 82
 50
 33

cluster_00662_right
 CMF-RMF
 atlas3
 95
 100
 100
 108
 88
 35

atlas_rh_Tr-SF_0
 Tr-SF
 atlas1
 95
 100
 100
 115
 94
 34

cluster_00346_right
 CMF-RMF
 atlas3
 95
 100
 100
 119
 117
 39

atlas_rh_CMF-SF_0
 CMF-SF
 atlas1
 98
 98
 100
 79
 75
 41

cluster_00667_right
 RMF-SF
 atlas3
 98
 98
 100
 82
 70
 36

cluster_00350_right
 RMF-SF
 atlas3
 98
 98
 100
 89
 85
 33

cluster_00055_right
 IP-SM
 atlas3
 98
 97
 100
 116
 87
 32

atlas_rh_RMF-SF_1
 RMF-SF
 atlas1
 93
 100
 100
 160
 93
 41

cluster_00121_right
 Li-PH
 atlas3
 95
 98
 100
 90
 63
 40

cluster_00652_right
 RMF-RMF
 atlas3
 95
 98
 100
 122
 68
 39

atlas_rh_IC-PrCu_0
 IC-PrCu
 atlas1
 98
 95
 100
 87
 97
 35

atlas_rh_CMF-PrC_1
 CMF-PrC
 atlas1
 100
 93
 100
 80
 97
 54

cluster_00762_right
 PrC-RMF
 atlas3
 91
 100
 100
 120
 103
 32

cluster_00083_right
 LO-SP
 atlas3
 91
 100
 100
 114
 98
 49

cluster_00616_right
 CMF-RMF
 atlas3
 89
 100
 100
 109
 77
 38

cluster_00385_right
 CMF-RMF
 atlas3
 89
 100
 100
 118
 118
 53

cluster_00155_right
 MT-MT
 atlas3
 91
 97
 100
 116
 91
 35

atlas_rh_PoC-SP_1
 PoC-SP
 atlas1
 95
 93
 100
 97
 105
 56

atlas_rh_PoCi-RAC_0
 PoCi-RAC
 atlas1
 86
 100
 100
 127
 49
 24

cluster_00414_right
 PrCu-SP
 atlas3
 89
 98
 100
 128
 65
 30

cluster_00639_right
 Op-RMF
 atlas3
 89
 98
 100
 112
 97
 33

cluster_00071_right
 Cu-Li
 atlas3
 89
 98
 100
 119
 107
 66

atlas_rh_CAC-PoCi_0
 CAC-PoCi
 atlas1
 84
 100
 100
 105
 80
 43

cluster_00777_right
 ST-ST
 atlas3
 84
 98
 100
 159
 73
 32

atlas_rh_PrC-SP_0
 PrC-SP
 atlas1
 89
 93
 100
 112
 100
 51

atlas_rh_PoC-SP_0
 PoC-SP
 atlas1
 89
 90
 100
 117
 119
 45

atlas_rh_LOF-RMF_1
 LOF-RMF
 atlas1
 89
 90
 100
 154
 176
 37

cluster_00093_right
 Cu-Li
 atlas3
 86
 92
 100
 128
 122
 70

atlas_rh_IP-SM_0
 IP-SM
 atlas1
 86
 90
 100
 105
 109
 42

cluster_00635_right
 Op-RMF
 atlas3
 77
 98
 100
 150
 88
 33

cluster_00039_right
 IP-SP
 atlas3
 77
 98
 100
 155
 97
 36

cluster_00026_right
 IP-MT
 atlas3
 80
 95
 100
 131
 125
 49

atlas_rh_Op-Tr_0
 Op-Tr
 atlas1
 93
 80
 100
 119
 140
 43

atlas_rh_MOF-ST_0
 MOF-ST
 atlas1
 100
 100
 73
 64
 45
 83

cluster_00067_right
 Cu-LO
 atlas3
 73
 100
 100
 122
 81
 29

atlas_rh_Cu-Li_0
 Cu-Li
 atlas1
 86
 85
 100
 116
 95
 66

atlas_rh_ST-TT_0
 ST-TT
 atlas1
 70
 100
 100
 129
 70
 42

atlas_rh_PreC_SF_0i
 PrC-SF
 atlas2
 73
 98
 100
 159
 141
 47

cluster_00094_right
 LO-LO
 atlas3
 75
 95
 100
 176
 130
 40

cluster_00294_right
 PrC-SF
 atlas3
 73
 95
 100
 151
 96
 43

atlas_rh_IT-MT_1
 IT-MT
 atlas1
 84
 83
 100
 111
 99
 47

cluster_00035_right
 IP-SP
 atlas3
 66
 97
 100
 246
 166
 38

cluster_00079_right
 LO-SP
 atlas3
 64
 92
 100
 207
 162
 69

atlas_rh_Fu-LO_1
 Fu-LO
 atlas1
 70
 85
 100
 150
 117
 55

atlas_rh_IP-LO_0
 IP-LO
 atlas1
 77
 78
 100
 125
 112
 47

cluster_00101_right
 Li-PeCa
 atlas3
 55
 100
 100
 173
 66
 35

cluster_00445_right
 PC-PoC
 atlas3
 57
 98
 100
 213
 125
 35

cluster_00304_right
 PrC-PrC
 atlas3
 57
 97
 100
 185
 124
 51

atlas_rh_LOF-RMF_0
 LOF-RMF
 atlas1
 59
 95
 100
 165
 121
 31

atlas_rh_CMF-RMF_0
 CMF-RMF
 atlas1
 70
 80
 100
 139
 120
 64

cluster_00025_right
 IP-SM
 atlas3
 50
 97
 100
 177
 92
 63

cluster_00653_right
 SF-SF
 atlas3
 57
 90
 100
 193
 126
 44

cluster_00096_right
 LO-Li
 atlas3
 52
 92
 100
 187
 84
 44

cluster_00015_right
 IP-ST
 atlas3
 48
 90
 100
 275
 137
 58

atlas_rh_RAC-SF_0
 RAC-SF
 atlas1
 52
 78
 100
 201
 116
 51

cluster_00725_right
 ST-ST
 atlas3
 25
 100
 100
 258
 91
 42

cluster_00400_right
 SF-SF
 atlas3
 50
 75
 100
 222
 148
 47

cluster_00478_right
 PrC-SP
 atlas3
 36
 85
 100
 200
 159
 46

cluster_00585_right
 SF-SF
 atlas3
 30
 90
 100
 219
 121
 47

cluster_00477_right
 PrC-SP
 atlas3
 34
 85
 100
 225
 139
 37

cluster_00656_right
 MOF-SF
 atlas3
 34
 75
 100
 200
 168
 54

cluster_00407_right
 SF-SF
 atlas3
 34
 75
 100
 267
 157
 41

cluster_00619_right
 SF-SF
 atlas3
 20
 88
 100
 315
 150
 50

atlas_rh_IT-MT_2
 IT-MT
 atlas1
 48
 59
 100
 200
 139
 43

cluster_00320_right
 PoC-SF
 atlas3
 32
 64
 100
 300
 209
 51

cluster_00604_right
 MOF-SF
 atlas3
 20
 68
 100
 294
 155
 55

cluster_00415_right
 SF-SP
 atlas3
 2
 63
 100
 655
 274
 42

cluster_00479_right
 PrC-SP
 atlas3
 0
 28
 100
 0
 306
 119

atlas_rh_LOF-MOF_0
 LOF-MOF
 atlas1
 18
 7
 100
 294
 267
 60
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