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GRAPHICAL ABSTRACT

Molecular Dynamics simulations of cascade in ordered alloys show that defect production in such
materials does not follow the rules which apply for monoelemental solids
The equivalence between linearity of defect production with ballistic energy and apparition of
subcascades does not hold in general for alloys.
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ABSTRACT

Displacement cascades have been calculated in two ordered alloys (Ni3Al and UO,) in the molecular dynamics framework using the CMDC (Cell
Molecular Dynamics for Cascade) code (J.-P. Crocombette and T. Jourdan, Nucl. Instrum. Meth. B 352, 9 (2015)) for energies ranking between 0.1 and
580 keV. The defect production has been compared to the prediction of the NRT (Norgett, Robinson and Torrens) standard. One observes a decrease
with energy of the number of defects compared to the NRT prediction at intermediate energies but, unlike what is commonly observed in elemental
solids, the number of produced defects does not always turn to a linear variation with ballistic energy at high energies. The fragmentation of the
cascade into subcascades has been studied through the analysis of surviving defect pockets. It appears that the common knowledge equivalence of
linearity of defect production and sub-cascades division does not hold in general for alloys. We calculate the average number of subcascades and
average number of defects per subcascades as a function of ballistic energy. We find an unexpected variety of behaviors for these two average
quantities above the threshold for subcascade formation.
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1. Introduction

In a nuclear environment, materials are submitted to several
severe solicitations among which neutron irradiation producing
transmutations and atomic displacements. In order to compare
different neutron spectra as well as to mimic with ion beams the

atomic displacements induced by neutrons, one needs a unit of
measurement for the damage sustained by the material. Such
damage comes mainly from the displacement cascades induced by
ballistic collisions between fast moving particles (neutrons or ions)
with atoms in the material. Kinchin and Pease [1] estimated the
number of displaced atoms by a PKA (Primary Knock-on Atom) in
terms of its energy for ballistic collisions, hereafter referred to as
the ballistic energy (Ep). This energy has sometimes been labelled
as damage energy. Both terms refer to exactly the same thing. We
prefer to use ballistic energy as it more clearly connects to the
ballistic loses of the projectiles. For energies larger than twice the
threshold displacement energy (Eq) in the material (which is
defined as the kinetic energy needed to displace permanently an
atom from its original lattice site) the number of displaced atoms
follows a linear form:

E
KP b
disp. — 2E, (1)

It was very early recognized that what is really interesting is not
the number of displacements but rather the number of defects
created, and that these two numbers are not equivalent. Norgett,
Robinson and Torrens (NRT) [2], proposed a simple rescaling by a
factor 0.8 of the KP formula for E;, larger than 2E4 to obtain the
number of created Frenkel (interstitial-vacancy) pairs (FPs) in a
material:

NNRT — 0.4 5
Eq

This “NRT” formula is the base of an ASTM standard [3] for the
calculation of the number of created FPs. Dividing NXRT by the
number of atoms in the material gives a measure of damage named
“dpa”, which stands for “displacement per atom”. In spite of this
name NRT formula and dpa really aim to estimate the number of
surviving FPs defects.

It has long been acknowledged, both experimentally (e.g.
Ref. [4]) and from Molecular Dynamics (MD) simulations > © that
the NRT formula overestimates the amount of created defects. MD
simulations have shown that this overestimation comes from the
partial recrystallization that takes place during the heat spike of the
cascade.

One then usually defines an efficiency factor () as the ratio of
the actual number of created defects to the NRT prediction. The
efficiency in some simple metals, especially iron [7,8], has been the
subject of detailed studies. It has been found that the number of
defects evolves as a power law with the ballistic energy then
switches for high ballistic energies to a linear dependence with an
efficiency factor equal to about 1/3. Following Averback [5] and
Stoller [7], one commonly relates this saturation at high energy
cascades of 7 to the split into disconnected subcascades.

In this paper we study the defect creation by displacement
cascades in ordered alloys at large energies. We perform cascade
simulations using MD on two ordered alloys: UO; and NisAl. We
calculate the number of created defects and discuss its evolution
with ballistic energy, checking if the evolution of y mentioned
above is observed in alloys, namely first a power law decrease then
a saturation to a constant value. The obtained results lead us to
revisit the assumed relationship between the apparition of sub-
cascades and the linearity of defect production.

Several MD calculations of cascades in ordered alloys already
exist in literature [9—15]. However, most of them are limited to low
energy PKA. Moreover, they consider cascades created by the heavy
elements of the alloy (e.g. U in UO; [12,13] or Ni in NizAl ' 1), This
choice probably relates to the difficulty, with standard MD, of
calculating cascades induced by light elements, because of the very

(2)
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large systems that such calculations require. In both UO; and NisAl
the number of defects is known to follow a power law at lower
ballistic energies [11—13].

In the present paper we treat on equal footage PKAs of both
elements of the alloys. The present calculations use the recently
developed Cell Molecular Dynamics for Cascade (CMDC) [16] code,
which circumvents the problem of intractably large systems.

The paper is organized as follows. The next part deals with
methods and technicalities of the simulations. The following part
discusses the results pertaining to the number of created defects.
Part IV and V tackle the formation of subcascades, their average
number and size and the possible connection with the linearity of
defect production.

2. Methods
2.1. Cell molecular dynamics for cascade

Cascade simulations have been performed with the CMDC code,
which is a MD code designed specifically to accelerate the calcu-
lations of displacement cascades. CMDC is based on the observation
that, in standard MD calculations, many parts of the system do not
take part of the cascade. Since the trajectories of the cascade are
unpredictable, such large systems are necessary to embrace the full
development of the cascade. The core principle of CMDC is then to
perform a regular MD simulation but just where and when
necessary to properly describe the cascade unfolding. We only
briefly present the CMDC code as it has been described in details
elsewhere [16]. The first point of the code is to build the MD box
during the unfolding of the cascade. Crystalline cells are added and
removed on the fly from the calculation based on local kinetic
energy criteria. When the maximal or the average kinetic energy of
the atoms in a cell exceeds given thresholds, the neighboring cells
are turned on. The atoms included in these cells are then given
random initial velocities and displacements corresponding to the
temperature of interest. In the present work, only room tempera-
ture has been considered but, in principle, any temperature can be
considered. Symmetrically, cells are turned off from the simulation
when Kkinetic energy in all their neighboring cells becomes lower
than a given threshold. When expressed in kinetic energy, the
turning on and turning off criteria are of the order 0.1eV per atom at
most.

The choice of temperature thresholds proceeds as follows.
When temperature thresholds are fixed at too low values, i.e. too
close from the initial temperature, the calculations diverges in the
sense that cells continuously add up to the simulation. Indeed,
because of their small number of atoms, the thermal fluctuations in
the cells are substantial so that too low thresholds are reached
simply by thermal fluctuations even in the absence of kinetic en-
ergy input by the cascades. These low barriers for the thresholds
depend on the number of atoms in the cells which in turn depend
on the range of interaction potentials. At the opposite, above a
certain limit, when temperatures thresholds are increased, one
observes that the number of defects produced on average by cas-
cades increases with the thresholds. Indeed, increasing turning-on
temperature thresholds confines the cascades in smaller and
smaller volumes to accommodate the same energy input, so that
the disorder increases. Symmetrically increasing the turning-off
temperature thresholds implicitly allows for less and less time for
crystal recovery at the end of the cascades. In between these low
and high limits of temperature thresholds, one observes that the
numbers of defects produced are statistically equal. In practice
these limits are found by a trial and error procedure on medium
energy cascades (a few tens of keV). The actual thresholds should
then be chosen in the interval where the number of produced



defects does not vary, preferably, for the sake of calculation speed,
close the upper limit of the interval. The procedure should be
redone if one is interested in another initial temperature.

Due to the abrupt freezing of atoms in turned off cells, the
structure at the end of the simulation may be trapped in an un-
stable configuration. To allow for some relaxations to take place, all
the atomic positions in the cells that were active at some point of
the cascade unfolding are eventually relaxed at the end of the
simulation with a so-called fast quenching algorithm with asyn-
chronous turning off of cells as in the cascade simulation. Me-
chanically unstable defects are thus eliminated.

The second point of the code is to use a space variable time step
for the simulation, applying a different time step for each active
cell. While cells are active, atoms move according to a standard
velocity Verlet algorithm.

Thirdly, CMDC includes electronic stopping, obtained from SRIM
[17] calculations as a dumping term. This slowing term depends
both on atomic type and velocity. It has a double use. First, it allows
to model in a crude way the electronic losses. Second, as it dissi-
pates kinetic energy from the atoms, it allows the calculation to
stop when the last cell reaches the kinetic energy threshold. It
should be noted that more subtle electronic stopping effects such as
electron-phonon coupling are not dealt so that the variation in
damage production due to these effects cannot be considered with
the present approach.

With the addition of the electronic stopping, PKA energies are
then total kinetic energies: ionizing plus ballistic. However, the
results presented in the next sections are presented in terms of the
corresponding ballistic energies, as deduced from SRIM calculation
for the same conditions. Overall, CMDC allows making cascade
calculations, which scales linearly with the projectile energy thus
ensuring a considerable speed-up compared to regular MD: about 5
orders of magnitude for 1 MeV cascades in iron [16]. See also Sec-
tion 2.3 for validation of CMDC in the case of UO,. CMDC does not
perfectly reproduce MD simulations, namely cascades are known to
form nanometric clusters of point defects. Such clusters are poorly
described with CMDC. However, we focus in the present work on
the total creation of defects and subcascade division. The former is
correctly reproduced by CMDC (see Ref. [16] and below) and the
same should apply for the latter. Indeed subcascade creation is a
high energy process involving projectiles of kinetic energies of at
least a few hundred eV. As CMDC describes the kinetics of atoms
down to energies below 0.1eV one can reasonably expect that the
subcascade division will be correctly reproduced.

2.2. Technicalities

In the present work, uranium dioxide is described using a pair
potential of the Buckingham type [18], spherically truncated in real
space [19], which had previously been used for cascade simulations
[12,13] thus allowing comparison of CMDC results. NisAl is
described with an Embedded Atom Model potential [20]. The po-
tentials have been smoothly connected to the universal Zie-
gler—Biersack—Littmark (ZBL) potential [17] at short distances.

16 PKA energies following geometrical series from 0.1 to
580 keV were considered, except for U PKA in UO; where 1 MeV
PKA energy is also considered for reasons explained below (Section
3.1). For each atom type and energy, 25 cascades with random
initial direction are calculated. As indicated above, PKA energies are
total kinetic energies, which correspond to various ballistic en-
ergies depending on the type of the PKA (and the material). As an
example, Table 1 indicates the ballistic energy corresponding to a
580 keV total energy for the four considered systems and for Fe
PKAs in iron. Cells are initialized at room temperature.

Defects are detected in quenched final atomic configurations,

Table 1

Ballistic energy (in keV) corresponding to a total PKA kinetic energy of 580 keV.
Etor = 580 keV U-u0, Ni—NisAl Fe—Fe Al-Ni5Al 0-U0,
Ep 367 307 288 165 82

based on a Wigner Seitz division of the crystal. In the next sections
the number of defects refers to the number of created FPs. Present
results are compared with Fe cascade in iron previously produced
[16] with CMDC and an EAM potential.

2.3. Validation of cell molecular dynamics for cascade

The validity of the CMDC results has already been discussed in
the case of self PKA in iron [16]. We found that the efficiency
calculated with CMDC nicely follows standard MD predictions.
Further validation can be extracted from the comparison of the
CMDC results obtained for uranium PKA in UO, with the ones ob-
tained with standard MD with the same potential [12]. Fig. 1 shows
the number of defects predicted by CMDC and standard MD. Two
sets of CMDC runs are shown; the first one corresponding to usual
CMDC calculations is labelled as “short runs”. One can see that for
these CMDC short runs the number of defects is consistently larger
than the one obtained with MD. In these calculations, the kinetic
energy thresholds are such that the cells are turned off after less
than 0.5 ps.

Standard MD cascade simulations in UO; [12] have proven that
some FPs recombinations take place in the first picoseconds at the
end of the cascades. To catch these recombinations we performed
additional calculations with a different turning off criterion: each
turned on cells remains active for at least 5 ps. These other calcu-
lations are termed as “long runs” since the CPU time is then larger.
Using such long runs one obtains the set of blue points in Fig. 1. One
can see that the long run results are extremely close to the standard
MD numbers.

The occurrence of such recombinations of FPs in the few first
picoseconds at the end of cascade is especially important in UO,.
Indeed it is known that FP recombinations in UO, exhibit quite a
complex energy landscape with low energy barriers for vacancy-
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Fig. 1. Defect creation for U PKA in UO; as a function of ballistic energy. Black and blue
lines and error bars are CMDC short and long runs respectively (see text). Red points
are standard DM calculations form literature [12] using the same potential. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article).



interstitial distances of a few nearest neighbors [21]. Such close FPs
with low energy barriers for recombination can be labelled as
metastable in the sense that their recombination energies are lower
than the migration energies of the isolated vacancies and in-
terstitials. One can however note that the ratio between short and
long runs is almost perfectly constant and equal to 1.5. Thus one
third of the FPs created at the end of the cascades recombines
within 5 ps. The other FPs are much longer to recombine. Indeed,
regular MD calculations [12] were pursued up to 100 ps with no
further recombinations. Note that this metastability effect is spe-
cific to UO,. Indeed, for Ni3Al the number of defects predicted by
short and long runs differ by not more than 10%. Beyond this
metastability issue the results of CMDC in terms of created defects
are consistent with the ones produced by standard MD. In the
following we focus on the short run results. Nonetheless, qualita-
tive conclusions would remain unchanged with long run simula-
tions (see also Section 5).

Finally, as far as CPU times are concerned, one can note that, for
uranium PKAs, long runs last on average 40% more CPU time than
the short ones with typical cpu time of 40 h for 32 keV cascade
short runs. For oxygen 32 keV PKA short runs lasts 49 h and the
increase between long and short runs rises to 70%. The larger gain
for O PKAs is due to the fact that O PJKA cascade are less dense (see
below Section 4) so that many parts of the crystal are just crossed
by the projectiles with little heat transfer. In short runs such cells
are readily turned off while in long runs they have to remain active
for 5ps.

2.4. Effective threshold displacement energy

The NRT formula relies on the displacement energy (Eg). In a
mono-elemental solid this quantity can be easily calculated with
MD [22]. In alloys, it is equally simple to calculate the displacement
energy for each atom type. With the present potential, E; equals
40 eV and 20 eV for uranium and oxygen atoms respectively in UO;
[13]. For Ni3Al, we calculated E4 values of 15 eV and 41 eV for Ni and
Al atoms respectively for the present potential. From these type
dependent displacement energies (Eé), one should calculate an
effective displacement energy (Eﬁff) to enter in the NRT formula in
order to obtain the number of created defects. Few works exist in
the literature dealing with this transformation from type depen-
dent displacement energies to a global effective one. It is generally
assumed [23], following Binary Collision Approximation (BCA)
calculations in alloys by Ghoniem et al. [24], that the effective en-
ergy is obtained with the following formula:

o S — (3)

>iSi (Efj) -

where S; is the atomic fraction of atoms of type i. This formula
amounts to partition the ballistic energy according to the stoichi-
ometry and then applying the NRT formula independently for each
species.

With this formula the effective displacement energies for UO;
and NisAl are 24 eV and 18 eV respectively. In the following, we
discuss the number of created defects in terms of efficiency with
respect to the NRT law using the Ghoniem formula (Eq. (3)).

3. Variation of defect production with ballistic energy
3.1. Total defect production

The total numbers of produced FPs as a function of ballistic
energies are compared in Fig. 2 with the corresponding NRT

4

prediction. There are some common features to all cases: at low
energies the production of defects is sublinear so that the number
of created FPs is always lower than the one predicted by the NRT
formula for energies larger than 1 keV.

The evolution of the number of defects created by Ni PKA in
NisAl and U in UO, resembles to what is observed in pure metals
[5,7]. One can distinguish two steps. First the number of defects is
sublinear with energy and varies as a power law with Ep:

NEMDC . EQ-81 for Ni and NEMPC ~ EO-76 for U PKAs.

Then the number of created defects switches to a linear varia-
tion with energy. The change from sublinear to linear takes place
around 10 keV for Ni PKA in NisAl. For U PKA the defect production
remains sublinear up to much higher energy. Indeed, linearity is
observed only for ballistic energies larger than 270 keV. We
checked this linearity by performing, in this case only, additional
cascade calculations at 1 MeV total energies, (i.e. E, = 597 keV).

The production of defects for Al PKA in Ni3Al and O PKA in UO;
appears to be different. Indeed, for Al PKA the number of FP evolves
continuously as a power law with the ballistic energy:
NEMPCE ~ EQ83, with no sign of change to linearity. Whereas, for O
PKA it seems to have two different power law regimes. For
Ep < 16 keV, NSMPC scales as EY°1 ; then for E, > 16 keV up to
580 keV (i.e. Ey = 82 keV), NSMPC scales as EJ->4, which is even less
linear.

3.2. Applicability of the arc-dpa formula

The points in Fig. 3 shows the efficiency of production of defects
in the four cases considered herein. In all cases one can note a
decrease of efficiency with increasing ballistic energy. Beyond this
common point noticeable differences appear. In the U and Ni cases
the efficiency of defects production tends to become constant for
high energies. Conversely, for Al and O PKAs there is no sign of
saturation in the decrease of ¥.

As explained above NRT formula assumes a linear defect pro-
duction with ballistic energy which overestimates the defect pro-
duction. In view of the weakness of the NRT standard, there have
been many discussions about the opportunity to define a better
standard. The most recent proposition was made by an OECD
expert group [25]. They introduce the so-called “Athermal
Recombination Corrected — Displacement Per Atom” (arc-dpa)
formula. This formula aims to reproduce the initial decrease then
saturation of the efficiency:

b
x¥e=dpa — ¢4 (1 — )% (0.4 E—Z) (4)

Hence the number of produced FPs is:
Naredpa _ o gFbs (1-0*(0 abp ’ (5)
P K " Eq

These formulas have proven to reproduce accurately the defect
creation in iron and seem promising for other metals. We tried to
apply the arc-dpa formulas to our results.

For Ni PKA the data points can be satisfactorily fitted with the
arc-dpa formula with effective displacement energy equals to,
Eq = 17.8 eV, and parameters: ¢ = 0,29 and b = —0,34 (continuous
green lines in Fig. 3). In the other cases the efficiency cannot be
fitted with the arc-dpa formula. For U or O PKAs in UO,, the fit is
very poor. This can be explained by the efficiencies observed at low
energies. Indeed, the number of created FPs is much larger than the
one predicted by the NRT law, hence the efficiency exceeds one up
to energies of about 1 keV. Conversely, the arc-dpa formula relies
on the assumption that the efficiency equals one for E, = Eq/0.4. In
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Fig. 2. Number of created FPs calculated with CMDC as a function of the ballistic energies from 100 eV to 580 keV. Straight red lines are the prediction of the NRT law. Power law and
linear fits of parts of the defect curves are shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

the case of UO; the efficiency is then expected to be one for 60 eV
while it is equal to about 1.6 and 3 for O and U PKAs respectively.
Therefore the evolution of % cannot be fitted with the arc-dpa
formula. For Al PKA in Ni3Al the arc-dpa formula performs better.
However, it is not perfect. For instance at low energies the calcu-
lated efficiency remains lower than one. Moreover, the arc-dpa
formula assumes that the efficiency will eventually become con-
stant at large energies, which is not observed in the Al case.

4. Subcascade formation and linearity of defect production
4.1. Subcascades as dense defect pockets

The decrease of the efficiency of defect formation with respect
to the NRT law has been observed very early in MD calculations
[5,6]. It has also for long been noticed that this decrease eventually
comes to an end in pure metals and the defect production turns to
linear with ballistic energy. The common explanation for this high
energy linearity of defect production relates to the apparition of
subcascades. It was apparently first suggested by Averback et al. [5]:
“the phenomenon of saturation of the efficiency can be plausibly
explained in terms of subcascade formation.” It was indeed verified
for various metals (among which Cu [5], Ag®, Fe”) and was subse-
quently considered as well established, e.g. Stoller [7] wrote: “the
ratio of MD stable displacements divided by the number obtained
from the NRT model decreases with energy until subcascade for-
mation becomes prominent”.

The present calculations allow us to revisit this stated rela-
tionship between subcascade formation and linearity of defect

production, i.e. saturation of the efficiency decrease. To do so we
need to properly define subcascade formation. Subcascades are in
essence the result of dynamical processes, which can be detected in
MD simulations following the movements of all displaced atoms
[26]. However, it is possible to track their formation analyzing the
final state defects. Subcascades appear when the mean free path of
the PKA between two collisions is larger than the characteristic
length of the defect pocket created by the collision. Observing and
counting disconnected dense defect pockets allows characterizing
subcascade formation. This is indeed what is done commonly by
“eye inspection” of the cascade debris. One then observes dense
areas of defects loosely connected with linear tracks involving
much less defects. Each of these defect pockets is then attributed to
a particular subcascade. To go beyond such qualitative methods, we
define a method to dispatch the defects among various dense
defect pockets.
The procedure is the following:

1 Defects (both vacancies and interstitials) are linked as neighbors
if they are separated by less than some cutoff radius (presently
1.5 nm);

2 Defects, which have more than a specified number of neighbors
(presently 8), are labelled as highly coordinated defects. Such
defects and their neighbors belong to the same defect pocket;

3 Defects not connected to highly coordinated defects are labelled
as isolated and do not belong to any subcascade.

Applying this procedure, defects are dispatched among different
defect pockets except for the isolated ones. An example of such
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dispatching is given in Fig. 4.

The above mentioned thresholds for neighbor connection or
highly coordinated defects have been chosen to reproduce quali-
tatively “eye inspection” and to give sensible results for Fe cascades
in iron (see below). Changing these thresholds slightly affects the
division in subcascades but not the following qualitative discussion.

Defect pockets are then sorted according to their number of
defects in decreasing order. The first defect pocket (DP1) is thus the
one containing the most number of defects, irrespective of whether

it appears at the beginning or at the end of the cascade. Subse-
quently, DP2 relates to the second, DP3 to the third and so on. As
mentioned before, these defect pockets are considered to be the
result of disconnected subcascades.

Fig. 5 illustrates the seminal iron case. It is based on the cascade
calculations presented in a previous paper [16]. Left panel shows
the number of defects as a function of ballistic energy, obtained
with CMDC, as well as the number of defects in DP1, DP2, DP3 and
isolated defects. For low energies the number of defects in DP1
follows the total number of defects with a small portion of isolated
defects. In this energy range there is no subcascade formation.
Above 40 keV, the number of defects in DP1 saturates while the
numbers in DP2 and DP3 rise. This is the indication of subcascade
formation. At 100 keV, DP2 has reached saturation. One clearly
observes the formation of subcascades, which multiply for larger
energies.

The relative amount of defects either isolated or contained in
each subcascades is indicated in the right panel in Fig. 5. It can be
interpreted along the same lines as the left panel of the same figure.
Below 40 keV, 60—80% of defects are in DP1 and 20% are isolated;
there is no subcascade formation. Beyond 40 keV, the proportion of
defectsin DP1 decreases steadily, as its size saturates while more and
more defects are created. The proportion of defects in DP2 and DP3
then rises before saturating and decreasing since their own size
saturates. The proportion of isolated defects remains constant. At the
highest energy (Ep, = 300 keV), 60% of the defects are either isolated
or contained in DP1, DP2, and DP3, which means that additional
subcascades (DP4, DP5, etc.) contain the rest of the defects.

One observes that the onset of subcascade formation takes place
in the same energy range as the saturation of the efficiency
decrease of defect production (around 40 keV). The connection
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Fig. 5. Subcascade formation in iron. Left panel: number of created defects in iron cascades as a function of ballistic energy (black curve), number of defects in each subcascades
sorted in decreasing size order (colored continuous curves) and number of isolated defects (dashed curve). Right panel: Proportion of defects in the 3 biggest subcascades (DP1, DP2,
DP3) and isolated defects. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

between subcascade formation and linearity of defect formation is
reproduced.

4.2. Case of PKAs in alloys

The same procedure of dispatching defects in defect pockets has
been applied to our calculations on UO; and Ni3Al. The proportions
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of defects in the three biggest defect pockets are given in Fig. 6. The
shapes of the curves are close to what was observed in iron. Initially
most of defects are in the biggest pocket. Then, at some energy the
proportion of defects in the biggest pocket falls while other defect
pockets appear and start to contain a large number of defects. One
can estimate that subcascades appear around this energy where the
biggest defect pocket contains only 50% of the total number of
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Fig. 6. Subcascade formation for Ni and Al in Ni3Al and U and O in UO,. Proportion of defects in the 3 biggest subcascades (DP1, DP2, DP3) and isolated defects.
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g in UO;, the onset of subcascade formation (a little more than

8 200 keV) is close to the energy of saturation of the efficiency of

100 /I\ g defect formation. Conversely, for Ni PKA in Ni3Al the energy of
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5 = 14 g is never reached. This is especially striking for O PKA in UO; where

L2 g subcascades appear at very low energy, as early as 3 keV and no

L e [/ —T v sign of saturation of efficiency decrease can ever be seen up to
E, (keV) Ep = 80 keV.

Ni PKA in Ni.Al Therefore, one has to state that, in the general case, the linearity

3 of defect production and subcascade formation do not necessarily

mean subcascades
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take place at the same energy; thus invalidating the traditional link
between the two phenomena.

5. Average numbers of subcascades and defect per
subcascades

As we performed more than just a few cascade calculations, we
were able to make statistical averaging even at the highest energies.
We use the same procedure of defect dispatching in various defect

mean number of defect pockets

! saaasl i1
1(21

“I’E (keV) 100 pockets. From this post-processing, we obtain, for each PKA energy,

b the distribution of the number of defect pockets and the distribu-

Al PKA in NiAl tion of the number of defects in the defect pockets. Averaging these
Tnoan subcascades 100 two distributions yields to the average number of defect pockets,

N f(Eb), and the average number of defects in the defect pockets,
N%E E)
b .

The total number of defects can then be estimated as:

EegeEe

N ~def. ~ def
NEMPC = Nsc(Ep) x No¢ " (Ep) + Nigor (Ep) (6)

where N?gl (Ep) is the number of isolated defects.
The number of isolated defects proves to vary linearly with

1
=)
mean number of defect pockets

L S [ E—T ballistic energy (see Fig. 5 for iron). The linearity or none linearity of
E, (keV) defect production, therefore, lies in the variations with ballistic
: energy of Ngc(Ep) and Ng¢ '(Ep). The values of these two quantities
U PKA in UO. . - L. . .
2 as a function of ballistic energies in the different cases are given

mean subcascades

=100 Fig. 7.

One can see that, as expected, the average number of sub-
cascades (Nsc(Ep)) equals one up to a certain threshold where it
starts to rise. For ballistic energies lower than this threshold,
ng "(Ep) is simply the number of defects in the only existing defect
pocket. It increases sublinearly with the ballistic energy. Thus the
efficiency of defect production with respect the NRT law is
decreasing at such low energies.

For energies larger than the onset of subcascade formation, the
evolutions of Ngc(E;,) and ng ‘(Ep) show a rather unexpected va-
riety of behaviors. For iron and uranium in UO;, the number of
O PKAin UO, defect pockets starts to exceed one then varies linearly with Ep,.
Concurrently, the number of defects per pocket stops rising, then
decreases to eventually saturate to a roughly constant value. From
this energy on, Eq. (6) shows that the defect creation is linear with
ballistic energy. Indeed NSZ "(Ep) being constant and Ns¢(E,) being
linear with energy, their product varies linearly with energy.

The situation appears more complex for Ni PKA in NizAl. Indeed,
after its initial rise, the number of defects per pocket seems to
continuously decrease even at the largest energies. Simultaneously,
the number of defect pockets increases more than linearly with
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—z

1001

)
mean number of defect pockets

sl

10 aal PR ......110 Y 100
E, (keV)

mean subcascades
T + 3100

mean number of defect pockets

Fig. 7. Average number of defect pockets (right scale) and average number of defects
per pocket (left scale) as a function of ballistic energy. The dotted lines are linear guide
for the eyes.



energy. Thus, the observed linear production of defect in this case
results from concurrent decrease of ng ‘(Ep) and overlinear in-
crease of Ngc(Ej) with their product being constant. It appears then
that the linearity of defect production for these cascades does not
have the same origin as the ones observed in iron and for U PKA in
UO0s.

As far as the Al in Ni3Al and O in UO; cases are concerned, one
observes a sublinear production of defects at all energies with no
sign of saturation for the efficiency. However, the origins of this
apparently identical behavior seem to be different in both cases.

For Al PKA the number of defect pockets appears linear with
energy while the number of defects in the pockets appears to be
slowly decreasing with energy. The product is therefore sublinear
with energy. Conversely, O PKAs in UO; create pockets of constant
number of defects but the number of defect pockets increases
sublinearly with energy. The continuous decrease of the efficiency
therefore lies in this sublineatity of the number of defect pockets.

Additionally, we checked in the case of U PKA that long runs (see
Section 2.3) lead qualitatively to the same results than short runs.
The evolutions of Nﬁﬁf "(Ep) and Nsc(Ep) are very similar between
long and short runs, up to the maximum energy of long run cal-
culations (E, = 72 keV). In fact, rescaling the energy scale of short
runs by a factor 1.7 leads to resy}igjsc very close to the ones of long
runs in terms of Nsc(Ep), while Ng¢ "(Ep) is consistently smaller for
long runs than for short runs. The difference between long and
short runs directly comes from the lesser defect production in long
runs. This explains naturally why ng ‘(Ep) is smaller for long runs.
It also leads to a shift in energy for the evolution of Ngc(E,) as the
smallest assemblies of defects (beyond 8 defects) are not counted as
defect pockets but as isolated defects, so that a Jarger ballistic en-
ergy is needed in long runs to have the same ng "(Ep) than in short
runs. Nevertheless the results of long and short runs remain qual-
itatively the same and their differences do not affect the discussion.
Note that as far as Ni3Al is concerned, defect production differs only
by 10% between the two types of run, so that short and long runs
results should be very close in terms of average defect pockets.

Our results allow us to discuss the linearity of defect production
in high energy cascades. The common view is implicitly based on
the assumption that above some energy the subcascades reach a
constant size (on average) while their number is linear with energy.
These assumptions have been proven in the BCA framework
through fractal analyses [27]. But this study was restricted to mono-
elemental solids and the calculations did not take into account
inelastic energy loss so that their validity for complete (elastic plus
inelastic) energy loss is not warranted.

Our calculations show that this simple picture is not of general
validity in alloys. While it proves correct for cascades in iron and for
U PKA is UO,, it appears that the number of subcascades at high
energies can be over or sublinear with ballistic energy. Meanwhile,
the number of defects per pocket does not always reach a constant
value. This alloy effect certainly pertains to the mass difference
between the constituents of the alloys. It should therefore be less
important in alloys made of components of comparable masses.

6. Conclusions

Most of cascade calculations have been performed in mono-
elemental solids. This is especially true for the recent calculations
interested in defect production at high PKA energies. Our calcula-
tions show that some of the conclusions drawn from these mono-
elemental studies are in fact only valid in these cases and must be

revisited in the case of alloys.

We perform MD to make a systematic study of cascades created
by heavy and light constituents in two examples of ordered alloys.
Using CMDC we are able to reach quite large energies (up to
580 keV for total kinetic energy). We find that the efficiency of
defect creation with respect the NRT formula decreases at inter-
mediate energies, but unlike what is observed in elemental solids it
does not always turn to a constant value at high energy. For light
PKA in alloys, defect creation remains under linear in ballistic en-
ergy at high energy.

Analyzing cascade tracks, we find that the common knowledge
equivalence of linearity of defect production and apparition of
subcascades does not hold in general for alloys. Subcascades appear
very early for PKA's of the light constituent while linearity of defect
production is never reached. We calculate the average number of
subcascades and average number of defects per subcascades as a
function of ballistic energy. We find an unexpected variety of be-
haviors for these two average quantities above the threshold for
subcascade formation.
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